Search results for: predictive functional control
13192 Multi-Objective Optimal Design of a Cascade Control System for a Class of Underactuated Mechanical Systems
Authors: Yuekun Chen, Yousef Sardahi, Salam Hajjar, Christopher Greer
Abstract:
This paper presents a multi-objective optimal design of a cascade control system for an underactuated mechanical system. Cascade control structures usually include two control algorithms (inner and outer). To design such a control system properly, the following conflicting objectives should be considered at the same time: 1) the inner closed-loop control must be faster than the outer one, 2) the inner loop should fast reject any disturbance and prevent it from propagating to the outer loop, 3) the controlled system should be insensitive to measurement noise, and 4) the controlled system should be driven by optimal energy. Such a control problem can be formulated as a multi-objective optimization problem such that the optimal trade-offs among these design goals are found. To authors best knowledge, such a problem has not been studied in multi-objective settings so far. In this work, an underactuated mechanical system consisting of a rotary servo motor and a ball and beam is used for the computer simulations, the setup parameters of the inner and outer control systems are tuned by NSGA-II (Non-dominated Sorting Genetic Algorithm), and the dominancy concept is used to find the optimal design points. The solution of this problem is not a single optimal cascade control, but rather a set of optimal cascade controllers (called Pareto set) which represent the optimal trade-offs among the selected design criteria. The function evaluation of the Pareto set is called the Pareto front. The solution set is introduced to the decision-maker who can choose any point to implement. The simulation results in terms of Pareto front and time responses to external signals show the competing nature among the design objectives. The presented study may become the basis for multi-objective optimal design of multi-loop control systems.Keywords: cascade control, multi-Loop control systems, multiobjective optimization, optimal control
Procedia PDF Downloads 15513191 Characteristic Matrix Faults for Flight Control System
Authors: Thanh Nga Thai
Abstract:
A major issue in air transportation is in flight safety. Recent developments in control engineering have an attractive potential for resolving new issues related to guidance, navigation, and control of flying vehicles. Many future atmospheric missions will require increased on board autonomy including fault diagnosis and the subsequent control and guidance recovery actions. To improve designing system diagnostic, an efficient FDI- fault detection and identification- methodology is necessary to achieve. Contribute to characteristic of different faults in sensor and actuator in the view of mathematics brings a lot of profit in some condition changes in the system. This research finds some profit to reduce a trade-off to achieve between fault detection and performance of the closed loop system and cost and calculated in simulation.Keywords: fault detection and identification, sensor faults, actuator faults, flight control system
Procedia PDF Downloads 42513190 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 2313189 Bilingual Experience Influences Different Components of Cognitive Control: Evidence from fMRI Study
Authors: Xun Sun, Le Li, Ce Mo, Lei Mo, Ruiming Wang, Guosheng Ding
Abstract:
Cognitive control plays a central role in information processing, which is comprised of various components including response suppression and inhibitory control. Response suppression is considered to inhibit the irrelevant response during the cognitive process; while inhibitory control to inhibit the irrelevant stimulus in the process of cognition. Both of them undertake distinct functions for the cognitive control, so as to enhance the performances in behavior. Among numerous factors on cognitive control, bilingual experience is a substantial and indispensible factor. It has been reported that bilingual experience can influence the neural activity of cognitive control as whole. However, it still remains unknown how the neural influences specifically present on the components of cognitive control imposed by bilingualism. In order to explore the further issue, the study applied fMRI, used anti-saccade paradigm and compared the cerebral activations between high and low proficient Chinese-English bilinguals. Meanwhile, the study provided experimental evidence for the brain plasticity of language, and offered necessary bases on the interplay between language and cognitive control. The results showed that response suppression recruited the middle frontal gyrus (MFG) in low proficient Chinese-English bilinguals, but the inferior patrietal lobe in high proficient Chinese-English bilinguals. Inhibitory control engaged the superior temporal gyrus (STG) and middle temporal gyrus (MTG) in low proficient Chinese-English bilinguals, yet the right insula cortex was more active in high proficient Chinese-English bilinguals during the process. These findings illustrate insights that bilingual experience has neural influences on different components of cognitive control. Compared with low proficient bilinguals, high proficient bilinguals turn to activate advanced neural areas for the processing of cognitive control. In addition, with the acquisition and accumulation of language, language experience takes effect on the brain plasticity and changes the neural basis of cognitive control.Keywords: bilingual experience, cognitive control, inhibition control, response suppression
Procedia PDF Downloads 48713188 Advancements in Laser Welding Process: A Comprehensive Model for Predictive Geometrical, Metallurgical, and Mechanical Characteristics
Authors: Seyedeh Fatemeh Nabavi, Hamid Dalir, Anooshiravan Farshidianfar
Abstract:
Laser welding is pivotal in modern manufacturing, offering unmatched precision, speed, and efficiency. Its versatility in minimizing heat-affected zones, seamlessly joining dissimilar materials, and working with various metals makes it indispensable for crafting intricate automotive components. Integration into automated systems ensures consistent delivery of high-quality welds, thereby enhancing overall production efficiency. Noteworthy are the safety benefits of laser welding, including reduced fumes and consumable materials, which align with industry standards and environmental sustainability goals. As the automotive sector increasingly demands advanced materials and stringent safety and quality standards, laser welding emerges as a cornerstone technology. A comprehensive model encompassing thermal dynamic and characteristics models accurately predicts geometrical, metallurgical, and mechanical aspects of the laser beam welding process. Notably, Model 2 showcases exceptional accuracy, achieving remarkably low error rates in predicting primary and secondary dendrite arm spacing (PDAS and SDAS). These findings underscore the model's reliability and effectiveness, providing invaluable insights and predictive capabilities crucial for optimizing welding processes and ensuring superior productivity, efficiency, and quality in the automotive industry.Keywords: laser welding process, geometrical characteristics, mechanical characteristics, metallurgical characteristics, comprehensive model, thermal dynamic
Procedia PDF Downloads 5313187 Electroencephalography (EEG) Analysis of Alcoholic and Control Subjects Using Multiscale Permutation Entropy
Authors: Lal Hussain, Wajid Aziz, Sajjad Ahmed Nadeem, Saeed Arif Shah, Abdul Majid
Abstract:
Brain electrical activity as reflected in Electroencephalography (EEG) have been analyzed and diagnosed using various techniques. Among them, complexity measure, nonlinearity, disorder, and unpredictability play vital role due to the nonlinear interconnection between functional and anatomical subsystem emerged in brain in healthy state and during various diseases. There are many social and economical issues of alcoholic abuse as memory weakness, decision making, impairments, and concentrations etc. Alcoholism not only defect the brains but also associated with emotional, behavior, and cognitive impairments damaging the white and gray brain matters. A recently developed signal analysis method i.e. Multiscale Permutation Entropy (MPE) is proposed to estimate the complexity of long-range temporal correlation time series EEG of Alcoholic and Control subjects acquired from University of California Machine Learning repository and results are compared with MSE. Using MPE, coarsed grained series is first generated and the PE is computed for each coarsed grained time series against the electrodes O1, O2, C3, C4, F2, F3, F4, F7, F8, Fp1, Fp2, P3, P4, T7, and T8. The results computed against each electrode using MPE gives higher significant values as compared to MSE as well as mean rank differences accordingly. Likewise, ROC and Area under the ROC also gives higher separation against each electrode using MPE in comparison to MSE.Keywords: electroencephalogram (EEG), multiscale permutation entropy (MPE), multiscale sample entropy (MSE), permutation entropy (PE), mann whitney test (MMT), receiver operator curve (ROC), complexity measure
Procedia PDF Downloads 49613186 A Combined High Gain-Higher Order Sliding Mode Controller for a Class of Uncertain Nonlinear Systems
Authors: Abderraouf Gaaloul, Faouzi Msahli
Abstract:
The use of standard sliding mode controller, usually, leads to the appearing of an undesirable chattering phenomenon affecting the control signal. Such problem can be overcome using a higher-order sliding mode controller (HOSMC) which preserves the main properties of the standard sliding mode and deliberately increases the control smoothness. In this paper, we propose a new HOSMC for a class of uncertain multi-input multi-output nonlinear systems. Based on high gain and integral sliding mode paradigms, the established control scheme removes theoretically the chattering phenomenon and provides the stability of the control system. Numerical simulations are developed to show the effectiveness of the proposed controller when applied to solve a control problem of two water levels into a quadruple-tank process.Keywords: nonlinear systems, sliding mode control, high gain, higher order
Procedia PDF Downloads 32813185 Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Secondary Distant Metastases Growth
Authors: Ella Tyuryumina, Alexey Neznanov
Abstract:
This study is an attempt to obtain reliable data on the natural history of breast cancer growth. We analyze the opportunities for using classical mathematical models (exponential and logistic tumor growth models, Gompertz and von Bertalanffy tumor growth models) to try to describe growth of the primary tumor and the secondary distant metastases of human breast cancer. The research aim is to improve predicting accuracy of breast cancer progression using an original mathematical model referred to CoMPaS and corresponding software. We are interested in: 1) modelling the whole natural history of the primary tumor and the secondary distant metastases; 2) developing adequate and precise CoMPaS which reflects relations between the primary tumor and the secondary distant metastases; 3) analyzing the CoMPaS scope of application; 4) implementing the model as a software tool. The foundation of the CoMPaS is the exponential tumor growth model, which is described by determinate nonlinear and linear equations. The CoMPaS corresponds to TNM classification. It allows to calculate different growth periods of the primary tumor and the secondary distant metastases: 1) ‘non-visible period’ for the primary tumor; 2) ‘non-visible period’ for the secondary distant metastases; 3) ‘visible period’ for the secondary distant metastases. The CoMPaS is validated on clinical data of 10-years and 15-years survival depending on the tumor stage and diameter of the primary tumor. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer growth models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. The CoMPaS model and predictive software: a) fit to clinical trials data; b) detect different growth periods of the primary tumor and the secondary distant metastases; c) make forecast of the period of the secondary distant metastases appearance; d) have higher average prediction accuracy than the other tools; e) can improve forecasts on survival of breast cancer and facilitate optimization of diagnostic tests. The following are calculated by CoMPaS: the number of doublings for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases; tumor volume doubling time (days) for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases. The CoMPaS enables, for the first time, to predict ‘whole natural history’ of the primary tumor and the secondary distant metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on the primary tumor sizes. Summarizing: a) CoMPaS describes correctly the primary tumor growth of IA, IIA, IIB, IIIB (T1-4N0M0) stages without metastases in lymph nodes (N0); b) facilitates the understanding of the appearance period and inception of the secondary distant metastases.Keywords: breast cancer, exponential growth model, mathematical model, metastases in lymph nodes, primary tumor, survival
Procedia PDF Downloads 34313184 Predicting Blockchain Technology Installation Cost in Supply Chain System through Supervised Learning
Authors: Hossein Havaeji, Tony Wong, Thien-My Dao
Abstract:
1. Research Problems and Research Objectives: Blockchain Technology-enabled Supply Chain System (BT-enabled SCS) is the system using BT to drive SCS transparency, security, durability, and process integrity as SCS data is not always visible, available, or trusted. The costs of operating BT in the SCS are a common problem in several organizations. The costs must be estimated as they can impact existing cost control strategies. To account for system and deployment costs, it is necessary to overcome the following hurdle. The problem is that the costs of developing and running a BT in SCS are not yet clear in most cases. Many industries aiming to use BT have special attention to the importance of BT installation cost which has a direct impact on the total costs of SCS. Predicting BT installation cost in SCS may help managers decide whether BT is to be an economic advantage. The purpose of the research is to identify some main BT installation cost components in SCS needed for deeper cost analysis. We then identify and categorize the main groups of cost components in more detail to utilize them in the prediction process. The second objective is to determine the suitable Supervised Learning technique in order to predict the costs of developing and running BT in SCS in a particular case study. The last aim is to investigate how the running BT cost can be involved in the total cost of SCS. 2. Work Performed: Applied successfully in various fields, Supervised Learning is a method to set the data frame, treat the data, and train/practice the method sort. It is a learning model directed to make predictions of an outcome measurement based on a set of unforeseen input data. The following steps must be conducted to search for the objectives of our subject. The first step is to make a literature review to identify the different cost components of BT installation in SCS. Based on the literature review, we should choose some Supervised Learning methods which are suitable for BT installation cost prediction in SCS. According to the literature review, some Supervised Learning algorithms which provide us with a powerful tool to classify BT installation components and predict BT installation cost are the Support Vector Regression (SVR) algorithm, Back Propagation (BP) neural network, and Artificial Neural Network (ANN). Choosing a case study to feed data into the models comes into the third step. Finally, we will propose the best predictive performance to find the minimum BT installation costs in SCS. 3. Expected Results and Conclusion: This study tends to propose a cost prediction of BT installation in SCS with the help of Supervised Learning algorithms. At first attempt, we will select a case study in the field of BT-enabled SCS, and then use some Supervised Learning algorithms to predict BT installation cost in SCS. We continue to find the best predictive performance for developing and running BT in SCS. Finally, the paper will be presented at the conference.Keywords: blockchain technology, blockchain technology-enabled supply chain system, installation cost, supervised learning
Procedia PDF Downloads 12413183 Mechanical Tension Control of Winding Systems for Paper Webs
Authors: Glaoui Hachemi
Abstract:
In this paper, a scheme based on multi-input multi output Fuzzy Sliding Mode control (MIMO-FSMC) for linear speed regulation of winding system is proposed. Once the uncoupled model of the winding system was obtained, a smooth control function with a threshold was selected to indicate how far away the case was from the sliding surface. nevertheless, this control function depends closely on the higher bound of the uncertainties, which generates overlap. So, this size has to be chosen with broad care to obtain high performances. Usually, the upper bound of uncertainties is difficult to know before motor operation, so, a Fuzzy Sliding Mode controller is investigated to resolve this problem, a simple Fuzzy inference mechanism is used to decrease the chattering phenomenon by simple adjustments. A simulation study is achieved and that the indicate fuzzy sliding mode controllers have great potential for use as an alternative to the conventional sliding mode control.Keywords: Winding system, induction machine, Mechanical tension, Proportional-integral (PI), sliding mode control, Fuzzy logic
Procedia PDF Downloads 9813182 Back Stepping Sliding Mode Control of Blood Glucose for Type I Diabetes
Authors: N. Tadrisi Parsa, A. R. Vali, R. Ghasemi
Abstract:
Diabetes is a growing health problem in worldwide. Especially, the patients with Type 1 diabetes need strict glycemic control because they have deficiency of insulin production. This paper attempts to control blood glucose based on body mathematical body model. The Bergman minimal mathematical model is used to develop the nonlinear controller. A novel back-stepping based sliding mode control (B-SMC) strategy is proposed as a solution that guarantees practical tracking of a desired glucose concentration. In order to show the performance of the proposed design, it is compared with conventional linear and fuzzy controllers which have been done in previous researches. The numerical simulation result shows the advantages of sliding mode back stepping controller design to linear and fuzzy controllers.Keywords: bergman model, nonlinear control, back stepping, sliding mode control
Procedia PDF Downloads 38413181 Optimal Tuning of a Fuzzy Immune PID Parameters to Control a Delayed System
Authors: S. Gherbi, F. Bouchareb
Abstract:
This paper deals with the novel intelligent bio-inspired control strategies, it presents a novel approach based on an optimal fuzzy immune PID parameters tuning, it is a combination of a PID controller, inspired by the human immune mechanism with fuzzy logic. Such controller offers more possibilities to deal with the delayed systems control difficulties due to the delay term. Indeed, we use an optimization approach to tune the four parameters of the controller in addition to the fuzzy function; the obtained controller is implemented in a modified Smith predictor structure, which is well known that it is the most efficient to the control of delayed systems. The application of the presented approach to control a three tank delay system shows good performances and proves the efficiency of the method.Keywords: delayed systems, fuzzy immune PID, optimization, Smith predictor
Procedia PDF Downloads 43713180 Control of Spherical Robot with Sliding Mode
Authors: Roya Khajepour, Alireza B. Novinzadeh
Abstract:
A major issue with spherical robot is it surface shape, which is not always predictable. This means that given only the dynamic model of the robot, it is not possible to control the robot. Due to the fact that in certain conditions it is not possible to measure surface friction, control methods must be prepared for these conditions. Moreover, although spherical robot never becomes unstable or topples thanks to its special shape, since it moves by rolling it has a non-holonomic constraint at point of contact and therefore it is considered a non-holonomic system. Existence of such a point leads to complexity and non-linearity of robot's kinematic equations and makes the control problem difficult. Due to the non-linear dynamics and presence of uncertainty, the sliding-mode control is employed. The proposed method is based on Lyapunov Theory and guarantees system stability. This controller is insusceptible to external disturbances and un-modeled dynamics.Keywords: sliding mode, spherical robot, non-holomonic constraint, system stability
Procedia PDF Downloads 39213179 Improved Simultaneous Performance in the Time Domain and in the Frequency Domain
Authors: Azeddine Ghodbane, David Bensoussan, Maher Hammami
Abstract:
An innovative approach for controlling unstable and invertible systems has demonstrated superior performance compared to conventional controllers. It has been successfully applied to a levitation system and drone control. Simulations have yielded satisfactory performances when applied to a satellite antenna controller. This design method, based on sensitivity analysis, has also been extended to handle multivariable unstable and invertible systems that exhibit dominant diagonal characteristics at high frequencies, enabling decentralized control. Furthermore, this control method has been expanded to the realm of adaptive control. In this study, we introduce an alternative adaptive architecture that enhances both time and frequency performance, helpfully mitigating the effects of disturbances from the input plant and external disturbances affecting the output. To facilitate superior performance in both the time and frequency domains, we have developed user-friendly interactive design methods using the GeoGebra platform.Keywords: control theory, decentralized control, sensitivity theory, input-output stability theory, robust multivariable feedback control design
Procedia PDF Downloads 11713178 Conservative Treatment Versus Percutaneous Wire Fixation in treatment of Distal Radial Fracture in Elderly
Authors: Abdelfatah Elsenosy, Mahmoud Ebrahim
Abstract:
Background: Distal radius fractures are commonly encountered in orthopedic practice, especially in elderly patients. A number of clinical papers have supported the idea that anatomic restoration of the distal end of the radius is essential to gain superior results. Aim and objectives: The aim of the study is to systematically review the literature for the management of distal end radius in elderly persons (conservative treatment versus percutaneous wire fixation) as regards radiological and functional outcomes. Subjects and methods: Studies were identified from the Medline, Cochrane, EMBASE, and Google Scholar databases were searched until 2019 using combinations of the following search terms: distal radius fracture, conservative treatment, non-operative treatment, and nonsurgical treatment, surgical treatment, operative, elderly, and older. Reference lists of relevant studies were manually searched. Results: There was no statistical significance difference between CI and PKF groups’ frequency of complication in all of the selected studies. Based on the results, we recommend more analysis regarding every parameter of the radiographic and functional results and specific complications related to each fixation need to be accomplished, which requires more Randomized controlled trials (RCTs) with high quality. Conclusion: Surgical treatment seems to be more effective distal radius fracture compared with conservative treatment when the radiographic outcomes were analyzed, and no significant differences were detected in the functional outcomes and complication rate.Keywords: radius, fracture, surgical, RCTs, conservative, radiographic, outcomes, orthopedic
Procedia PDF Downloads 14813177 Adaptive Cooperative Control of Nonholonomic Mobile Robot Based on Immersion and Invariance
Authors: Imil Hamda Imran, Sami El Ferik
Abstract:
This paper deals with adaptive cooperative control of non holonomic mobile robot moved together in a given formation. The controller is designed based on the Immersion and Invariance (I&I) approach. I&I is a framework for adaptive stabilization of nonlinear systems with uncertain parameters. We investigate the tracking control of non holonomic mobile robot with uncertainties in The I&I-based adaptive controller regulates the angular and linear velocity of non holonomic mobile robot. The results demonstrate that the ability of I&I-based adaptive cooperative control in tracking the position of non holonomic mobile robot.Keywords: nonholonomic mobile robot, immersion and invariance, adaptive control, uncertain nonlinear systems
Procedia PDF Downloads 50213176 Utilization Of Guar Gum As Functional Fat Replacer In Goshtaba, A Traditional Indian Meat Product
Authors: Sajad A. Rather, F. A. Masoodi, Rehana Akhter, S. M. Wani, Adil Gani
Abstract:
Modern trend towards convenience foods has resulted in increased production and consumption of restructured meat products and are of great importance to the meat industry. In meat products fat plays an important role in cooking properties, texture & sensory scores, however, high fat contents in particular animal fats provide high amounts of saturated fatty acids and cholesterol and are associated with several types of non communicable diseases such as obesity, hypertension and coronary heart diseases. Thus, fat reduction has generally been seen as an important strategy to produce healthier meat products. This study examined the effects of reducing fat level from 20% to 10% and substituting mutton back fat with guar gum (0.5%, 1% & 1.5%) on cooking properties, proximate composition, lipid and protein oxidation, texture, microstructure and sensory characteristics of goshtaba- a traditional meat product of J & K, India were investigated and compared with high fat counterparts. Reduced- fat goshtaba samples containing guar gum had significantly (p ≤ 0.05) higher yield, less shrinkage, more moisture retention and more protein content than the control sample. TBARs and protein oxidation (carbonyl content) values of the control was significantly (p ≤ 0.05) higher than reduced fat goshtaba samples and showed a positive correlation between lipid and protein oxidation. Hardness, gumminess & chewiness of the control (20%) were significantly higher than reduced fat goshtaba samples. Microstructural differences were significant (p ≤ 0.05) between control and treated samples due to an increased moisture content in the reduced fat samples. Sensory evaluation showed significant (p ≤ 0.05) reduction in texture, flavour and overall acceptability scores of treatment products; however the scores for 0.5% and 1% treated samples were in the range of acceptability. Guar gum may also be used as a source of soluble dietary fibre in food products and a number of clinical studies have shown a reduction in postprandial glycemia and insulinemia on consumption of guar gum, with the mechanism being attributed to an increased transit time in the stomach and small intestine, which may have been due to the viscosity of the meal hindering the access of glucose to the epithelium.Keywords: goshtaba, guar gum, traditional, fat reduction, acceptability
Procedia PDF Downloads 28313175 Guidance and Control of a Torpedo Autonomous Underwater Vehicle
Authors: Soheil Arash Moghadam, Abdol R. Kashani Nia, Ali Akrami Zade
Abstract:
Considering numerous applications of Autonomous Underwater Vehicles in various industries, there has been plenty of researches and studies on the motion control of such vehicles. One of the useful aspects for studying is the guidance of these vehicles. In this paper, while presenting motion equations with six degrees of freedom for Autonomous Underwater Vehicles, Proportional Navigation Guidance Law and the first order sliding mode control for TAIPAN AUV was used to address its guidance for the purpose of collision with a moving target.Keywords: Autonomous Underwater Vehicle (AUV), degree of freedom (DOF), hydrodynamic, line of sight(LOS), proportional navigation guidance(PNG), sliding mode control(SMC)
Procedia PDF Downloads 47113174 A Novel Fuzzy Second-Order Sliding Mode Control of a Doubly Fed Induction Generator for Wind Energy Conversion
Authors: Elhadj Bounadja, Mohand Oulhadj Mahmoudi, Abdelkader Djahbar, Zinelaabidine Boudjema
Abstract:
In this paper we present a novel fuzzy second-order sliding mode control (FSOSMC) for wind energy conversion system based on a doubly-fed induction generator (DFIG). The proposed control strategy combines a fuzzy logic and a second-order sliding mode for the DFIG control. This strategy presents attractive features such as chattering-free, compared to the conventional first and second order sliding mode techniques. The use of this method provides very satisfactory performance for the DFIG control. The overall strategy has been validated on a 1.5-MW wind turbine driven a DFIG using the Matlab/Simulink.Keywords: doubly fed induction generator, fuzzy second-order sliding mode controller, wind energy
Procedia PDF Downloads 55213173 The Effects of Labeling Cues on Sensory and Affective Responses of Consumers to Categories of Functional Food Carriers: A Mixed Factorial ANOVA Design
Authors: Hedia El Ourabi, Marc Alexandre Tomiuk, Ahmed Khalil Ben Ayed
Abstract:
The aim of this study is to investigate the effects of the labeling cues traceability (T), health claim (HC), and verification of health claim (VHC) on consumer affective response and sensory appeal toward a wide array of functional food carriers (FFC). Predominantly, research in the food area has tended to examine the effects of these information cues independently on cognitive responses to food product offerings. Investigations and findings of potential interaction effects among these factors on effective response and sensory appeal are therefore scant. Moreover, previous studies have typically emphasized single or limited sets of functional food products and categories. In turn, this study considers five food product categories enriched with omega-3 fatty acids, namely: meat products, eggs, cereal products, dairy products and processed fruits and vegetables. It is, therefore, exhaustive in scope rather than exclusive. An investigation of the potential simultaneous effects of these information cues on the affective responses and sensory appeal of consumers should give rise to important insights to both functional food manufacturers and policymakers. A mixed (2 x 3) x (2 x 5) between-within subjects factorial ANOVA design was implemented in this study. T (two levels: completely traceable or non-traceable) and HC (three levels: functional health claim, or disease risk reduction health claim, or disease prevention health claim) were treated as between-subjects factors whereas VHC (two levels: by a government agency and by a non-government agency) and FFC (five food categories) were modeled as within-subjects factors. Subjects were randomly assigned to one of the six between-subjects conditions. A total of 463 questionnaires were obtained from a convenience sample of undergraduate students at various universities in the Montreal and Ottawa areas (in Canada). Consumer affective response and sensory appeal were respectively measured via the following statements assessed on seven-point semantic differential scales: ‘Your evaluation of [food product category] enriched with omega-3 fatty acids is Unlikeable (1) / Likeable (7)’ and ‘Your evaluation of [food product category] enriched with omega-3 fatty acids is Unappetizing (1) / Appetizing (7).’ Results revealed a significant interaction effect between HC and VHC on consumer affective response as well as on sensory appeal toward foods enriched with omega-3 fatty acids. On the other hand, the three-way interaction effect between T, HC, and VHC on either of the two dependent variables was not significant. However, the triple interaction effect among T, VHC, and FFC was significant on consumer effective response and the interaction effect among T, HC, and FFC was significant on consumer sensory appeal. Findings of this study should serve as impetus for functional food manufacturers to closely cooperate with policymakers in order to improve on and legitimize the use of health claims in their marketing efforts through credible verification practices and protocols put in place by trusted government agencies. Finally, both functional food manufacturers and retailers may benefit from the socially-responsible image which is conveyed by product offerings whose ingredients remain traceable from farm to kitchen table.Keywords: functional foods, labeling cues, effective appeal, sensory appeal
Procedia PDF Downloads 16613172 A Survey on Concurrency Control Methods in Distributed Database
Authors: Seyed Mohsen Jameii
Abstract:
In the last years, remarkable improvements have been made in the ability of distributed database systems performance. A distributed database is composed of some sites which are connected to each other through network connections. In this system, if good harmonization is not made between different transactions, it may result in database incoherence. Nowadays, because of the complexity of many sites and their connection methods, it is difficult to extend different models in distributed database serially. The principle goal of concurrency control in distributed database is to ensure not interfering in accessibility of common database by different sites. Different concurrency control algorithms have been suggested to use in distributed database systems. In this paper, some available methods have been introduced and compared for concurrency control in distributed database.Keywords: distributed database, two phase locking protocol, transaction, concurrency
Procedia PDF Downloads 35513171 Proposed Alternative System for Existing Traffic Signal System
Authors: Alluri Swaroopa, L. V. N. Prasad
Abstract:
Alone with fast urbanization in world, traffic control problem became a big issue in urban construction. Having an efficient and reliable traffic control system is crucial to macro-traffic control. Traffic signal is used to manage conflicting requirement by allocating different sets of mutually compatible traffic movement during distinct time interval. Many approaches have been made proposed to solve this discrete stochastic problem. Recognizing the need to minimize right-of-way impacts while efficiently handling the anticipated high traffic volumes, the proposed alternative system gives effective design. This model allows for increased traffic capacity and reduces delays by eliminating a step in maneuvering through the freeway interchange. The concept proposed in this paper involves construction of bridges and ramps at intersection of four roads to control the vehicular congestion and to prevent traffic breakdown.Keywords: bridges, junctions, ramps, urban traffic control
Procedia PDF Downloads 55413170 Utilizing Artificial Intelligence to Predict Post Operative Atrial Fibrillation in Non-Cardiac Transplant
Authors: Alexander Heckman, Rohan Goswami, Zachi Attia, Paul Friedman, Peter Noseworthy, Demilade Adedinsewo, Pablo Moreno-Franco, Rickey Carter, Tathagat Narula
Abstract:
Background: Postoperative atrial fibrillation (POAF) is associated with adverse health consequences, higher costs, and longer hospital stays. Utilizing existing predictive models that rely on clinical variables and circulating biomarkers, multiple societies have published recommendations on the treatment and prevention of POAF. Although reasonably practical, there is room for improvement and automation to help individualize treatment strategies and reduce associated complications. Methods and Results: In this retrospective cohort study of solid organ transplant recipients, we evaluated the diagnostic utility of a previously developed AI-based ECG prediction for silent AF on the development of POAF within 30 days of transplant. A total of 2261 non-cardiac transplant patients without a preexisting diagnosis of AF were found to have a 5.8% (133/2261) incidence of POAF. While there were no apparent sex differences in POAF incidence (5.8% males vs. 6.0% females, p=.80), there were differences by race and ethnicity (p<0.001 and 0.035, respectively). The incidence in white transplanted patients was 7.2% (117/1628), whereas the incidence in black patients was 1.4% (6/430). Lung transplant recipients had the highest incidence of postoperative AF (17.4%, 37/213), followed by liver (5.6%, 56/1002) and kidney (3.6%, 32/895) recipients. The AUROC in the sample was 0.62 (95% CI: 0.58-0.67). The relatively low discrimination may result from undiagnosed AF in the sample. In particular, 1,177 patients had at least 1 AI-ECG screen for AF pre-transplant above .10, a value slightly higher than the published threshold of 0.08. The incidence of POAF in the 1104 patients without an elevated prediction pre-transplant was lower (3.7% vs. 8.0%; p<0.001). While this supported the hypothesis that potentially undiagnosed AF may have contributed to the diagnosis of POAF, the utility of the existing AI-ECG screening algorithm remained modest. When the prediction for POAF was made using the first postoperative ECG in the sample without an elevated screen pre-transplant (n=1084 on account of n=20 missing postoperative ECG), the AUROC was 0.66 (95% CI: 0.57-0.75). While this discrimination is relatively low, at a threshold of 0.08, the AI-ECG algorithm had a 98% (95% CI: 97 – 99%) negative predictive value at a sensitivity of 66% (95% CI: 49-80%). Conclusions: This study's principal finding is that the incidence of POAF is rare, and a considerable fraction of the POAF cases may be latent and undiagnosed. The high negative predictive value of AI-ECG screening suggests utility for prioritizing monitoring and evaluation on transplant patients with a positive AI-ECG screening. Further development and refinement of a post-transplant-specific algorithm may be warranted further to enhance the diagnostic yield of the ECG-based screening.Keywords: artificial intelligence, atrial fibrillation, cardiology, transplant, medicine, ECG, machine learning
Procedia PDF Downloads 13913169 Bioinformatic Screening of Metagenomic Fosmid Libraries for Identification of Biosynthetic Pathways Derived from the Colombian Soils
Authors: María Fernanda Quiceno Vallejo, Patricia del Portillo, María Mercedes Zambrano, Jeisson Alejandro Triana, Dayana Calderon, Juan Manuel Anzola
Abstract:
Microorganisms from tropical ecosystems can be novel in terms of adaptations and conservation. Given the macrodiversity of Colombian ecosystems, it is possible that this diversity is also present in Colombian soils. Tropical soil bacteria could offer a potentially novel source of bioactive compounds. In this study we analyzed a metagenomic fosmid library constructed with tropical bacterial DNAs with the aim of understanding its underlying diversity and functional potential. 8640 clones from the fosmid library were sequenced by NANOPORE MiniOn technology, then analyzed with bioinformatic tools such as Prokka, AntiSMASH and Bagel4 in order to identify functional biosynthetic pathways in the sequences. The strains showed ample difference when it comes to biosynthetic pathways. In total we identified 4 pathways related to aryl polyene synthesis, 12 related to terpenes, 22 related to NRPs (Non ribosomal peptides), 11 related PKs (Polyketide synthases) and 7 related to RiPPs (bacteriocins). We designed primers for the metagenomic clones with the most BGCs (sample 6 and sample 2). Results show the biotechnological / pharmacological potential of tropical ecosystems. Overall, this work provides an overview of the genomic and functional potential of Colombian soil and sets the groundwork for additional exploration of tropical metagenomic sequencing.Keywords: bioactives, biosyntethic pathways, bioinformatic, bacterial gene clusters, secondary metabolites
Procedia PDF Downloads 16713168 Magneto-Rheological Damper Based Semi-Active Robust H∞ Control of Civil Structures with Parametric Uncertainties
Authors: Vedat Senol, Gursoy Turan, Anders Helmersson, Vortechz Andersson
Abstract:
In developing a mathematical model of a real structure, the simulation results of the model may not match the real structural response. This is a general problem that arises during dynamic motion of the structure, which may be modeled by means of parameter variations in the stiffness, damping, and mass matrices. These changes in parameters need to be estimated, and the mathematical model is updated to obtain higher control performances and robustness. In this study, a linear fractional transformation (LFT) is utilized for uncertainty modeling. Further, a general approach to the design of an H∞ control of a magneto-rheological damper (MRD) for vibration reduction in a building with mass, damping, and stiffness uncertainties is presented.Keywords: uncertainty modeling, structural control, MR Damper, H∞, robust control
Procedia PDF Downloads 14013167 A Matched Case-Control Study to Asses the Association of Chikunguynya Severity among Blood Groups and Other Determinants in Tesseney, Gash Barka Zone, Eritrea
Authors: Ghirmay Teklemicheal, Samsom Mehari, Sara Tesfay
Abstract:
Objectives: A total of 1074 suspected chikungunya cases were reported in Tesseney Province, Gash Barka region, Eritrea, during an outbreak. This study was aimed to assess the possible association of chikungunya severity among ABO blood groups and other potential determinants. Methods: A sex-matched and age-matched case-control study was conducted during the outbreak. For each case, one control subject had been selected from the mild Chikungunya cases. Along the same line of argument, a second control subject had also been designated through which neighborhood of cases were analyzed, scrutinized, and appeared to the scheme of comparison. Time is always the most sacrosanct element in pursuance of any study. According to the temporal calculation, this study was pursued from October 15, 2018, to November 15, 2018. Coming to the methodological dependability, calculating odds ratios (ORs) and conditional (fixed-effect) logistic regression methods were being applied. As a consequence of this, the data was analyzed and construed on the basis of the aforementioned methodological systems. Results: In this outbreak, 137 severe suspected chikungunya cases and 137 mild chikungunya suspected patients, and 137 controls free of chikungunya from the neighborhood of cases were analyzed. Non-O individuals compared to those with O blood group indicated as significant with a p-value of 0.002. Separate blood group comparison among A and O blood groups reflected as significant with a p-value of 0.002. However, there was no significant difference in the severity of chikungunya among B, AB, and O blood groups with a p-value of 0.113 and 0.708, respectively, and a strong association of chikungunya severity was found with hypertension and diabetes (p-value of < 0.0001); whereas, there was no association between chikungunya severity and asthma with a p-value of 0.695 and also no association with pregnancy (p-value =0.881), ventilator (p-value =0.181), air conditioner (p-value = 0.247), and didn’t use latrine and pit latrine (p-value = 0.318), among individuals using septic and pit latrine (p-value = 0.567) and also among individuals using flush and pit latrine (p-value = 0.194). Conclusions: Non- O blood groups were found to be at risk more than their counterpart O blood group individuals with severe form of chikungunya disease. By the same token, individuals with chronic disease were more prone to severe forms of the disease in comparison with individuals without chronic disease. Prioritization is recommended for patients with chronic diseases and non-O blood group since they are found to be susceptible to severe chikungunya disease. Identification of human cell surface receptor(s) for CHIKV is quite necessary for further understanding of its pathophysiology in humans. Therefore, molecular and functional studies will necessarily be helpful in disclosing the association of blood group antigens and CHIKV infections.Keywords: Chikungunya, Chikungunya virus, disease outbreaks, case-control studies, Eritrea
Procedia PDF Downloads 16813166 Innovative Technologies Functional Methods of Dental Research
Authors: Sergey N. Ermoliev, Margarita A. Belousova, Aida D. Goncharenko
Abstract:
Application of the diagnostic complex of highly informative functional methods (electromyography, reodentography, laser Doppler flowmetry, reoperiodontography, vital computer capillaroscopy, optical tissue oximetry, laser fluorescence diagnosis) allows to perform a multifactorial analysis of the dental status and to prescribe complex etiopathogenetic treatment. Introduction. It is necessary to create a complex of innovative highly informative and safe functional diagnostic methods for improvement of the quality of patient treatment by the early detection of stomatologic diseases. The purpose of the present study was to investigate the etiology and pathogenesis of functional disorders identified in the pathology of hard tissue, dental pulp, periodontal, oral mucosa and chewing function, and the creation of new approaches to the diagnosis of dental diseases. Material and methods. 172 patients were examined. Density of hard tissues of the teeth and jaw bone was studied by intraoral ultrasonic densitometry (USD). Electromyographic activity of masticatory muscles was assessed by electromyography (EMG). Functional state of dental pulp vessels assessed by reodentography (RDG) and laser Doppler flowmetry (LDF). Reoperiodontography method (RPG) studied regional blood flow in the periodontal tissues. Microcirculatory vascular periodontal studied by vital computer capillaroscopy (VCC) and laser Doppler flowmetry (LDF). The metabolic level of the mucous membrane was determined by optical tissue oximetry (OTO) and laser fluorescence diagnosis (LFD). Results and discussion. The results obtained revealed changes in mineral density of hard tissues of the teeth and jaw bone, the bioelectric activity of masticatory muscles, regional blood flow and microcirculation in the dental pulp and periodontal tissues. LDF and OTO methods estimated fluctuations of saturation level and oxygen transport in microvasculature of periodontal tissues. With LFD identified changes in the concentration of enzymes (nicotinamide, flavins, lipofuscin, porphyrins) involved in metabolic processes Conclusion. Our preliminary results confirmed feasibility and safety the of intraoral ultrasound densitometry technique in the density of bone tissue of periodontium. Conclusion. Application of the diagnostic complex of above mentioned highly informative functional methods allows to perform a multifactorial analysis of the dental status and to prescribe complex etiopathogenetic treatment.Keywords: electromyography (EMG), reodentography (RDG), laser Doppler flowmetry (LDF), reoperiodontography method (RPG), vital computer capillaroscopy (VCC), optical tissue oximetry (OTO), laser fluorescence diagnosis (LFD)
Procedia PDF Downloads 28213165 On Control of Asynchronous Sequential Machines with Switching Capability
Authors: Jung-Min Yang
Abstract:
Corrective control enables us to change the stable state behavior of an asynchronous sequential machine without modifying inner logic of the machine. This paper addresses corrective control for asynchronous machines with switching capability. The considered asynchronous machine consists of a set of different submachines and switches to each machine according to a constant switching sequence. The control goal is to design a corrective controller such that the closed-loop system can match the behavior of a reference model. The reachability of the switched asynchronous machine is described by a logic calculation of the reachability of submachines. The design procedure of the proposed corrective controller is outlined, and the applicability of the proposed scheme is validated in an example.Keywords: switched asynchronous sequential machines, corrective control, state feedback, switching sequences
Procedia PDF Downloads 45813164 Control and Automation of Sensors in Metering System of Fluid
Authors: Abdelkader Harrouz, Omar Harrouz, Ali Benatiallah
Abstract:
This paper is to present the essential definitions, roles and characteristics of automation of metering system. We discuss measurement, data acquisition and metrological control of a signal sensor from dynamic metering system. After that, we present control of instruments of metering system of fluid with more detailed discussions to the reference standards.Keywords: communication, metering, computer, sensor
Procedia PDF Downloads 55913163 Bivariate Generalization of q-α-Bernstein Polynomials
Authors: Tarul Garg, P. N. Agrawal
Abstract:
We propose to define the q-analogue of the α-Bernstein Kantorovich operators and then introduce the q-bivariate generalization of these operators to study the approximation of functions of two variables. We obtain the rate of convergence of these bivariate operators by means of the total modulus of continuity, partial modulus of continuity and the Peetre’s K-functional for continuous functions. Further, in order to study the approximation of functions of two variables in a space bigger than the space of continuous functions, i.e. Bögel space; the GBS (Generalized Boolean Sum) of the q-bivariate operators is considered and degree of approximation is discussed for the Bögel continuous and Bögel differentiable functions with the aid of the Lipschitz class and the mixed modulus of smoothness.Keywords: Bögel continuous, Bögel differentiable, generalized Boolean sum, K-functional, mixed modulus of smoothness
Procedia PDF Downloads 383