Search results for: imperialist competition algorithm
3537 Proposing an Algorithm to Cluster Ad Hoc Networks, Modulating Two Levels of Learning Automaton and Nodes Additive Weighting
Authors: Mohammad Rostami, Mohammad Reza Forghani, Elahe Neshat, Fatemeh Yaghoobi
Abstract:
An Ad Hoc network consists of wireless mobile equipment which connects to each other without any infrastructure, using connection equipment. The best way to form a hierarchical structure is clustering. Various methods of clustering can form more stable clusters according to nodes' mobility. In this research we propose an algorithm, which allocates some weight to nodes based on factors, i.e. link stability and power reduction rate. According to the allocated weight in the previous phase, the cellular learning automaton picks out in the second phase nodes which are candidates for being cluster head. In the third phase, learning automaton selects cluster head nodes, member nodes and forms the cluster. Thus, this automaton does the learning from the setting and can form optimized clusters in terms of power consumption and link stability. To simulate the proposed algorithm we have used omnet++4.2.2. Simulation results indicate that newly formed clusters have a longer lifetime than previous algorithms and decrease strongly network overload by reducing update rate.Keywords: mobile Ad Hoc networks, clustering, learning automaton, cellular automaton, battery power
Procedia PDF Downloads 4113536 A Bivariate Inverse Generalized Exponential Distribution and Its Applications in Dependent Competing Risks Model
Authors: Fatemah A. Alqallaf, Debasis Kundu
Abstract:
The aim of this paper is to introduce a bivariate inverse generalized exponential distribution which has a singular component. The proposed bivariate distribution can be used when the marginals have heavy-tailed distributions, and they have non-monotone hazard functions. Due to the presence of the singular component, it can be used quite effectively when there are ties in the data. Since it has four parameters, it is a very flexible bivariate distribution, and it can be used quite effectively for analyzing various bivariate data sets. Several dependency properties and dependency measures have been obtained. The maximum likelihood estimators cannot be obtained in closed form, and it involves solving a four-dimensional optimization problem. To avoid that, we have proposed to use an EM algorithm, and it involves solving only one non-linear equation at each `E'-step. Hence, the implementation of the proposed EM algorithm is very straight forward in practice. Extensive simulation experiments and the analysis of one data set have been performed. We have observed that the proposed bivariate inverse generalized exponential distribution can be used for modeling dependent competing risks data. One data set has been analyzed to show the effectiveness of the proposed model.Keywords: Block and Basu bivariate distributions, competing risks, EM algorithm, Marshall-Olkin bivariate exponential distribution, maximum likelihood estimators
Procedia PDF Downloads 1433535 Reversible Information Hitting in Encrypted JPEG Bitstream by LSB Based on Inherent Algorithm
Authors: Vaibhav Barve
Abstract:
Reversible information hiding has drawn a lot of interest as of late. Being reversible, we can restore unique computerized data totally. It is a plan where mystery data is put away in digital media like image, video, audio to maintain a strategic distance from unapproved access and security reason. By and large JPEG bit stream is utilized to store this key data, first JPEG bit stream is encrypted into all around sorted out structure and then this secret information or key data is implanted into this encrypted region by marginally changing the JPEG bit stream. Valuable pixels suitable for information implanting are computed and as indicated by this key subtle elements are implanted. In our proposed framework we are utilizing RC4 algorithm for encrypting JPEG bit stream. Encryption key is acknowledged by framework user which, likewise, will be used at the time of decryption. We are executing enhanced least significant bit supplanting steganography by utilizing genetic algorithm. At first, the quantity of bits that must be installed in a guaranteed coefficient is versatile. By utilizing proper parameters, we can get high capacity while ensuring high security. We are utilizing logistic map for shuffling of bits and utilization GA (Genetic Algorithm) to find right parameters for the logistic map. Information embedding key is utilized at the time of information embedding. By utilizing precise picture encryption and information embedding key, the beneficiary can, without much of a stretch, concentrate the incorporated secure data and totally recoup the first picture and also the original secret information. At the point when the embedding key is truant, the first picture can be recouped pretty nearly with sufficient quality without getting the embedding key of interest.Keywords: data embedding, decryption, encryption, reversible data hiding, steganography
Procedia PDF Downloads 2883534 K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors
Authors: Shao-Tzu Huang, Chen-Chien Hsu, Wei-Yen Wang
Abstract:
Matching high dimensional features between images is computationally expensive for exhaustive search approaches in computer vision. Although the dimension of the feature can be degraded by simplifying the prior knowledge of homography, matching accuracy may degrade as a tradeoff. In this paper, we present a feature matching method based on k-means algorithm that reduces the matching cost and matches the features between images instead of using a simplified geometric assumption. Experimental results show that the proposed method outperforms the previous linear exhaustive search approaches in terms of the inlier ratio of matched pairs.Keywords: feature matching, k-means clustering, SIFT, RANSAC
Procedia PDF Downloads 3573533 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine
Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi
Abstract:
To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the Least Square Support Vector Machine optimized by an Improved Sparrow Search Algorithm combined with the Variational Mode Decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of Intrinsic Mode Functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the least Square Support Vector Machine. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.Keywords: load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine
Procedia PDF Downloads 1083532 FPGA Implementation of RSA Encryption Algorithm for E-Passport Application
Authors: Khaled Shehata, Hanady Hussien, Sara Yehia
Abstract:
Securing the data stored on E-passport is a very important issue. RSA encryption algorithm is suitable for such application with low data size. In this paper the design and implementation of 1024 bit-key RSA encryption and decryption module on an FPGA is presented. The module is verified through comparing the result with that obtained from MATLAB tools. The design runs at a frequency of 36.3 MHz on Virtex-5 Xilinx FPGA. The key size is designed to be 1024-bit to achieve high security for the passport information. The whole design is achieved through VHDL design entry which makes it a portable design and can be directed to any hardware platform.Keywords: RSA, VHDL, FPGA, modular multiplication, modular exponential
Procedia PDF Downloads 3903531 Design and Implementation of an Image Based System to Enhance the Security of ATM
Authors: Seyed Nima Tayarani Bathaie
Abstract:
In this paper, an image-receiving system was designed and implemented through optimization of object detection algorithms using Haar features. This optimized algorithm served as face and eye detection separately. Then, cascading them led to a clear image of the user. Utilization of this feature brought about higher security by preventing fraud. This attribute results from the fact that services will be given to the user on condition that a clear image of his face has already been captured which would exclude the inappropriate person. In order to expedite processing and eliminating unnecessary ones, the input image was compressed, a motion detection function was included in the program, and detection window size was confined.Keywords: face detection algorithm, Haar features, security of ATM
Procedia PDF Downloads 4193530 Particle Swarm Optimization Algorithm vs. Genetic Algorithm for Image Watermarking Based Discrete Wavelet Transform
Authors: Omaima N. Ahmad AL-Allaf
Abstract:
Over communication networks, images can be easily copied and distributed in an illegal way. The copyright protection for authors and owners is necessary. Therefore, the digital watermarking techniques play an important role as a valid solution for authority problems. Digital image watermarking techniques are used to hide watermarks into images to achieve copyright protection and prevent its illegal copy. Watermarks need to be robust to attacks and maintain data quality. Therefore, we discussed in this paper two approaches for image watermarking, first is based on Particle Swarm Optimization (PSO) and the second approach is based on Genetic Algorithm (GA). Discrete wavelet transformation (DWT) is used with the two approaches separately for embedding process to cover image transformation. Each of PSO and GA is based on co-relation coefficient to detect the high energy coefficient watermark bit in the original image and then hide the watermark in original image. Many experiments were conducted for the two approaches with different values of PSO and GA parameters. From experiments, PSO approach got better results with PSNR equal 53, MSE equal 0.0039. Whereas GA approach got PSNR equal 50.5 and MSE equal 0.0048 when using population size equal to 100, number of iterations equal to 150 and 3×3 block. According to the results, we can note that small block size can affect the quality of image watermarking based PSO/GA because small block size can increase the search area of the watermarking image. Better PSO results were obtained when using swarm size equal to 100.Keywords: image watermarking, genetic algorithm, particle swarm optimization, discrete wavelet transform
Procedia PDF Downloads 2263529 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images
Authors: Mehrnoosh Omati, Mahmod Reza Sahebi
Abstract:
The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.Keywords: coupled Markov random field (MRF), environment, object-based analysis, polarimetric SAR (PolSAR) images
Procedia PDF Downloads 2183528 Optimal Sensing Technique for Estimating Stress Distribution of 2-D Steel Frame Structure Using Genetic Algorithm
Authors: Jun Su Park, Byung Kwan Oh, Jin Woo Hwang, Yousok Kim, Hyo Seon Park
Abstract:
For the structural safety, the maximum stress calculated from the stress distribution of a structure is widely used. The stress distribution can be estimated by deformed shape of the structure obtained from measurement. Although the estimation of stress is strongly affected by the location and number of sensing points, most studies have conducted the stress estimation without reasonable basis on sensing plan such as the location and number of sensors. In this paper, an optimal sensing technique for estimating the stress distribution is proposed. This technique proposes the optimal location and number of sensing points for a 2-D frame structure while minimizing the error of stress distribution between analytical model and estimation by cubic smoothing splines using genetic algorithm. To verify the proposed method, the optimal sensor measurement technique is applied to simulation tests on 2-D steel frame structure. The simulation tests are performed under various loading scenarios. Through those tests, the optimal sensing plan for the structure is suggested and verified.Keywords: genetic algorithm, optimal sensing, optimizing sensor placements, steel frame structure
Procedia PDF Downloads 5313527 An Efficient Hybrid Approach Based on Multi-Agent System and Emergence Method for the Integration of Systematic Preventive Maintenance Policies
Authors: Abdelhadi Adel, Kadri Ouahab
Abstract:
This paper proposes a hybrid algorithm for the integration of systematic preventive maintenance policies in hybrid flow shop scheduling to minimize makespan. We have implemented a problem-solving approach for optimizing the processing time, methods based on metaheuristics. The proposed approach is inspired by the behavior of the human body. This hybridization is between a multi-agent system and inspirations of the human body, especially genetics. The effectiveness of our approach has been demonstrated repeatedly in this paper. To solve such a complex problem, we proposed an approach which we have used advanced operators such as uniform crossover set and single point mutation. The proposed approach is applied to three preventive maintenance policies. These policies are intended to maximize the availability or to maintain a minimum level of reliability during the production chain. The results show that our algorithm outperforms existing algorithms. We assumed that the machines might be unavailable periodically during the production scheduling.Keywords: multi-agent systems, emergence, genetic algorithm, makespan, systematic maintenance, scheduling, hybrid flow shop scheduling
Procedia PDF Downloads 3363526 Using Hidden Markov Chain for Improving the Dependability of Safety-Critical Wireless Sensor Networks
Authors: Issam Alnader, Aboubaker Lasebae, Rand Raheem
Abstract:
Wireless sensor networks (WSNs) are distributed network systems used in a wide range of applications, including safety-critical systems. The latter provide critical services, often concerned with human life or assets. Therefore, ensuring the dependability requirements of Safety critical systems is of paramount importance. The purpose of this paper is to utilize the Hidden Markov Model (HMM) to elongate the service availability of WSNs by increasing the time it takes a node to become obsolete via optimal load balancing. We propose an HMM algorithm that, given a WSN, analyses and predicts undesirable situations, notably, nodes dying unexpectedly or prematurely. We apply this technique to improve on C. Lius’ algorithm, a scheduling-based algorithm which has served to improve the lifetime of WSNs. Our experiments show that our HMM technique improves the lifetime of the network, achieved by detecting nodes that die early and rebalancing their load. Our technique can also be used for diagnosis and provide maintenance warnings to WSN system administrators. Finally, our technique can be used to improve algorithms other than C. Liu’s.Keywords: wireless sensor networks, IoT, dependability of safety WSNs, energy conservation, sleep awake schedule
Procedia PDF Downloads 1003525 Analyzing and Predicting the CL-20 Detonation Reaction Mechanism Based on Artificial Intelligence Algorithm
Authors: Kaining Zhang, Lang Chen, Danyang Liu, Jianying Lu, Kun Yang, Junying Wu
Abstract:
In order to solve the problem of a large amount of simulation and limited simulation scale in the first-principle molecular dynamics simulation of energetic material detonation reaction, we established an artificial intelligence model for analyzing and predicting the detonation reaction mechanism of CL-20 based on the first-principle molecular dynamics simulation of the multiscale shock technique (MSST). We employed principal component analysis to identify the dominant charge features governing molecular reactions. We adopted the K-means clustering algorithm to cluster the reaction paths and screen out the key reactions. We introduced the neural network algorithm to construct the mapping relationship between the charge characteristics of the molecular structure and the key reaction characteristics so as to establish a calculation method for predicting detonation reactions based on the charge characteristics of CL-20 and realize the rapid analysis of the reaction mechanism of energetic materials.Keywords: energetic material detonation reaction, first-principle molecular dynamics simulation of multiscale shock technique, neural network, CL-20
Procedia PDF Downloads 1133524 US-China Competition in South China Sea and International Law
Authors: Mubashra Shaheen
Abstract:
The conflict over the South China Sea (SCS) is a complex imbroglio spanning over several territorial and maritime claims involving two major island groups, the Paracels and the Spratlys. It has become a major source of geopolitical competition between the United States and China. The study's overall objective is to understand China's land reclamations and assertive behavior in the South China Sea, which lies between both the Western Pacific and the Indian Ocean. Over half of global commerce passes through these waterways, which host a great amount of marine life and hydrocarbon deposits. China's sand-filling and island-building strategy in the South China Sea is motivated by its goal of privatizing all these riches as well as the routes. It would raise China to the pinnacle of world power status as well as allow it to threaten the dominance of the U.S. The study will examine China's assertive behavior and modernization plans as well as the United States' quest for supremacy through the lens of realists. While using a qualitative method of analysis, the study will examine China's nine-dash line claims and Exclusive Economic Zones (EEZs), UNCLOS, and U.S.-China divergence over international law considerations to pacify the tensions in the South China Sea. This paper is intended to explore the possible answers to the following questions: (1) Why does China’s rise necessitate the US's efforts to contain and encircle it through the lending of a hand to strategic partners and allies in the South China Sea? (2) Why South China Sea dispute is so complex imbroglio? (3) What are US-China international law considerations regarding the South China Sea? The study will further follow the bellow research procedure: 1: Comparative Legal Method: This method simply chalk-outs the follow of few steps that discarnate the positive and negative effects of the great power competitions. 2: Conceptualization: The conceptualization of the policies of containment defines and differentiates two different problems behind the persuasive means of hegemony and dominance in the strategic milieu.Keywords: us, china, south china sea, unclos
Procedia PDF Downloads 893523 Screen Method of Distributed Cooperative Navigation Factors for Unmanned Aerial Vehicle Swarm
Authors: Can Zhang, Qun Li, Yonglin Lei, Zhi Zhu, Dong Guo
Abstract:
Aiming at the problem of factor screen in distributed collaborative navigation of dense UAV swarm, an efficient distributed collaborative navigation factor screen method is proposed. The method considered the balance between computing load and positioning accuracy. The proposed algorithm utilized the factor graph model to implement a distributed collaborative navigation algorithm. The GNSS information of the UAV itself and the ranging information between the UAVs are used as the positioning factors. In this distributed scheme, a local factor graph is established for each UAV. The positioning factors of nodes with good geometric position distribution and small variance are selected to participate in the navigation calculation. To demonstrate and verify the proposed methods, the simulation and experiments in different scenarios are performed in this research. Simulation results show that the proposed scheme achieves a good balance between the computing load and positioning accuracy in the distributed cooperative navigation calculation of UAV swarm. This proposed algorithm has important theoretical and practical value for both industry and academic areas.Keywords: screen method, cooperative positioning system, UAV swarm, factor graph, cooperative navigation
Procedia PDF Downloads 793522 Critically Sampled Hybrid Trigonometry Generalized Discrete Fourier Transform for Multistandard Receiver Platform
Authors: Temidayo Otunniyi
Abstract:
This paper presents a low computational channelization algorithm for the multi-standards platform using poly phase implementation of a critically sampled hybrid Trigonometry generalized Discrete Fourier Transform, (HGDFT). An HGDFT channelization algorithm exploits the orthogonality of two trigonometry Fourier functions, together with the properties of Quadrature Mirror Filter Bank (QMFB) and Exponential Modulated filter Bank (EMFB), respectively. HGDFT shows improvement in its implementation in terms of high reconfigurability, lower filter length, parallelism, and medium computational activities. Type 1 and type 111 poly phase structures are derived for real-valued HGDFT modulation. The design specifications are decimated critically and over-sampled for both single and multi standards receiver platforms. Evaluating the performance of oversampled single standard receiver channels, the HGDFT algorithm achieved 40% complexity reduction, compared to 34% and 38% reduction in the Discrete Fourier Transform (DFT) and tree quadrature mirror filter (TQMF) algorithm. The parallel generalized discrete Fourier transform (PGDFT) and recombined generalized discrete Fourier transform (RGDFT) had 41% complexity reduction and HGDFT had a 46% reduction in oversampling multi-standards mode. While in the critically sampled multi-standard receiver channels, HGDFT had complexity reduction of 70% while both PGDFT and RGDFT had a 34% reduction.Keywords: software defined radio, channelization, critical sample rate, over-sample rate
Procedia PDF Downloads 1483521 An MIPSSTWM-based Emergency Vehicle Routing Approach for Quick Response to Highway Incidents
Authors: Siliang Luan, Zhongtai Jiang
Abstract:
The risk of highway incidents is commonly recognized as a major concern for transportation authorities due to the hazardous consequences and negative influence. It is crucial to respond to these unpredictable events as soon as possible faced by emergency management decision makers. In this paper, we focus on path planning for emergency vehicles, one of the most significant processes to avoid congestion and reduce rescue time. A Mixed-Integer Linear Programming with Semi-Soft Time Windows Model (MIPSSTWM) is conducted to plan an optimal routing respectively considering the time consumption of arcs and nodes of the urban road network and the highway network, especially in developing countries with an enormous population. Here, the arcs indicate the road segments and the nodes include the intersections of the urban road network and the on-ramp and off-ramp of the highway networks. An attempt in this research has been made to develop a comprehensive and executive strategy for emergency vehicle routing in heavy traffic conditions. The proposed Cuckoo Search (CS) algorithm is designed by imitating obligate brood parasitic behaviors of cuckoos and Lévy Flights (LF) to solve this hard and combinatorial problem. Using a Chinese city as our case study, the numerical results demonstrate the approach we applied in this paper outperforms the previous method without considering the nodes of the road network for a real-world situation. Meanwhile, the accuracy and validity of the CS algorithm also show better performances than the traditional algorithm.Keywords: emergency vehicle, path planning, cs algorithm, urban traffic management and urban planning
Procedia PDF Downloads 803520 The Legal Procedure of Attestation of Public Servants
Authors: Armen Yezekyan
Abstract:
The main purpose of this research is to comprehensively explore and identify the problems of attestation of the public servants and to propose solutions for these issues through deeply analyzing laws and the legal theoretical literature. For the detailed analysis of the above-mentioned problems we will use some research methods, the implementation of which has a goal to ensure the objectivity and clarity of scientific research and its results.Keywords: attestation, attestation commission, competition commission, public servant, public service, testing
Procedia PDF Downloads 4123519 Competitive Effects of Differential Voting Rights and Promoter Control in Indian Start-Ups
Authors: Prateek Bhattacharya
Abstract:
The definition of 'control' in India is a rapidly evolving concept, owing to varying rights attached to varying securities. Shares with differential voting rights (DVRs) provide the holder with differential rights as to voting, as compared to ordinary equity shareholders of the company. Such DVRs can amount to both superior voting rights and inferior voting rights, where DVRs with superior voting rights amount to providing the holder with golden shares in the company. While DVRs are not a novel concept in India having been recognized since 2000, they were placed on a back burner by the Securities and Exchange Board of India (SEBI) in 2010 after issuance of DVRs with superior voting rights was restricted. In June 2019, the SEBI rekindled the ebbing fire of DVRs, keeping mind the fast-paced nature of the global economy, the government's faith that India’s ‘new age technology companies’ (i.e., Start-Ups) will lead the charge in achieving its goal of India becoming a $5 trillion dollar economy by 2024, and recognizing that the promoters of such Start-Ups seek to raise capital without losing control over their companies. DVRs with superior voting rights guarantee promoters with up to 74% shareholding in Start-Ups for a period of 5 years, meaning that the holder of such DVRs can exercise sole control and material influence over the company for that period. This manner of control has the potential of causing both pro-competitive and anti-competitive effects in the markets where these companies operate. On the one hand, DVRs will allow Start-Up promoters/founders to retain control of their companies and protect its business interests from foreign elements such as private/public investors – in a scenario where such investors have multiple investments in firms engaged in associated lines of business (whether on a horizontal or vertical level) and would seek to influence these firms to enter into potential anti-competitive arrangements with one another, DVRs will enable the promoters to thwart such scenarios. On the other hand, promoters/founders who themselves have multiple investments in Start-Ups, which are in associated lines of business run the risk of influencing these associated Start-Ups to engage in potentially anti-competitive arrangements in the name of profit maximisation. This paper shall be divided into three parts: Part I shall deal with the concept of ‘control’, as deliberated upon and decided by the SEBI and the Competition Commission of India (CCI) under both company/securities law and competition law; Part II shall review this definition of ‘control’ through the lens of DVRs, and Part III shall discuss the aforementioned potential pro-competitive and anti-competitive effects caused by the DVRs by examining the current Indian Start-Up scenario. The paper shall conclude by providing suggestions for the CCI to incorporate a clearer and more progressive concept of ‘control’.Keywords: competition law, competitive effects, control, differential voting rights, DVRs, investor shareholding, merger control, start-ups
Procedia PDF Downloads 1233518 Enhancing the Dynamic Performance of Grid-Tied Inverters Using Manta Ray Foraging Algorithm
Authors: H. E. Keshta, A. A. Ali
Abstract:
Three phase grid-tied inverters are widely employed in micro-grids (MGs) as interphase between DC and AC systems. These inverters are usually controlled through standard decoupled d–q vector control strategy based on proportional integral (PI) controllers. Recently, advanced meta-heuristic optimization techniques have been used instead of deterministic methods to obtain optimum PI controller parameters. This paper provides a comparative study between the performance of the global Porcellio Scaber algorithm (GPSA) based PI controller and Manta Ray foraging optimization (MRFO) based PI controller.Keywords: micro-grids, optimization techniques, grid-tied inverter control, PI controller
Procedia PDF Downloads 1323517 Design of Microwave Building Block by Using Numerical Search Algorithm
Authors: Haifeng Zhou, Tsungyang Liow, Xiaoguang Tu, Eujin Lim, Chao Li, Junfeng Song, Xianshu Luo, Ying Huang, Lianxi Jia, Lianwee Luo, Qing Fang, Mingbin Yu, Guoqiang Lo
Abstract:
With the development of technology, countries gradually allocated more and more frequency spectrums for civilization and commercial usage, especially those high radio frequency bands indicating high information capacity. The field effect becomes more and more prominent in microwave components as frequency increases, which invalidates the transmission line theory and complicate the design of microwave components. Here a modeling approach based on numerical search algorithm is proposed to design various building blocks for microwave circuits to avoid complicated impedance matching and equivalent electrical circuit approximation. Concretely, a microwave component is discretized to a set of segments along the microwave propagation path. Each of the segment is initialized with random dimensions, which constructs a multiple-dimension parameter space. Then numerical searching algorithms (e.g. Pattern search algorithm) are used to find out the ideal geometrical parameters. The optimal parameter set is achieved by evaluating the fitness of S parameters after a number of iterations. We had adopted this approach in our current projects and designed many microwave components including sharp bends, T-branches, Y-branches, microstrip-to-stripline converters and etc. For example, a stripline 90° bend was designed in 2.54 mm x 2.54 mm space for dual-band operation (Ka band and Ku band) with < 0.18 dB insertion loss and < -55 dB reflection. We expect that this approach can enrich the tool kits for microwave designers.Keywords: microwave component, microstrip and stripline, bend, power division, the numerical search algorithm.
Procedia PDF Downloads 3793516 Overview of Adaptive Spline interpolation
Authors: Rongli Gai, Zhiyuan Chang
Abstract:
At this stage, in view of various situations in the interpolation process, most researchers use self-adaptation to adjust the interpolation process, which is also one of the current and future research hotspots in the field of CNC machining. In the interpolation process, according to the overview of the spline curve interpolation algorithm, the adaptive analysis is carried out from the factors affecting the interpolation process. The adaptive operation is reflected in various aspects, such as speed, parameters, errors, nodes, feed rates, random Period, sensitive point, step size, curvature, adaptive segmentation, adaptive optimization, etc. This paper will analyze and summarize the research of adaptive imputation in the direction of the above factors affecting imputation.Keywords: adaptive algorithm, CNC machining, interpolation constraints, spline curve interpolation
Procedia PDF Downloads 2053515 Studying the Beginnings of Strategic Behavior
Authors: Taher Abofol, Yaakov Kareev, Judith Avrahami, Peter M. Todd
Abstract:
Are children sensitive to their relative strength in competitions against others? Performance on tasks that require cooperation or coordination (e.g. the Ultimatum Game) indicates that early precursors of adult-like notions of fairness and reciprocity, as well as altruistic behavior, are evident at an early age. However, not much is known regarding developmental changes in interactive decision-making, especially in competitive interactions. Thus, it is important to study the developmental aspects of strategic behavior in these situations. The present research focused on cognitive-developmental changes in a competitive interaction. Specifically, it aimed at revealing how children engage in strategic interactions that involve the allocation of limited resources over a number of fields of competition, by manipulating relative strength. Relative strength refers to situations in which player strength changes midway through the game: the stronger player becomes the weaker one, while the weaker player becomes the stronger one. An experiment was conducted to find out if the behavior of children of different age groups differs in the following three aspects: 1. Perception of relative strength. 2. Ability to learn while gaining experience. 3. Ability to adapt to change in relative strength. The task was composed of a resource allocation game. After the players allocated their resources (privately and simultaneously), a competition field was randomly chosen for each player. The player who allocated more resources to the field chosen was declared the winner of that round. The resources available to the two competitors were unequal (or equal, for control). The theoretical solution for this game is that the weaker player should give up on a certain number of fields, depending on the stronger opponent’s relative strength, in order to be able to compete with the opponent on equal footing in the remaining fields. Participants were of three age groups, first-graders (N = 36, mean age = 6), fourth-graders (N = 36, mean age = 10), and eleventh-graders (N = 72, mean age = 16). The games took place between players of the same age and lasted for 16 rounds. There were two experimental conditions – a control condition, in which players were of equal strength, and an experimental condition, in which players differed in strength. In the experimental condition, players' strength was changed midway through the session. Results indicated that players in all age groups were sensitive to their relative strength, and played in line with the theoretical solution: the weaker players gave up on more fields than the stronger ones. This understanding, as well as the consequent difference in allocation between weak and strong players, was more pronounced among older participants. Experience led only to minimal behavioral change. Finally, the children from the two older groups, particularly the eleventh graders adapted quickly to the midway switch in relative strength. In contrast, the first-graders hardly changed their behavior with the change in their relative strength, indicating a limited ability to adapt. These findings highlight young children’s ability to consider their relative strength in strategic interactions and its boundaries.Keywords: children, competition, decision making, developmental changes, strategic behavior
Procedia PDF Downloads 3123514 Biogas from Cover Crops and Field Residues: Effects on Soil, Water, Climate and Ecological Footprint
Authors: Manfred Szerencsits, Christine Weinberger, Maximilian Kuderna, Franz Feichtinger, Eva Erhart, Stephan Maier
Abstract:
Cover or catch crops have beneficial effects for soil, water, erosion, etc. If harvested, they also provide feedstock for biogas without competition for arable land in regions, where only one main crop can be produced per year. On average gross energy yields of approx. 1300 m³ methane (CH4) ha-1 can be expected from 4.5 tonnes (t) of cover crop dry matter (DM) in Austria. Considering the total energy invested from cultivation to compression for biofuel use a net energy yield of about 1000 m³ CH4 ha-1 is remaining. With the straw of grain maize or Corn Cob Mix (CCM) similar energy yields can be achieved. In comparison to catch crops remaining on the field as green manure or to complete fallow between main crops the effects on soil, water and climate can be improved if cover crops are harvested without soil compaction and digestate is returned to the field in an amount equivalent to cover crop removal. In this way, the risk of nitrate leaching can be reduced approx. by 25% in comparison to full fallow. The risk of nitrous oxide emissions may be reduced up to 50% by contrast with cover crops serving as green manure. The effects on humus content and erosion are similar or better than those of cover crops used as green manure when the same amount of biomass was produced. With higher biomass production the positive effects increase even if cover crops are harvested and the only digestate is brought back to the fields. The ecological footprint of arable farming can be reduced by approx. 50% considering the substitution of natural gas with CH4 produced from cover crops.Keywords: biogas, cover crops, catch crops, land use competition, sustainable agriculture
Procedia PDF Downloads 5423513 Design of a Chaotic Trajectory Generator Algorithm for Mobile Robots
Authors: J. J. Cetina-Denis, R. M. López-Gutiérrez, R. Ramírez-Ramírez, C. Cruz-Hernández
Abstract:
This work addresses the problem of designing an algorithm capable of generating chaotic trajectories for mobile robots. Particularly, the chaotic behavior is induced in the linear and angular velocities of a Khepera III differential mobile robot by infusing them with the states of the H´enon chaotic map. A possible application, using the properties of chaotic systems, is patrolling a work area. In this work, numerical and experimental results are reported and analyzed. In addition, two quantitative numerical tests are applied in order to measure how chaotic the generated trajectories really are.Keywords: chaos, chaotic trajectories, differential mobile robot, Henon map, Khepera III robot, patrolling applications
Procedia PDF Downloads 3093512 Top-K Shortest Distance as a Similarity Measure
Authors: Andrey Lebedev, Ilya Dmitrenok, JooYoung Lee, Leonard Johard
Abstract:
Top-k shortest path routing problem is an extension of finding the shortest path in a given network. Shortest path is one of the most essential measures as it reveals the relations between two nodes in a network. However, in many real world networks, whose diameters are small, top-k shortest path is more interesting as it contains more information about the network topology. Many variations to compute top-k shortest paths have been studied. In this paper, we apply an efficient top-k shortest distance routing algorithm to the link prediction problem and test its efficacy. We compare the results with other base line and state-of-the-art methods as well as with the shortest path. Then, we also propose a top-k distance based graph matching algorithm.Keywords: graph matching, link prediction, shortest path, similarity
Procedia PDF Downloads 3583511 An Improved GA to Address Integrated Formulation of Project Scheduling and Material Ordering with Discount Options
Authors: Babak H. Tabrizi, Seyed Farid Ghaderi
Abstract:
Concurrent planning of the resource constraint project scheduling and material ordering problems have received significant attention within the last decades. Hence, the issue has been investigated here with the aim to minimize total project costs. Furthermore, the presented model considers different discount options in order to approach the real world conditions. The incorporated alternatives consist of all-unit and incremental discount strategies. On the other hand, a modified version of the genetic algorithm is applied in order to solve the model for larger sizes, in particular. Finally, the applicability and efficiency of the given model is tested by different numerical instances.Keywords: genetic algorithm, material ordering, project management, project scheduling
Procedia PDF Downloads 3023510 Instance Selection for MI-Support Vector Machines
Authors: Amy M. Kwon
Abstract:
Support vector machine (SVM) is a well-known algorithm in machine learning due to its superior performance, and it also functions well in multiple-instance (MI) problems. Our study proposes a schematic algorithm to select instances based on Hausdorff distance, which can be adapted to SVMs as input vectors under the MI setting. Based on experiments on five benchmark datasets, our strategy for adapting representation outperformed in comparison with original approach. In addition, task execution times (TETs) were reduced by more than 80% based on MissSVM. Hence, it is noteworthy to consider this representation adaptation to SVMs under MI-setting.Keywords: support vector machine, Margin, Hausdorff distance, representation selection, multiple-instance learning, machine learning
Procedia PDF Downloads 343509 Clustering Categorical Data Using the K-Means Algorithm and the Attribute’s Relative Frequency
Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami
Abstract:
Clustering is a well known data mining technique used in pattern recognition and information retrieval. The initial dataset to be clustered can either contain categorical or numeric data. Each type of data has its own specific clustering algorithm. In this context, two algorithms are proposed: the k-means for clustering numeric datasets and the k-modes for categorical datasets. The main encountered problem in data mining applications is clustering categorical dataset so relevant in the datasets. One main issue to achieve the clustering process on categorical values is to transform the categorical attributes into numeric measures and directly apply the k-means algorithm instead the k-modes. In this paper, it is proposed to experiment an approach based on the previous issue by transforming the categorical values into numeric ones using the relative frequency of each modality in the attributes. The proposed approach is compared with a previously method based on transforming the categorical datasets into binary values. The scalability and accuracy of the two methods are experimented. The obtained results show that our proposed method outperforms the binary method in all cases.Keywords: clustering, unsupervised learning, pattern recognition, categorical datasets, knowledge discovery, k-means
Procedia PDF Downloads 2593508 Hull Detection from Handwritten Digit Image
Authors: Sriraman Kothuri, Komal Teja Mattupalli
Abstract:
In this paper we proposed a novel algorithm for recognizing hulls in a hand written digits. This is an extension to the work on “Digit Recognition Using Freeman Chain code”. In order to find out the hulls in a user given digit it is necessary to follow three steps. Those are pre-processing, Boundary Extraction and at last apply the Hull Detection system in a way to attain the better results. The detection of Hull Regions is mainly intended to increase the machine learning capability in detection of characters or digits. This can also extend this in order to get the hull regions and their intensities in Black Holes in Space Exploration.Keywords: chain code, machine learning, hull regions, hull recognition system, SASK algorithm
Procedia PDF Downloads 400