Search results for: probability density function (PDF)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9110

Search results for: probability density function (PDF)

8180 Theoretical Study of Structural and Electronic Properties of Matlockite CaFX (X = I and Br) Compounds

Authors: Meriem Harmel, Houari Khachai

Abstract:

The full potential linearized augmented plane wave (FP-LAPW)method within density functional theory is applied to study, for the first time, the structural and electronic properties of CaFI and to compare them with CaFCl and CaFBr, all compounds belonging to the tetragonal PbFCl structure group with space group P4/nmm. We used the generalized gradient approximation (GGA) based on exchange–correlation energy optimization to calculate the total energy and also the Engel– Vosko GGA formalism, which optimizes the corresponding potential for band structure calculations. Ground state properties such as the lattice parameters, c/a ratio, bulk modulus, pressure derivative of the bulk modulus and cohesive energy are calculated, as well as the optimized internal parameters, by relaxing the atomic position in the force directions. The variations of the calculated interatomic distances and angles between different atomic bonds are discussed. CaFCl was found to have a direct band gap at whereas CaFBr and BaFI have indirect band gaps. From these computed bands, all three materials are found to be insulators having band gaps of 6.28, 5.46, and 4.50 eV, respectively. We also calculated the valence charge density and the total density of states at equilibrium volume for each compound. The results are in reasonable agreement with the available experimental data.

Keywords: DFT, matlockite, structural properties, electronic structure

Procedia PDF Downloads 324
8179 The Mechanical and Electrochemical Properties of DC-Electrodeposited Ni-Mn Alloy Coating with Low Internal Stress

Authors: Chun-Ying Lee, Kuan-Hui Cheng, Mei-Wen Wu

Abstract:

The nickel-manganese (Ni-Mn) alloy coating prepared from DC electrodeposition process in sulphamate bath was studied. The effects of process parameters, such as current density and electrolyte composition, on the cathodic current efficiency, microstructure, internal stress and mechanical properties were investigated. Because of its crucial effect on the application to the electroforming of microelectronic components, the development of low internal stress coating with high leveling power was emphasized. It was found that both the coating’s manganese content and the cathodic current efficiency increased with the raise in current density. In addition, the internal stress of the deposited coating showed compressive nature at low current densities while changed to tensile one at higher current densities. Moreover, the metallographic observation, X-ray diffraction measurement, transmission electron microscope (TEM) examination, and polarization curve measurement were conducted. It was found that the Ni-Mn coating consisted of nano-sized columnar grains and the maximum hardness of the coating was associated with (111) preferred orientation in the microstructure. The grain size was refined along with the increase in the manganese content of the coating, which accordingly, raised its hardness and mechanical tensile strength. In summary, the Ni-Mn coating prepared at lower current density of 1-2 A/dm2 had low internal stress, high leveling power, and better corrosion resistance.

Keywords: Ni-Mn coating, DC plating, internal stress, leveling power

Procedia PDF Downloads 369
8178 Composite Panels from Under-Utilized Wood and Agricultural Fiber Resources

Authors: Salim Hiziroglu

Abstract:

Rice straw, jute, coconut fiber, oil palm, bagasse and bamboo are some of agricultural resources that can be used to produce different types of value-added composite panels including particleboard and medium density fiberboard (MDF). Invasive species such as Eastern red cedar in South Western states in the USA would also be considered as viable raw material to manufacture above products. The main objective of this study was to investigate both physical and mechanical properties of both structural and non-structural panels manufactured from underutilized and agricultural species. Eastern red cedar, bamboo and rice straw were used to manufacture experimental panels. Properties of such samples including bending, internal bond strength, thickness swelling, density profiles and surface roughness were evaluated. Panels made 100% bamboo had the best properties among the other samples. Having rice straw in particleboard and medium density fiberboard panels reduced overall properties of the samples. Manufacturing interior sandwich type of panels having fibers on the face layers while particle of the same type of materials in the core improved their surface quality. Based on the findings of this work such species could have potential to be used as raw material to manufacture value-added panels with accepted properties.

Keywords: composite panels, wood and non-wood fibers, mechanical properties, bamboo

Procedia PDF Downloads 432
8177 Representing a Methodology for Refinement of Strategic Objectives in Strategy Map Establishment: Combining Quality Function Deployment and Fuzzy Screening

Authors: Bijan Nahavandi, Navid Jafarinejad, Somayeh Mehrafzad

Abstract:

Strategy maps represent the way of value creation in in each organization. Nowadays, implementation of strategy is the main concern for all organizations. Strategy map establishment is the start-up point of strategy implementation and this shows the critical importance of this concept. After some years past since emergence of strategy map, there are some shortcomings in its methodology that frequently quoted by many of researchers. One of these shortcomings is the shortage of a mechanism for refinement of objectives candidate for entrance to map. Organizations in practice have obsession and avidity to determine more number of objectives in strategy map. This study wants to represent a step by step approach to help obviate this problem using quality function deployment (QFD) as a helpful tool and fuzzy screening method. Finally, represented approach applies in a practical case and conclusions have been explained.

Keywords: balanced scorecard, fuzzy screening, house of strategic objectives (HoSO), quality function deployment, strategy map

Procedia PDF Downloads 353
8176 Investigation of Some Sperm Quality Parameters of Farmed and Wild-Caught Meagre (Argyrosomus regius Asso, 1801)

Authors: Şefik Surhan Tabakoğlu, Hipolito Fernández-Palacios, Dominique Schuchardt, Mahmut Ali Gökçe, Celal Erbaş, Oğuz Taşbozan

Abstract:

This study aimed to clarify some sperm quality parameters such as volumetric sperm quantity, motility, motility duration, sperm density, total number of spermatozoa and pH of meagre (Argyrosomus regius ASSO, 1801) individuals kept in farming conditions and caught from wild (las palmas, gran canary). The sperm was collected in glass tubes graded in millimetres and sperm volume registered immediately following collection by abdominal massage. The sperm quality parameters including motility, total number of spermatozoa and spermatozoa density were determined with computer assisted sperm analysis (CASA) program. The duration of spermatozoa movement was assessed using a sensitive chronometer (1/100s) that was started simultaneously with the addition of activation solution into the sample. Sperm pH was measured with standard pH electrodes within five minutes of sampling. At the end of the study, while amount of sperm (5.20±0.33 ml), duration of motility (7.23±0.7 m) and total number of spermatozoa (131.40±12.22 x10^9) were different statistically (p < 0,05), motility (% 81.03±6.59), pH (7.30±0.08), sperm density (25.27±9.42 x10^9/ml) and morphologic parameters were not significantly different between the two groups. According to our results, amount of sperm, duration of motility and total number of spermatozoa were better in farmed group than that of the other group.

Keywords: Seriola rivoliana, meagre, sperm quality, motility, motility duration

Procedia PDF Downloads 375
8175 Phosphorus Recovery Optimization in Microbial Fuel Cell

Authors: Abdullah Almatouq

Abstract:

Understanding the impact of key operational variables on concurrent energy generation and phosphorus recovery in microbial fuel cell is required to improve the process and reduce the operational cost. In this study, full factorial design (FFD) and central composite designs (CCD) were employed to identify the effect of influent COD concentration and cathode aeration flow rate on energy generation and phosphorus (P) recovery and to optimise MFC power density and P recovery. Results showed that influent chemical oxygen demand (COD) concentration and cathode aeration flow rate had a significant effect on power density, coulombic efficiency, phosphorus precipitation efficiency and phosphorus precipitation rate at the cathode. P precipitation was negatively affected by the generated current during the batch duration. The generated energy was reduced due to struvite being precipitated on the cathode surface, which might obstruct the mass transfer of ions and oxygen. Response surface mathematical model was used to predict the optimum operating conditions that resulted in a maximum power density and phosphorus precipitation efficiency of 184 mW/m² and 84%, and this corresponds to COD= 1700 mg/L and aeration flow rate=210 mL/min. The findings highlight the importance of the operational conditions of energy generation and phosphorus recovery.

Keywords: energy, microbial fuel cell, phosphorus, struvite

Procedia PDF Downloads 157
8174 Density Measurement of Underexpanded Jet Using Stripe Patterned Background Oriented Schlieren Method

Authors: Shinsuke Udagawa, Masato Yamagishi, Masanori Ota

Abstract:

The Schlieren method, which has been conventionally used to visualize high-speed flows, has disadvantages such as the complexity of the experimental setup and the inability to quantitatively analyze the amount of refraction of light. The Background Oriented Schlieren (BOS) method proposed by Meier is one of the measurement methods that solves the problems, as mentioned above. The refraction of light is used for BOS method same as the Schlieren method. The BOS method is characterized using a digital camera to capture the images of the background behind the observation area. The images are later analyzed by a computer to quantitatively detect the amount of shift of the background image. The experimental setup for BOS does not require concave mirrors, pinholes, or color filters, which are necessary in the conventional Schlieren method, thus simplifying the experimental setup. However, the defocusing of the observation results is caused in case of using BOS method. Since the focus of camera on the background image leads to defocusing of the observed object. The defocusing of object becomes greater with increasing the distance between the background and the object. On the other hand, the higher sensitivity can be obtained. Therefore, it is necessary to adjust the distance between the background and the object to be appropriate for the experiment, considering the relation between the defocus and the sensitivity. The purpose of this study is to experimentally clarify the effect of defocus on density field reconstruction. In this study, the visualization experiment of underexpanded jet using BOS measurement system with ronchi ruling as the background that we constructed, have been performed. The reservoir pressure of the jet and the distance between camera and axis of jet is fixed, and the distance between background and axis of jet has been changed as the parameter. The images have been later analyzed by using personal computer to quantitatively detect the amount of shift of the background image from the comparison between the background pattern and the captured image of underexpanded jet. The quantitatively measured amount of shift have been reconstructed into a density flow field using the Abel transformation and the Gradstone-Dale equation. From the experimental results, it is found that the reconstructed density image becomes blurring, and noise becomes decreasing with increasing the distance between background and axis of underexpanded jet. Consequently, it is cralified that the sensitivity constant should be greater than 20, and the circle of confusion diameter should be less than 2.7mm at least in this experimental setup.

Keywords: BOS method, underexpanded jet, abel transformation, density field visualization

Procedia PDF Downloads 78
8173 Cognitive Function and Coping Behavior in the Elderly: A Population-Based Cross-Sectional Study

Authors: Ryo Shikimoto, Hidehito Niimura, Hisashi Kida, Kota Suzuki, Yukiko Miyasaka, Masaru Mimura

Abstract:

Introduction: In Japan, the most aged country in the world, it is important to explore predictive factors of cognitive function among the elderly. Coping behavior relieves chronic stress and improves lifestyle, and consequently may reduce the risk of cognitive impairment. One of the most widely investigated frameworks evaluated in previous studies is approach-oriented and avoidance-oriented coping strategies. The purpose of this study is to investigate the relationship between cognitive function and coping strategies among elderly residents in urban areas of Japan. Method: This is a part of the cross-sectional Arakawa geriatric cohort study for 1,099 residents (aged 65 to 86 years; mean [SD] = 72.9 [5.2]). Participants were assessed for cognitive function using the Mini-Mental State Examination (MMSE) and diagnosed by psychiatrists in face-to-face interviews. They were then investigated for their each coping behaviors and coping strategies (approach- and avoidance-oriented coping) using stress and coping inventory. A multiple regression analysis was used to investigate the relationship between MMSE score and each coping strategy. Results: Of the 1,099 patients, the mean MMSE score of the study participants was 27.2 (SD = 2.7), and the numbers of the diagnosis of normal, mild cognitive impairment (MCI), and dementia were 815 (74.2%), 248 (22.6%), and 14 (1.3%), respectively. Approach-oriented coping score was significantly associated with MMSE score (B [partial regression coefficient] = 0.12, 95% confidence interval = 0.05 to 0.19) after adjusting for confounding factors including age, sex, and education. Avoidance-oriented coping did not show a significant association with MMSE score (B [partial regression coefficient] = -0.02, 95% confidence interval = -0.09 to 0.06). Conclusion: Approach-oriented coping was clearly associated with neurocognitive function in the Japanese population. A future longitudinal trial is warranted to investigate the protective effects of coping behavior on cognitive function.

Keywords: approach-oriented coping, cognitive impairment, coping behavior, dementia

Procedia PDF Downloads 129
8172 Diesel Engine Performance Optimization to Reduce Fuel Consumption and Emissions Issues

Authors: hadi kargar, bahador shabani

Abstract:

In this article, 16 cylinder motor combustion CFD modeling with a diameter of 165 mm and 195 mm along the way to help the FIRE software to optimize its function to work. A three-dimensional model of the processes that formed inside the cylinder made that involves mixing the fuel and air, ignition and spraying. In this three-dimensional model, all chemical species, density of air fuel spraying and spray with full profile intended to detailed results from mixing the fuel and air, igniting the ignition advance, spray, and mixed media in different times and get fit by moving the piston. Optimal selection of the model for the shape of the piston and spraying fuel specifications (including the management of spraying, the number of azhneh hole, start time of spraying and spraying angle) to achieve the best fuel consumption and minimal pollution. The spray hole 6 and 7 in three different configurations with five spraying and gives the best geometry and various performances in the simulation. 6 hole spray angle, finally spraying 72.5 degrees and two forms of spraying a better performance in comparison with other items of their own.

Keywords: spray, FIRE, CFD, optimize, diesel engine

Procedia PDF Downloads 419
8171 Kirchoff Type Equation Involving the p-Laplacian on the Sierpinski Gasket Using Nehari Manifold Technique

Authors: Abhilash Sahu, Amit Priyadarshi

Abstract:

In this paper, we will discuss the existence of weak solutions of the Kirchhoff type boundary value problem on the Sierpinski gasket. Where S denotes the Sierpinski gasket in R² and S₀ is the intrinsic boundary of the Sierpinski gasket. M: R → R is a positive function and h: S × R → R is a suitable function which is a part of our main equation. ∆p denotes the p-Laplacian, where p > 1. First of all, we will define a weak solution for our problem and then we will show the existence of at least two solutions for the above problem under suitable conditions. There is no well-known concept of a generalized derivative of a function on a fractal domain. Recently, the notion of differential operators such as the Laplacian and the p-Laplacian on fractal domains has been defined. We recall the result first then we will address the above problem. In view of literature, Laplacian and p-Laplacian equations are studied extensively on regular domains (open connected domains) in contrast to fractal domains. In fractal domains, people have studied Laplacian equations more than p-Laplacian probably because in that case, the corresponding function space is reflexive and many minimax theorems which work for regular domains is applicable there which is not the case for the p-Laplacian. This motivates us to study equations involving p-Laplacian on the Sierpinski gasket. Problems on fractal domains lead to nonlinear models such as reaction-diffusion equations on fractals, problems on elastic fractal media and fluid flow through fractal regions etc. We have studied the above p-Laplacian equations on the Sierpinski gasket using fibering map technique on the Nehari manifold. Many authors have studied the Laplacian and p-Laplacian equations on regular domains using this Nehari manifold technique. In general Euler functional associated with such a problem is Frechet or Gateaux differentiable. So, a critical point becomes a solution to the problem. Also, the function space they consider is reflexive and hence we can extract a weakly convergent subsequence from a bounded sequence. But in our case neither the Euler functional is differentiable nor the function space is known to be reflexive. Overcoming these issues we are still able to prove the existence of at least two solutions of the given equation.

Keywords: Euler functional, p-Laplacian, p-energy, Sierpinski gasket, weak solution

Procedia PDF Downloads 234
8170 Green, Yellow, Orange and Red Emission of Sm3+ Doped Borotellurite Glass under the 480nm Excitation Wavelength

Authors: M. R. S. Nasuha, K. Azman, H. Azhan, S. A. Senawi, A . Mardhiah

Abstract:

Sm3+ doped borotellurite glasses of the system (70-x) TeO2-20B2O3-10ZnO-xSm2O3 (where x = 0.0, 0.5, 1.0, 1.5, 2.0, and 2.5 mol%) have been prepared using melt-quenching method. Their physical properties such as density, molar volume and oxygen packing density as well as the optical measurements by mean of their absorption and emission characteristic have been carried out at room temperature using UV/VIS and photoluminescence spectrophotometer. The result of physical properties is found to vary with respect to Sm3+ ions content. Meanwhile, three strong absorption peaks are observed and are well resolved in the ultraviolet and visible regions due to transitions between the ground state and various excited state of Sm3+ ions. Thus, the photoluminescence spectra exhibit four emission bands from the initial state, which correspond to the 4G5/2 → 6H5/2, 4G5/2 → 6H7/2, 4G5/2 → 6H9/2 and 4G5/2 → 6H11/2 fluorescence transitions at 562 nm, 599 nm, 645 nm, and 706 nm, respectively.

Keywords: absorption, borotellurite, emission, optical, physical

Procedia PDF Downloads 698
8169 Community Assemblages of Reef Fishes in Marine Sanctuary and Non-Marine Sanctuary Areas in Sogod Bay, Southern Leyte, Philippines

Authors: Homer Hermes De Dios, Dewoowoogen Baclayon

Abstract:

The community assemblages of reef fishes was conducted in ten marine sanctuaries and ten non-marine sanctuary areas in Sogod Bay, Southern Leyte, Philippines from 2014-2015. A total of 223 species belonging to 39 families of reef fishes in Sogod Bay were recorded. Family Pomacentridae (e.g. damsel fishes) has the highest number of species (42), followed by Labridae or wrasses (27), Chaetodonthidae or butterfly fish (22), Scaridae or parrotfishes (17), and Acanthuridae (surgeonfishes) and Pomacanthidae (angelfishes) both with 10 species. Two of the recorded fish species were included in the IUCN Red List, wherein one is near threatened (Chlorurus bowersi) and the other is endangered species (Cheilinus undulatus). The mean total fish biomass (target + indicator + major or other fish) in MPA was significantly higher (13,468 g/500m2 or equivalent to 26.94 mt/km2) than Non-MPA with 7,408 g/500m2 or 15,216mt/km2 in Non-MPA. The mean total fish biomass in MPAs in Sogod Bay can be categorized as high (21-40 mt/km2) with minimal fishing and medium or slightly moderately fished (11-20 mt/km2) in Non-MPAs. The mean (±SE) biomass of target fishes was significantly higher in MPA than Non-MPA and differ significantly across two depths. The target fish biomass was significantly higher in Limasawa Marine Sanctuary (13,569 g/500m2) followed by Lungsodaan Marine Sanctuary in Padre Burgos (11,884 g/500m2) and the lowest was found in San Isidro (735 g/500m2). The mean total fish density (target + indicator + major or other fish) did not differ between Marine Protected area (607.912 fishes/500m2 or 1215.824 fishes/1000m2) and 525.937 fishes/500m2 in non-Marine Protected Area and can be categorized as moderate (667-2267mt/km2). The mean density of target fishes was significantly (p=0.022) higher in deeper areas (12-15m) than in shallow areas but did not differ significantly between MPAs and Non-MPA. No significant difference of the biomass and density for indicator and other fishes in MPAs and Non-MPAs.

Keywords: abundance, density, species richness, target fish, coral reef management

Procedia PDF Downloads 311
8168 Coupling Random Demand and Route Selection in the Transportation Network Design Problem

Authors: Shabnam Najafi, Metin Turkay

Abstract:

Network design problem (NDP) is used to determine the set of optimal values for certain pre-specified decision variables such as capacity expansion of nodes and links by optimizing various system performance measures including safety, congestion, and accessibility. The designed transportation network should improve objective functions defined for the system by considering the route choice behaviors of network users at the same time. The NDP studies mostly investigated the random demand and route selection constraints separately due to computational challenges. In this work, we consider both random demand and route selection constraints simultaneously. This work presents a nonlinear stochastic model for land use and road network design problem to address the development of different functional zones in urban areas by considering both cost function and air pollution. This model minimizes cost function and air pollution simultaneously with random demand and stochastic route selection constraint that aims to optimize network performance via road capacity expansion. The Bureau of Public Roads (BPR) link impedance function is used to determine the travel time function in each link. We consider a city with origin and destination nodes which can be residential or employment or both. There are set of existing paths between origin-destination (O-D) pairs. Case of increasing employed population is analyzed to determine amount of roads and origin zones simultaneously. Minimizing travel and expansion cost of routes and origin zones in one side and minimizing CO emission in the other side is considered in this analysis at the same time. In this work demand between O-D pairs is random and also the network flow pattern is subject to stochastic user equilibrium, specifically logit route choice model. Considering both demand and route choice, random is more applicable to design urban network programs. Epsilon-constraint is one of the methods to solve both linear and nonlinear multi-objective problems. In this work epsilon-constraint method is used to solve the problem. The problem was solved by keeping first objective (cost function) as the objective function of the problem and second objective as a constraint that should be less than an epsilon, where epsilon is an upper bound of the emission function. The value of epsilon should change from the worst to the best value of the emission function to generate the family of solutions representing Pareto set. A numerical example with 2 origin zones and 2 destination zones and 7 links is solved by GAMS and the set of Pareto points is obtained. There are 15 efficient solutions. According to these solutions as cost function value increases, emission function value decreases and vice versa.

Keywords: epsilon-constraint, multi-objective, network design, stochastic

Procedia PDF Downloads 647
8167 Study of Hydrothermal Behavior of Thermal Insulating Materials Based on Natural Fibers

Authors: J. Zach, J. Hroudova, J. Brozovsky

Abstract:

Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation.

Keywords: thermal insulating materials, hemp fibers, sheep wool fibers, thermal conductivity, moisture

Procedia PDF Downloads 391
8166 Study of Proton-9,11Li Elastic Scattering at 60~75 MeV/Nucleon

Authors: Arafa A. Alholaisi, Jamal H. Madani, M. A. Alvi

Abstract:

The radial form of nuclear matter distribution, charge and the shape of nuclei are essential properties of nuclei, and hence, are of great attention for several areas of research in nuclear physics. More than last three decades have witnessed a range of experimental means employing leptonic probes (such as muons, electrons etc.) for exploring nuclear charge distributions, whereas the hadronic probes (for example alpha particles, protons, etc.) have been used to investigate the nuclear matter distributions. In this paper, p-9,11Li elastic scattering differential cross sections in the energy range  to  MeV have been studied by means of Coulomb modified Glauber scattering formalism. By applying the semi-phenomenological Bhagwat-Gambhir-Patil [BGP] nuclear density for loosely bound neutron rich 11Li nucleus, the estimated matter radius is found to be 3.446 fm which is quite large as compared to so known experimental value 3.12 fm. The results of microscopic optical model based calculation by applying Bethe-Brueckner–Hartree–Fock formalism (BHF) have also been compared. It should be noted that in most of phenomenological density model used to reproduce the p-11Li differential elastic scattering cross sections data, the calculated matter radius lies between 2.964 and 3.55 fm. The calculated results with phenomenological BGP model density and with nucleon density calculated in the relativistic mean-field (RMF) reproduces p-9Li and p-11Li experimental data quite nicely as compared to Gaussian- Gaussian or Gaussian-Oscillator densities at all energies under consideration. In the approach described here, no free/adjustable parameter has been employed to reproduce the elastic scattering data as against the well-known optical model based studies that involve at least four to six adjustable parameters to match the experimental data. Calculated reaction cross sections σR for p-11Li at these energies are quite large as compared to estimated values reported by earlier works though so far no experimental studies have been performed to measure it.

Keywords: Bhagwat-Gambhir-Patil density, Coulomb modified Glauber model, halo nucleus, optical limit approximation

Procedia PDF Downloads 162
8165 Second Order Optimality Conditions in Nonsmooth Analysis on Riemannian Manifolds

Authors: Seyedehsomayeh Hosseini

Abstract:

Much attention has been paid over centuries to understanding and solving the problem of minimization of functions. Compared to linear programming and nonlinear unconstrained optimization problems, nonlinear constrained optimization problems are much more difficult. Since the procedure of finding an optimizer is a search based on the local information of the constraints and the objective function, it is very important to develop techniques using geometric properties of the constraints and the objective function. In fact, differential geometry provides a powerful tool to characterize and analyze these geometric properties. Thus, there is clearly a link between the techniques of optimization on manifolds and standard constrained optimization approaches. Furthermore, there are manifolds that are not defined as constrained sets in R^n an important example is the Grassmann manifolds. Hence, to solve optimization problems on these spaces, intrinsic methods are used. In a nondifferentiable problem, the gradient information of the objective function generally cannot be used to determine the direction in which the function is decreasing. Therefore, techniques of nonsmooth analysis are needed to deal with such a problem. As a manifold, in general, does not have a linear structure, the usual techniques, which are often used in nonsmooth analysis on linear spaces, cannot be applied and new techniques need to be developed. This paper presents necessary and sufficient conditions for a strict local minimum of extended real-valued, nonsmooth functions defined on Riemannian manifolds.

Keywords: Riemannian manifolds, nonsmooth optimization, lower semicontinuous functions, subdifferential

Procedia PDF Downloads 361
8164 Theorical Studies on the Structural Properties of 2,3-Bis(Furan-2-Yl)Pyrazino[2,3-F][1,10]Phenanthroline Derivaties

Authors: Zahra Sadeghian

Abstract:

This paper reports on the geometrical parameters optimized of the stationary point for the 2,3-Bis(furan-2-yl)pyrazino[2,3-f][1,10]phenanthroline. The calculations are performed using density functional theory (DFT) method at the B3LYP/LanL2DZ level. We determined bond lengths and bond angles values for the compound and calculate the amount of bond hybridization according to the natural bond orbital theory (NBO) too. The energy of frontier orbital (HOMO and LUMO) are computed. In addition, calculated data are accurately compared with the experimental result. This comparison show that the our theoretical data are in reasonable agreement with the experimental values.

Keywords: 2, 3-Bis(furan-2-yl)pyrazino[2, 3-f][1, 10]phenanthroline, density functional theory, theorical calculations, LanL2DZ level, B3LYP level

Procedia PDF Downloads 371
8163 Current Drainage Attack Correction via Adjusting the Attacking Saw-Function Asymmetry

Authors: Yuri Boiko, Iluju Kiringa, Tet Yeap

Abstract:

Current drainage attack suggested previously is further studied in regular settings of closed-loop controlled Brushless DC (BLDC) motor with Kalman filter in the feedback loop. Modeling and simulation experiments are conducted in a Matlab environment, implementing the closed-loop control model of BLDC motor operation in position sensorless mode under Kalman filter drive. The current increase in the motor windings is caused by the controller (p-controller in our case) affected by false data injection of substitution of the angular velocity estimates with distorted values. Operation of multiplication to distortion coefficient, values of which are taken from the distortion function synchronized in its periodicity with the rotor’s position change. A saw function with a triangular tooth shape is studied herewith for the purpose of carrying out the bias injection with current drainage consequences. The specific focus here is on how the asymmetry of the tooth in the saw function affects the flow of current drainage. The purpose is two-fold: (i) to produce and collect the signature of an asymmetric saw in the attack for further pattern recognition process, and (ii) to determine conditions of improving stealthiness of such attack via regulating asymmetry in saw function used. It is found that modification of the symmetry in the saw tooth affects the periodicity of current drainage modulation. Specifically, the modulation frequency of the drained current for a fully asymmetric tooth shape coincides with the saw function modulation frequency itself. Increasing the symmetry parameter for the triangle tooth shape leads to an increase in the modulation frequency for the drained current. Moreover, such frequency reaches the switching frequency of the motor windings for fully symmetric triangular shapes, thus becoming undetectable and improving the stealthiness of the attack. Therefore, the collected signatures of the attack can serve for attack parameter identification via the pattern recognition route.

Keywords: bias injection attack, Kalman filter, BLDC motor, control system, closed loop, P-controller, PID-controller, current drainage, saw-function, asymmetry

Procedia PDF Downloads 80
8162 Visco-Acoustic Full Wave Inversion in the Frequency Domain with Mixed Grids

Authors: Sheryl Avendaño, Miguel Ospina, Hebert Montegranario

Abstract:

Full Wave Inversion (FWI) is a variant of seismic tomography for obtaining velocity profiles by an optimization process that combine forward modelling (or solution of wave equation) with the misfit between synthetic and observed data. In this research we are modelling wave propagation in a visco-acoustic medium in the frequency domain. We apply finite differences for the numerical solution of the wave equation with a mix between usual and rotated grids, where density depends on velocity and there exists a damping function associated to a linear dissipative medium. The velocity profiles are obtained from an initial one and the data have been modeled for a frequency range 0-120 Hz. By an iterative procedure we obtain an estimated velocity profile in which are detailed the remarkable features of the velocity profile from which synthetic data were generated showing promising results for our method.

Keywords: seismic inversion, full wave inversion, visco acoustic wave equation, finite diffrence methods

Procedia PDF Downloads 461
8161 Numerical Performance Evaluation of a Savonius Wind Turbines Using Resistive Torque Modeling

Authors: Guermache Ahmed Chafik, Khelfellah Ismail, Ait-Ali Takfarines

Abstract:

The Savonius vertical axis wind turbine is characterized by sufficient starting torque at low wind speeds, simple design and does not require orientation to the wind direction; however, the developed power is lower than other types of wind turbines such as Darrieus. To increase these performances several studies and researches have been developed, such as optimizing blades shape, using passive controls and also minimizing power losses sources like the resisting torque due to friction. This work aims to estimate the performance of a Savonius wind turbine introducing a User Defined Function to the CFD model analyzing resisting torque. This User Defined Function is developed to simulate the action of the wind speed on the rotor; it receives the moment coefficient as an input to compute the rotational velocity that should be imposed on computational domain rotating regions. The rotational velocity depends on the aerodynamic moment applied on the turbine and the resisting torque, which is considered a linear function. Linking the implemented User Defined Function with the CFD solver allows simulating the real functioning of the Savonius turbine exposed to wind. It is noticed that the wind turbine takes a while to reach the stationary regime where the rotational velocity becomes invariable; at that moment, the tip speed ratio, the moment and power coefficients are computed. To validate this approach, the power coefficient versus tip speed ratio curve is compared with the experimental one. The obtained results are in agreement with the available experimental results.

Keywords: resistant torque modeling, Savonius wind turbine, user-defined function, vertical axis wind turbine performances

Procedia PDF Downloads 155
8160 Role of Interlayer Coupling for the Power Factor of CuSbS2 and CuSbSe2

Authors: Najebah Alsaleh, Nirpendra Singh, Udo Schwingenschlogl

Abstract:

The electronic and transport properties of bulk and monolayer CuSbS2 and CuSbSe2 are determined by using density functional theory and semiclassical Boltzmann transport theory, in order to investigate the role of interlayer coupling for the thermoelectric properties. The calculated band gaps of the bulk compounds are in agreement with experiments and significantly higher than those of the monolayers, which thus show lower Seebeck coefficients. Since also the electrical conductivity is lower, the monolayers are characterized by lower power factors. Therefore, interlayer coupling is found to be essential for the excellent thermoelectric response of CuSbS2 and CuSbSe2, even though it is weak.

Keywords: density functional theory, thermoelectric, electronic properties, monolayer

Procedia PDF Downloads 323
8159 A Parallel Implementation of k-Means in MATLAB

Authors: Dimitris Varsamis, Christos Talagkozis, Alkiviadis Tsimpiris, Paris Mastorocostas

Abstract:

The aim of this work is the parallel implementation of k-means in MATLAB, in order to reduce the execution time. Specifically, a new function in MATLAB for serial k-means algorithm is developed, which meets all the requirements for the conversion to a function in MATLAB with parallel computations. Additionally, two different variants for the definition of initial values are presented. In the sequel, the parallel approach is presented. Finally, the performance tests for the computation times respect to the numbers of features and classes are illustrated.

Keywords: K-means algorithm, clustering, parallel computations, Matlab

Procedia PDF Downloads 385
8158 The 10-year Risk of Major Osteoporotic and Hip Fractures Among Indonesian People Living with HIV

Authors: Iqbal Pramukti, Mamat Lukman, Hasniatisari Harun, Kusman Ibrahim

Abstract:

Introduction: People living with HIV had a higher risk of osteoporotic fracture than the general population. The purpose of this study was to predict the 10-year risk of fracture among people living with HIV (PLWH) using FRAX™ and to identify characteristics related to the fracture risk. Methodology: This study consisted of 75 subjects. The ten-year probability of major osteoporotic fractures (MOF) and hip fractures was assessed using the FRAX™ algorithm. A cross-tabulation was used to identify the participant’s characteristics related to fracture risk. Results: The overall mean 10-year probability of fracture was 2.4% (1.7) for MOF and 0.4% (0.3) for hip fractures. For MOF score, participants with parents’ hip fracture history, smoking behavior and glucocorticoid use showed a higher MOF score than those who were not (3.1 vs. 2.5; 4.6 vs 2.5; and 3.4 vs 2.5, respectively). For HF score, participants with parents’ hip fracture history, smoking behavior and glucocorticoid use also showed a higher HF score than those who were not (0.5 vs. 0.3; 0.8 vs. 0.3; and 0.5 vs. 0.3, respectively). Conclusions: The 10-year risk of fracture was higher among PLWH with several factors, including the parent’s hip. Fracture history, smoking behavior and glucocorticoid used. Further analysis on determining factors using multivariate regression analysis with a larger sample size is required to confirm the factors associated with the high fracture risk.

Keywords: HIV, PLWH, osteoporotic fractures, hip fractures, 10-year risk of fracture, FRAX

Procedia PDF Downloads 49
8157 Evaluation of Rheological Properties, Anisotropic Shrinkage, and Heterogeneous Densification of Ceramic Materials during Liquid Phase Sintering by Numerical-Experimental Procedure

Authors: Hamed Yaghoubi, Esmaeil Salahi, Fateme Taati

Abstract:

The effective shear and bulk viscosity, as well as dynamic viscosity, describe the rheological properties of the ceramic body during the liquid phase sintering process. The rheological parameters depend on the physical and thermomechanical characteristics of the material such as relative density, temperature, grain size, and diffusion coefficient and activation energy. The main goal of this research is to acquire a comprehensive understanding of the response of an incompressible viscose ceramic material during liquid phase sintering process such as stress-strain relations, sintering and hydrostatic stress, the prediction of anisotropic shrinkage and heterogeneous densification as a function of sintering time by including the simultaneous influence of gravity field, and frictional force. After raw materials analysis, the standard hard porcelain mixture as a ceramic body was designed and prepared. Three different experimental configurations were designed including midpoint deflection, sinter bending, and free sintering samples. The numerical method for the ceramic specimens during the liquid phase sintering process are implemented in the CREEP user subroutine code in ABAQUS. The numerical-experimental procedure shows the anisotropic behavior, the complete difference in spatial displacement through three directions, the incompressibility for ceramic samples during the sintering process. The anisotropic shrinkage factor has been proposed to investigate the shrinkage anisotropy. It has been shown that the shrinkage along the normal axis of casting sample is about 1.5 times larger than that of casting direction, the gravitational force in pyroplastic deformation intensifies the shrinkage anisotropy more than the free sintering sample. The lowest and greatest equivalent creep strain occurs at the intermediate zone and around the central line of the midpoint distorted sample, respectively. In the sinter bending test sample, the equivalent creep strain approaches to the maximum near the contact area with refractory support. The inhomogeneity in Von-Misses, pressure, and principal stress intensifies the relative density non-uniformity in all samples, except in free sintering one. The symmetrical distribution of stress around the center of free sintering sample, cause to hinder the pyroplastic deformations. Densification results confirmed that the effective bulk viscosity was well-defined with relative density values. The stress analysis confirmed that the sintering stress is more than the hydrostatic stress from start to end of sintering time so, from both theoretically and experimentally point of view, the sintering process occurs completely.

Keywords: anisotropic shrinkage, ceramic material, liquid phase sintering process, rheological properties, numerical-experimental procedure

Procedia PDF Downloads 341
8156 Woody Plant Encroachment Effects on the Physical Properties of Vertic Soils in Bela-Bela, Limpopo Province

Authors: Rebone E. Mashapa, Phesheya E. Dlamini, Sandile S. Mthimkhulu

Abstract:

Woody plant encroachment, a land cover transformation that reduces grassland productivity may influence soil physical properties. The objective of the study was to determine the effect of woody plant encroachment on physical properties of vertic soils in a savanna grassland. In this study, we quantified and compared soil bulk density, aggregate stability and porosity in the top and subsoil of an open and woody encroached savanna grassland. The results revealed that soil bulk density increases, while porosity and mean weight diameter decreases with depth in both open and woody encroached grassland soil. Compared to open grassland, soil bulk density was 11% and 10% greater in the topsoil and subsoil, while porosity was 6% and 9% lower in the topsoil and subsoil of woody encroached grassland. Mean weight diameter, an indicator of soil aggregation increased by 38% only in the subsoil of encroached grasslands due to increasing clay content with depth. These results suggest that woody plant encroachment leads to compaction of vertic soils, which in turn reduces pore size distribution.

Keywords: soil depth, soil physical properties, vertic soils, woody plant encroachment

Procedia PDF Downloads 147
8155 Numerical Model for Investigation of Recombination Mechanisms in Graphene-Bonded Perovskite Solar Cells

Authors: Amir Sharifi Miavaghi

Abstract:

It is believed recombination mechnisms in graphene-bonded perovskite solar cells based on numerical model in which doped-graphene structures are employed as anode/cathode bonding semiconductor. Moreover, th‌‌‌‌e da‌‌‌‌‌rk-li‌‌‌‌‌ght c‌‌‌‌urrent d‌‌‌‌ens‌‌‌‌ity-vo‌‌‌‌‌‌‌ltage density-voltage cu‌‌‌‌‌‌‌‌‌‌‌rves are investigated by regression analysis. L‌‌‌oss m‌‌‌‌echa‌‌‌‌nisms suc‌‌‌h a‌‌‌‌‌‌s ba‌‌‌‌ck c‌‌‌ontact b‌‌‌‌‌arrier, d‌‌‌‌eep surface defect i‌‌‌‌n t‌‌‌‌‌‌‌he adsorbent la‌‌‌yer is det‌‌‌‌‌ermined b‌‌‌y adapting th‌‌‌e sim‌‌‌‌‌ulated ce‌‌‌‌‌ll perfor‌‌‌‌‌mance to t‌‌‌‌he measure‌‌‌‌ments us‌‌‌‌ing the diffe‌‌‌‌‌‌rential evolu‌‌‌‌‌tion of th‌‌‌‌e global optimization algorithm. T‌‌‌‌he performance of t‌‌‌he c‌‌‌‌ell i‌‌‌‌n the connection proc‌‌‌‌‌ess incl‌‌‌‌‌‌udes J-V cur‌‌‌‌‌‌ves that are examined at di‌‌‌‌‌fferent tempe‌‌‌‌‌‌‌ratures an‌‌‌d op‌‌‌‌en cir‌‌‌‌cuit vol‌‌‌‌tage (V) und‌‌‌‌er differ‌‌‌‌‌ent light intensities as a function of temperature. Ba‌‌‌‌sed o‌‌‌n t‌‌‌he prop‌‌‌‌osed nu‌‌‌‌‌merical mod‌‌‌‌el a‌‌‌‌nd the acquired lo‌‌‌‌ss mecha‌‌‌‌‌‌nisms, our approach can be used to improve the efficiency of the solar cell further. Due to the high demand for alternative energy sources, solar cells are good alternatives for energy storage using the photovoltaic phenomenon.

Keywords: numerical model, recombination mechanism, graphen, perovskite solarcell

Procedia PDF Downloads 69
8154 A Hybrid Data-Handler Module Based Approach for Prioritization in Quality Function Deployment

Authors: P. Venu, Joeju M. Issac

Abstract:

Quality Function Deployment (QFD) is a systematic technique that creates a platform where the customer responses can be positively converted to design attributes. The accuracy of a QFD process heavily depends on the data that it is handling which is captured from customers or QFD team members. Customized computer programs that perform Quality Function Deployment within a stipulated time have been used by various companies across the globe. These programs heavily rely on storage and retrieval of the data on a common database. This database must act as a perfect source with minimum missing values or error values in order perform actual prioritization. This paper introduces a missing/error data handler module which uses Genetic Algorithm and Fuzzy numbers. The prioritization of customer requirements of sesame oil is illustrated and a comparison is made between proposed data handler module-based deployment and manual deployment.

Keywords: hybrid data handler, QFD, prioritization, module-based deployment

Procedia PDF Downloads 297
8153 Influence of Crystal Orientation on Electromechanical Behaviors of Relaxor Ferroelectric P(VDF-TRFE-CTFE) Terpolymer

Authors: Qing Liu, Jean-fabien Capsal, Claude Richard

Abstract:

In this current contribution, authors are dedicated to investigate influence of the crystal lamellae orientation on electromechanical behaviors of relaxor ferroelectric Poly (vinylidene fluoride –trifluoroethylene -chlorotrifluoroethylene) (P(VDF-TrFE-CTFE)) films by control of polymer microstructure, aiming to picture the full map of structure-property relationship. In order to define their crystal orientation films, terpolymer films were fabricated by solution-casting, stretching and hot-pressing process. Differential scanning calorimetry, impedance analyzer, and tensile strength techniques were employed to characterize crystallographic parameters, dielectric permittivity, and elastic Young’s modulus respectively. In addition, large electrical induced out-of-plane electrostrictive strain was obtained by cantilever beam mode. Consequently, as-casted pristine films exhibited surprisingly high electrostrictive strain 0.1774% due to considerably small value of elastic Young’s modulus although relatively low dielectric permittivity. Such reasons contributed to large mechanical elastic energy density. Instead, due to 2 folds increase of elastic Young’s modulus and less than 50% augmentation of dielectric constant, fully-crystallized film showed weak electrostrictive behavior and mechanical energy density as well. And subjected to mechanical stretching process, Film C exhibited stronger dielectric constant and out-performed electrostrictive strain over Film B because edge-on crystal lamellae orientation induced by uniaxially mechanical stretch. Hot-press films were compared in term of cooling rate. Rather large electrostrictive strain of 0.2788% for hot-pressed Film D in quenching process was observed although its dielectric permittivity equivalent to that of pristine as-casted Film A, showing highest mechanical elastic energy density value of 359.5 J/m^3. In hot-press cooling process, dielectric permittivity of Film E saw values at 48.8 concomitant with ca.100% increase of Young’s modulus. Films with intermediate mechanical energy density were obtained.

Keywords: crystal orientation, electrostroctive strain, mechanical energy density, permittivity, relaxor ferroelectric

Procedia PDF Downloads 376
8152 A Textile-Based Scaffold for Skin Replacements

Authors: Tim Bolle, Franziska Kreimendahl, Thomas Gries, Stefan Jockenhoevel

Abstract:

The therapeutic treatment of extensive, deep wounds is limited. Autologous split-skin grafts are used as a so-called ‘gold standard’. Most common deficits are the defects at the donor site, the risk of scarring as well as the limited availability and quality of the autologous grafts. The aim of this project is a tissue engineered dermal-epidermal skin replacement to overcome the limitations of the gold standard. A key requirement for the development of such a three-dimensional implant is the formation of a functional capillary-like network inside the implant to ensure a sufficient nutrient and gas supply. Tailored three-dimensional warp knitted spacer fabrics are used to reinforce the mechanically week fibrin gel-based scaffold and further to create a directed in vitro pre-vascularization along the parallel-oriented pile yarns within a co-culture. In this study various three-dimensional warp knitted spacer fabrics were developed in a factorial design to analyze the influence of the machine parameters such as the stitch density and the pattern of the fabric on the scaffold performance and further to determine suitable parameters for a successful fibrin gel-incorporation and a physiological performance of the scaffold. The fabrics were manufactured on a Karl Mayer double-bar raschel machine DR 16 EEC/EAC. A fine machine gauge of E30 was used to ensure a high pile yarn density for sufficient nutrient, gas and waste exchange. In order to ensure a high mechanical stability of the graft, the fabrics were made of biocompatible PVDF yarns. Key parameters such as the pore size, porosity and stress/strain behavior were investigated under standardized, controlled climate conditions. The influence of the input parameters on the mechanical and morphological properties as well as the ability of fibrin gel incorporation into the spacer fabric was analyzed. Subsequently, the pile yarns of the spacer fabrics were colonized with Human Umbilical Vein Endothelial Cells (HUVEC) to analyze the ability of the fabric to further function as a guiding structure for a directed vascularization. The cells were stained with DAPI and investigated using fluorescence microscopy. The analysis revealed that the stitch density and the binding pattern have a strong influence on both the mechanical and morphological properties of the fabric. As expected, the incorporation of the fibrin gel was significantly improved with higher pore sizes and porosities, whereas the mechanical strength decreases. Furthermore, the colonization trials revealed a high cell distribution and density on the pile yarns of the spacer fabrics. For a tailored reinforcing structure, the minimum porosity and pore size needs to be evaluated which still ensures a complete incorporation of the reinforcing structure into the fibrin gel matrix. That will enable a mechanically stable dermal graft with a dense vascular network for a sufficient nutrient and oxygen supply of the cells. The results are promising for subsequent research in the field of reinforcing mechanically weak biological scaffolds and develop functional three-dimensional scaffolds with an oriented pre-vascularization.

Keywords: fibrin-gel, skin replacement, spacer fabric, pre-vascularization

Procedia PDF Downloads 257
8151 Covariance of the Queue Process Fed by Isonormal Gaussian Input Process

Authors: Samaneh Rahimirshnani, Hossein Jafari

Abstract:

In this paper, we consider fluid queueing processes fed by an isonormal Gaussian process. We study the correlation structure of the queueing process and the rate of convergence of the running supremum in the queueing process. The Malliavin calculus techniques are applied to obtain relations that show the workload process inherits the dependence properties of the input process. As examples, we consider two isonormal Gaussian processes, the sub-fractional Brownian motion (SFBM) and the fractional Brownian motion (FBM). For these examples, we obtain upper bounds for the covariance function of the queueing process and its rate of convergence to zero. We also discover that the rate of convergence of the queueing process is related to the structure of the covariance function of the input process.

Keywords: queue length process, Malliavin calculus, covariance function, fractional Brownian motion, sub-fractional Brownian motion

Procedia PDF Downloads 64