Search results for: eggshell carbonized powder (ECP)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 987

Search results for: eggshell carbonized powder (ECP)

57 An Integrated Approach to Handle Sour Gas Transportation Problems and Pipeline Failures

Authors: Venkata Madhusudana Rao Kapavarapu

Abstract:

The Intermediate Slug Catcher (ISC) facility was built to process nominally 234 MSCFD of export gas from the booster station on a day-to-day basis and to receive liquid slugs up to 1600 m³ (10,000 BBLS) in volume when the incoming 24” gas pipelines are pigged following upsets or production of non-dew-pointed gas from gathering centers. The maximum slug sizes expected are 812 m³ (5100 BBLS) in winter and 542 m³ (3400 BBLS) in summer after operating for a month or more at 100 MMSCFD of wet gas, being 60 MMSCFD of treated gas from the booster station, combined with 40 MMSCFD of untreated gas from gathering center. The water content is approximately 60% but may be higher if the line is not pigged for an extended period, owing to the relative volatility of the condensate compared to water. In addition to its primary function as a slug catcher, the ISC facility will receive pigged liquids from the upstream and downstream segments of the 14” condensate pipeline, returned liquids from the AGRP, pigged through the 8” pipeline, and blown-down fluids from the 14” condensate pipeline prior to maintenance. These fluids will be received in the condensate flash vessel or the condensate separator, depending on the specific operation, for the separation of water and condensate and settlement of solids scraped from the pipelines. Condensate meeting the colour and 200 ppm water specifications will be dispatched to the AGRP through the 14” pipeline, while off-spec material will be returned to BS-171 via the existing 10” condensate pipeline. When they are not in operation, the existing 24” export gas pipeline and the 10” condensate pipeline will be maintained under export gas pressure, ready for operation. The gas manifold area contains the interconnecting piping and valves needed to align the slug catcher with either of the 24” export gas pipelines from the booster station and to direct the gas to the downstream segment of either of these pipelines. The manifold enables the slug catcher to be bypassed if it needs to be maintained or if through-pigging of the gas pipelines is to be performed. All gas, whether bypassing the slug catcher or returning to the gas pipelines from it, passes through black powder filters to reduce the level of particulates in the stream. These items are connected to the closed drain vessel to drain the liquid collected. Condensate from the booster station is transported to AGRP through 14” condensate pipeline. The existing 10” condensate pipeline will be used as a standby and for utility functions such as returning condensate from AGRP to the ISC or booster station or for transporting off-spec fluids from the ISC back to booster station. The manifold contains block valves that allow the two condensate export lines to be segmented at the ISC, thus facilitating bi-directional flow independently in the upstream and downstream segments, which ensures complete pipeline integrity and facility integrity. Pipeline failures will be attended to with the latest technologies by remote techno plug techniques, and repair activities will be carried out as needed. Pipeline integrity will be evaluated with ili pigging to estimate the pipeline conditions.

Keywords: integrity, oil & gas, innovation, new technology

Procedia PDF Downloads 75
56 Sequential Pulsed Electric Field and Ultrasound Assisted Extraction of Bioactive Enriched Fractions from Button Mushroom Stalks

Authors: Bibha Kumari, Nigel P. Brunton, Dilip K. Rai, Brijesh K. Tiwari

Abstract:

Edible mushrooms possess numerous functional components like homo- and hetero- β-glucans [β(1→3), β(1→4) and β(1→6) glucosidic linkages], chitins, ergosterols, bioactive polysaccharides and peptides imparting health beneficial properties to mushrooms. Some of the proven biological activities of mushroom extracts are antioxidant, antimicrobial, immunomodulatory, cholesterol lowering activity by inhibiting a key cholesterol metabolism enzyme i.e. 3-hydroxy-3-methyl-glutaryl CoA reductase (HMGCR), angiotensin I-converting enzyme (ACE) inhibition. Application of novel extraction technologies like pulsed electric field (PEF) and high power ultrasound offers clean, green, faster and efficient extraction alternatives with enhanced and good quality extracts. Sequential PEF followed by ultrasound assisted extraction (UAE) were applied to recover bioactive enriched fractions from industrial white button mushroom (Agaricus bisporus) stalk waste using environmentally friendly and GRAS solvents i.e. water and water/ethanol combinations. The PEF treatment was carried out at 60% output voltage, 2 Hz frequency for 500 pulses of 20 microseconds pulse width, using KCl salt solution of 0.6 mS/cm conductivity by the placing 35g of chopped fresh mushroom stalks and 25g of salt solution in the 4x4x4cm3 treatment chamber. Sequential UAE was carried out on the PEF pre-treated samples using ultrasonic-water-bath (USB) of three frequencies (25 KHz, 35 KHz and 45 KHz) for various treatment times (15-120 min) at 80°C. Individual treatment using either PEF or UAE were also investigation to compare the effect of each treatment along with the combined effect on the recovery and bioactivity of the crude extracts. The freeze dried mushroom stalk powder was characterised for proximate compositional parameters (dry weight basis) showing 64.11% total carbohydrate, 19.12% total protein, 7.21% total fat, 31.2% total dietary fiber, 7.9% chitin (as glucosamine equivalent) and 1.02% β-glucan content. The total phenolic contents (TPC) were determined by the Folin-Ciocalteu procedure and expressed as gallic-acid-equivalents (GAE). The antioxidant properties were ascertained using DPPH and FRAP assays and expressed as trolox-equivalents (TE). HMGCR activity and molecular mass of β-glucans will be measured using the commercial HMG-CoA Reductase Assay kit (Sigma-Aldrich) and size exclusion chromatography (HPLC-SEC), respectively. Effects of PEF, UAE and their combination on the antioxidant capacity, HMGCR inhibition and β-glucans content will be presented.

Keywords: β-glucan, mushroom stalks, pulsed electric field (PEF), ultrasound assisted extraction (UAE)

Procedia PDF Downloads 296
55 Extraction of Rice Bran Protein Using Enzymes and Polysaccharide Precipitation

Authors: Sudarat Jiamyangyuen, Tipawan Thongsook, Riantong Singanusong, Chanida Saengtubtim

Abstract:

Rice is a staple food as well as exported commodity of Thailand. Rice bran, a 10.5% constituent of rice grain, is a by-product of rice milling process. Rice bran is normally used as a raw material for rice bran oil production or sold as feed with a low price. Therefore, this study aimed to increase value of defatted rice bran as obtained after extracting of rice bran oil. Conventionally, the protein in defatted rice bran was extracted using alkaline extraction and acid precipitation, which results in reduction of nutritious components in rice bran. Rice bran protein concentrate is suitable for those who are allergenic of protein from other sources eg. milk, wheat. In addition to its hypoallergenic property, rice bran protein also contains good quantity of lysine. Thus it may act as a suitable ingredient for infant food formulations while adding variety to the restricted diets of children with food allergies. The objectives of this study were to compare properties of rice bran protein concentrate (RBPC) extracted from defatted rice bran using enzymes together with precipitation step using polysaccharides (alginate and carrageenan) to those of a control sample extracted using a conventional method. The results showed that extraction of protein from rice bran using enzymes exhibited the higher protein recovery compared to that extraction with alkaline. The extraction conditions using alcalase 2% (v/w) at 50 C, pH 9.5 gave the highest protein (2.44%) and yield (32.09%) in extracted solution compared to other enzymes. Rice bran protein concentrate powder prepared by a precipitation step using alginate (protein in solution: alginate 1:0.006) exhibited the highest protein (27.55%) and yield (6.62%). Precipitation using alginate was better than that of acid. RBPC extracted with alkaline (ALK) or enzyme alcalase (ALC), then precipitated with alginate (AL) (samples RBP-ALK-AL and RBP-ALC-AL) yielded the precipitation rate of 75% and 91.30%, respectively. Therefore, protein precipitation using alginate was then selected. Amino acid profile of control sample, and sample precipitated with alginate, as compared to casein and soy protein isolated, showed that control sample showed the highest content among all sample. Functional property study of RBP showed that the highest nitrogen solubility occurred in pH 8-10. There was no statically significant between emulsion capacity and emulsion stability of control and sample precipitated by alginate. However, control sample showed a higher of foaming and lower foam stability compared to those of sample precipitated with alginate. The finding was successful in terms of minimizing chemicals used in extraction and precipitation steps in preparation of rice bran protein concentrate. This research involves in a production of value-added product in which the double amount of protein (28%) compared to original amount (14%) contained in rice bran could be beneficial in terms of adding to food products eg. healthy drink with high protein and fiber. In addition, the basic knowledge of functional property of rice bran protein concentrate was obtained, which can be used to appropriately select the application of this value-added product from rice bran.

Keywords: alginate, carrageenan, rice bran, rice bran protein

Procedia PDF Downloads 297
54 Relaxor Ferroelectric Lead-Free Na₀.₅₂K₀.₄₄Li₀.₀₄Nb₀.₈₄Ta₀.₁₀Sb₀.₀₆O₃ Ceramic: Giant Electromechanical Response with Intrinsic Polarization and Resistive Leakage Analyses

Authors: Abid Hussain, Binay Kumar

Abstract:

Environment-friendly lead-free Na₀.₅₂K₀.₄₄Li₀.₀₄Nb₀.₈₄Ta₀.₁₀Sb₀.₀₆O₃ (NKLNTS) ceramic was synthesized by solid-state reaction method in search of a potential candidate to replace lead-based ceramics such as PbZrO₃-PbTiO₃ (PZT), Pb(Mg₁/₃Nb₂/₃)O₃-PbTiO₃ (PMN-PT) etc., for various applications. The ceramic was calcined at temperature 850 ᵒC and sintered at 1090 ᵒC. The powder X-Ray Diffraction (XRD) pattern revealed the formation of pure perovskite phase having tetragonal symmetry with space group P4mm of the synthesized ceramic. The surface morphology of the ceramic was studied using Field Emission Scanning Electron Microscopy (FESEM) technique. The well-defined grains with homogeneous microstructure were observed. The average grain size was found to be ~ 0.6 µm. A very large value of piezoelectric charge coefficient (d₃₃ ~ 754 pm/V) was obtained for the synthesized ceramic which indicated its potential for use in transducers and actuators. In dielectric measurements, a high value of ferroelectric to paraelectric phase transition temperature (Tm~305 ᵒC), a high value of maximum dielectric permittivity ~ 2110 (at 1 kHz) and a very small value of dielectric loss ( < 0.6) were obtained which suggested the utility of NKLNTS ceramic in high-temperature ferroelectric devices. Also, the degree of diffuseness (γ) was found to be 1.61 which confirmed a relaxor ferroelectric behavior in NKLNTS ceramic. P-E hysteresis loop was traced and the value of spontaneous polarization was found to be ~11μC/cm² at room temperature. The pyroelectric coefficient was obtained to be very high (p ∼ 1870 μCm⁻² ᵒC⁻¹) for the present case indicating its applicability in pyroelectric detector applications including fire and burglar alarms, infrared imaging, etc. NKLNTS ceramic showed fatigue free behavior over 107 switching cycles. Remanent hysteresis task was performed to determine the true-remanent (or intrinsic) polarization of NKLNTS ceramic by eliminating non-switchable components which showed that a major portion (83.10 %) of the remanent polarization (Pr) is switchable in the sample which makes NKLNTS ceramic a suitable material for memory switching devices applications. Time-Dependent Compensated (TDC) hysteresis task was carried out which revealed resistive leakage free nature of the ceramic. The performance of NKLNTS ceramic was found to be superior to many lead based piezoceramics and hence can effectively replace them for use in piezoelectric, pyroelectric and long duration ferroelectric applications.

Keywords: dielectric properties, ferroelectric properties , lead free ceramic, piezoelectric property, solid state reaction, true-remanent polarization

Procedia PDF Downloads 138
53 Branched Chain Amino Acid Kinesio PVP Gel Tape from Extract of Pea (Pisum sativum L.) Based on Ultrasound-Assisted Extraction Technology

Authors: Doni Dermawan

Abstract:

Modern sports competition as a consequence of the increase in the value of the business and entertainment in the field of sport has been demanding athletes to always have excellent physical endurance performance. Physical exercise is done in a long time, and intensive may pose a risk of muscle tissue damage caused by the increase of the enzyme creatine kinase. Branched Chain Amino Acids (BCAA) is an essential amino acid that is composed of leucine, isoleucine, and valine which serves to maintain muscle tissue, keeping the immune system, and prevent further loss of coordination and muscle pain. Pea (Pisum sativum L.) is a kind of leguminous plants that are rich in Branched Chain Amino Acids (BCAA) where every one gram of protein pea contains 82.7 mg of leucine; 56.3 mg isoleucine; and 56.0 mg of valine. This research aims to develop Branched Chain Amino Acids (BCAA) from pea extract is applied in dosage forms Gel PVP Kinesio Tape technology using Ultrasound-assisted Extraction. The method used in the writing of this paper is the Cochrane Collaboration Review that includes literature studies, testing the quality of the study, the characteristics of the data collection, analysis, interpretation of results, and clinical trials as well as recommendations for further research. Extraction of BCAA in pea done using ultrasound-assisted extraction technology with optimization variables includes the type of solvent extraction (NaOH 0.1%), temperature (20-250C), time (15-30 minutes) power (80 watt) and ultrasonic frequency (35 KHz). The advantages of this extraction method are the level of penetration of the solvent into the membrane of the cell is high and can increase the transfer period so that the BCAA substance separation process more efficient. BCAA extraction results are then applied to the polymer PVP (Polyvinylpyrrolidone) Gel powder composed of PVP K30 and K100 HPMC dissolved in 10 mL of water-methanol (1: 1) v / v. Preparations Kinesio Tape Gel PVP is the BCAA in the gel are absorbed into the muscle tissue, and joints through tensile force then provides stimulation to the muscle circulation with variable pressure so that the muscle can increase the biomechanical movement and prevent damage to the muscle enzyme creatine kinase. Analysis and evaluation of test preparation include interaction, thickness, weight uniformity, humidity, water vapor permeability, the levels of the active substance, content uniformity, percentage elongation, stability testing, release profile, permeation in vitro and in vivo skin irritation testing.

Keywords: branched chain amino acid, BCAA, Kinesio tape, pea, PVP gel, ultrasound-assisted extraction

Procedia PDF Downloads 290
52 High Capacity SnO₂/Graphene Composite Anode Materials for Li-Ion Batteries

Authors: Hilal Köse, Şeyma Dombaycıoğlu, Ali Osman Aydın, Hatem Akbulut

Abstract:

Rechargeable lithium-ion batteries (LIBs) have become promising power sources for a wide range of applications, such as mobile communication devices, portable electronic devices and electrical/hybrid vehicles due to their long cycle life, high voltage and high energy density. Graphite, as anode material, has been widely used owing to its extraordinary electronic transport properties, large surface area, and high electrocatalytic activities although its limited specific capacity (372 mAh g-1) cannot fulfil the increasing demand for lithium-ion batteries with higher energy density. To settle this problem, many studies have been taken into consideration to investigate new electrode materials and metal oxide/graphene composites are selected as a kind of promising material for lithium ion batteries as their specific capacities are much higher than graphene. Among them, SnO₂, an n-type and wide band gap semiconductor, has attracted much attention as an anode material for the new-generation lithium-ion batteries with its high theoretical capacity (790 mAh g-1). However, it suffers from large volume changes and agglomeration associated with the Li-ion insertion and extraction processes, which brings about failure and loss of electrical contact of the anode. In addition, there is also a huge irreversible capacity during the first cycle due to the formation of amorphous Li₂O matrix. To obtain high capacity anode materials, we studied on the synthesis and characterization of SnO₂-Graphene nanocomposites and investigated the capacity of this free-standing anode material in this work. For this aim, firstly, graphite oxide was obtained from graphite powder using the method described by Hummers method. To prepare the nanocomposites as free-standing anode, graphite oxide particles were ultrasonicated in distilled water with SnO2 nanoparticles (1:1, w/w). After vacuum filtration, the GO-SnO₂ paper was peeled off from the PVDF membrane to obtain a flexible, free-standing GO paper. Then, GO structure was reduced in hydrazine solution. Produced SnO2- graphene nanocomposites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), and X-ray diffraction (XRD) analyses. CR2016 cells were assembled in a glove box (MBraun-Labstar). The cells were charged and discharged at 25°C between fixed voltage limits (2.5 V to 0.2 V) at a constant current density on a BST8-MA MTI model battery tester with 0.2C charge-discharge rate. Cyclic voltammetry (CV) was performed at the scan rate of 0.1 mVs-1 and electrochemical impedance spectroscopy (EIS) measurements were carried out using Gamry Instrument applying a sine wave of 10 mV amplitude over a frequency range of 1000 kHz-0.01 Hz.

Keywords: SnO₂-graphene, nanocomposite, anode, Li-ion battery

Procedia PDF Downloads 230
51 Biocompatibility of Calcium Phosphate Coatings With Different Crystallinity Deposited by Sputtering

Authors: Ekaterina S. Marchenko, Gulsharat A. Baigonakova, Kirill M. Dubovikov, Igor A. Khlusov

Abstract:

NiTi alloys combine biomechanical and biochemical properties. This makes them a perfect candidate for medical applications. However, there is a serious problem with these alloys, such as the release of Ni from the matrix. Ni ions are known to be toxic to living tissues and leach from the matrix into the surrounding implant tissues due to corrosion after prolonged use. To prevent the release of Ni ions, corrosive strong coatings are usually used. Titanium nitride-based coatings are perfect corrosion inhibitors and also have good bioactive properties. However, there is an opportunity to improve the biochemical compatibility of the surface by depositing another layer. This layer can consist of elements such as calcium and phosphorus. The Ca and P ions form different calcium phosphate phases, which are present in the mineral part of human bones. We therefore believe that these elements must promote osteogenesis and osteointegration. In view of the above, the aim of this study is to investigate the effect of crystallinity on the biocompatibility of a two-layer coating deposited on NiTi substrate by sputtering. The first step of the research, apart from the NiTi polishing, is the layer-by-layer deposition of Ti-Ni-Ti by magnetron sputtering and the subsequent synthesis of this composite in an N atmosphere at 900 °C. The total thickness of the corrosion resistant layer is 150 nm. Plasma assisted RF sputtering was then used to deposit a bioactive film on the titanium nitride layer. A Ca-P powder target was used to obtain such a film. We deposited three types of Ca-P layers with different crystallinity and compared them in terms of cytotoxicity. One group of samples had no Ca-P coating and was used as a control. We obtained different crystallinity by varying the sputtering parameters such as bias voltage, plasma source current and pressure. XRD analysis showed that all coatings are calcium phosphate, but the sample obtained at maximum bias and plasma source current and minimum pressure has the most intense peaks from the coating phase. SEM and EDS showed that all three coatings have a homogeneous and dense structure without cracks and consist of calcium, phosphorus and oxygen. Cytotoxic tests carried out on three types of samples with Ca-P coatings and a control group showed that the control sample and the sample with Ca-P coating obtained at maximum bias voltage and plasma source current and minimum pressure had the lowest number of dead cells on the surface, around 11 ± 4%. Two other types of samples with Ca-P coating have 40 ± 9% and 21 ± 7% dead cells on the surface. It can therefore be concluded that these two sputtering modes have a negative effect on the corrosion resistance of the whole samples. The third sputtering mode does not affect the corrosion resistance and has the same level of cytotoxicity as the control. It can be concluded that the most suitable sputtering mode is the third with maximum bias voltage and plasma source current and minimum pressure.

Keywords: calcium phosphate coating, cytotoxicity, NiTi alloy, two-layer coating

Procedia PDF Downloads 68
50 Effects of Dietary Polyunsaturated Fatty Acids and Beta Glucan on Maturity, Immunity and Fry Quality of Pabdah Catfish, Ompok pabda

Authors: Zakir Hossain, Md. Saddam Hossain

Abstract:

A nutritionally balanced diet and selection of appropriate species are important criteria in aquaculture. The present study was conducted to evaluate the effects of polyunsaturated fatty acids (PUFAs) and beta glucan containing diet on growth performance, feed utilization, maturation, immunity, early embryonic and larval development of endangered Pabdah catfish, Ompok pabda. In this study, squid extracted lipids and mushroom powder were used as the source of PUFAs and beta glucan, respectively, and formulated two isonitrogenous diets such as basal or control (CON) diet and treated (PBG) diet with maintaining 30% protein levels. During the study period, similar physicochemical conditions of water such as temperature, pH, and dissolved oxygen (DO) were 26.5±2 °C, 7.4±0.2, and 6.7±0.5 ppm, respectively in each cistern. The results showed that final mean body weight, final mean length gain, food conversion ratio (FCR), specific growth rate (SGR), food conversion efficiency (%), hepatosomatic index (HSI), kidney index (KI), and viscerosomatic index (VSI) were significantly (P<0.01 and P<0.05) higher in fish fed the PBG diet than that of fish fed the CON diet. The length-weight relationship and relative condition factor (K) of O. pabda were significantly (P<0.05) affected by the PBG diet. The gonadosomatic index (GSI), sperm viability, blood serum calcium ion concentrations (Ca²⁺), and vitellogenin level were significantly (P<0.05) higher in fish fed the PBG diet than that of fish fed the CON diet; which was used to the indication of fish maturation. During the spawning season, lipid granules and normal morphological structure were observed in the treated fish liver, whereas fewer lipid granules of liver were observed in the control group. Based on the immunity and stress resistance-related parameters such as hematological indices, antioxidant activity, lysozyme level, respiratory burst activity, blood reactive oxygen species (ROS), complement activity (ACH50 assay), specific IgM, brain AChE, plasma PGOT, and PGPT enzyme activity were significantly (P<0.01 and P<0.05) higher in fish fed the PBG diet than that of fish fed the CON diet. The fecundity, fertilization rate (92.23±2.69%), hatching rate (87.43±2.17 %) and survival (76.62±0.82%) of offspring were significantly higher (P˂0.05) in the PBG diet than in the control. Consequently, early embryonic and larval development was better in PBG treated group than in the control. Therefore, the present study showed that the polyunsaturated fatty acids (PUFAs) and beta glucan enriched experimental diet were more effective and achieved better growth, feed utilization, maturation, immunity, and spawning performances of O. pabda.

Keywords: polyunsaturated fatty acids, beta glucan, maturity, immunity, catfish

Procedia PDF Downloads 14
49 Cytotoxic Effects of Ag/TiO2 Nanoparticles on the Unicellular Organism Paramecium tetraurelia

Authors: Juan Bernal-Martinez, Zoe Quinones-Jurado, Miguel Waldo-Mendoza, Elias Perez

Abstract:

Introduction and Objective: Ag-TiO2 nanoparticles (NP) have been characterized as effective antibacterial compounds against E. aureous, E. coli, Salmonella and others. Because these nanoparticles have been used in plastic-food containers, there is a concern about the toxicity of Ag-TiO2 NP for higher organisms from protozoan, invertebrates, and mammals. The objective of this study is to evaluate the cytotoxic effect of Ag-TiO2 NP on the survival and swimming behavior of the unicellular organism Paramecium tetraurelia. Material and Methods: Preparation of metallic silver on TiO2 surface was based on chemical reduction route of AgNO3. Aqueous suspension of TiO2 nanoparticles was preparing by adding 5 g of TiO2 to 250 ml of deionized water and followed by sonication for 10 min. The required amount of AgNO3 solutions was added to TiO2 suspension, maintaining heating and stirring. Silver concentration was 0.5, 1.5, 5.0, 25, 35 and 45 % w/w versus TiO2. Paramecium tetraurelia (Carolina Biological, Cat. # 131560) was used as a biological preparation. It was cultured in artificial culture media made as follows: Stigmasterol 5 mg/ml of ethanol, Caseaminoacids 0.3 gr/lt.; KCl 4mM; CaCl2 1mM; MgCl2 100uM and MOPS 1mM, pH 7.3. This media was inoculated with Enterobacter-sp. Paramecium was concentrated after 24 hours of incubation by centrifugation. The pellet of cells was resuspended in 4.1.1 solution prepared as follows (in mM): KCl, 4 mM; CaCl2, 1mM and Trizma, 1mM; pH 7.3. Transmission electron microscopy (TEM) studies were performed to evaluate the appropriate dispersion and topographic distribution AgNPs deposited on TiO2. The experimental solutions were prepared as follows: 50 mg of Polyvinyhlpirolidone were added to 5 ml of 4.1.1. solution. Then, 50 mg of powder 25-Ag-TiO2 was added, mixing for 10 min and sonicated for 60 min. Survival of Paramecium and possible toxic effects after 25-Ag-TiO2 treatment was observed through an inverted microscope. The Paramecium swimming behavior and possible dead cells were recorded for periods of approximately 20-50 seconds by using a digital USB camera adapted to the microscope. Results and Discussion: TEM micrographs demonstrated the topographic distribution of AgNPs deposited on TiO2. 25Ag-TiO2 NP was efficiently dissolved and dispersed in 4.1.1 solution at concentrations from 0.1, 1 and 10 mg/ml. When Paramecium were treated with 25Ag-TiO2 NP at 100 ug/ml, it was observed that cells started swimming backwards. This backward swimming behavior is the typical avoiding reaction of the ciliate in response to a noxious stimulus. After 10 min of incubation, it was observed that Paramecium stopped swimming backwards and exploited. We can argue that this toxic effect of 25Ag-TiO2 NP is probably due to the calcium influx and calcium accumulation during the long-lasting swimming backwards. Conclusions: Here we have demonstrated that 25Ag-TiO2 NP has a specific toxic effect on an organism higher than bacteria such as the protozoan Paremecium. Probably these toxic phenomena could be expected to be observed in a higher organism such as invertebrates and mammals.

Keywords: Ag-TiO2, calcium permeability, cytotoxicity, paramecium

Procedia PDF Downloads 291
48 Catalytic Alkylation of C2-C4 Hydrocarbons

Authors: Bolysbek Utelbayev, Tasmagambetova Aigerim, Toktasyn Raila, Markayev Yergali, Myrzakhanov Maxat

Abstract:

Intensive development of secondary processes of destructive processing of crude oil has led to the occurrence of oil refining factories resources of C2-C4 hydrocarbons. Except for oil gases also contain basically C2-C4 hydrocarbon gases where some of the amounts are burned. All these data has induced interest to the study of producing alkylate from hydrocarbons С2-С4 which being as components of motor fuels. The purpose of this work was studying transformation propane-propene, butane-butene fractions at the presence of the ruthenium-chromic support catalyst whereas the carrier is served pillar - structural montmorillonite containing in native bentonite clay. In this work is considered condition and structure of the bentonite clay from the South-Kazakhstan area of the Republic Kazakhstan. For preparation rhodium support catalyst (0,5-1,0 mass. % Rh) was used chloride of rhodium-RhCl3∙3H2O, as a carrier was used modified bentonite clay. For modifying natural clay to pillar structural form were used polyhydroxy complexes of chromium. To aqueous solution of chloride chromium gradually flowed the solution of sodium hydroxide at gradual hashing up to pH~3-4. The concentration of chloride chromium was paid off proceeding from calculation 5-30 mmole Cr3+ per gram clay. Suspension bentonite (~1,0 mass. %) received by intensive washing it in water during 4 h, pH-water extract of clay makes -8-9. The acidity of environment supervised by means of digital pH meter OP-208/1. In order to prevent coagulation of a solution polyhydroxy complexes of chromium, it was slowly added to a suspension of clay. "Reserve of basicity" Cr3+:/OH-allowing to prevent coagulation chloride of rhodium made 1/3. After endurance processed suspensions of clay during 24 h, a deposit was washed by water and condensed. The sample, after separate from a liquid phase, dried at first at the room temperature, and then at 110°C (2h) with the subsequent rise the temperature up to 180°C (4h). After cooling the firm mass was pounded to a powder, it was shifted infractions with the certain sizes of particles. Fractions of particles modifying clay in the further were impregnated with an aqueous solution with rhodium-RhCl3∙3H2O (0,5-1,0 mаss % Rh ). Obtained pillar structural bentonite approaches heat resistance and its porous structure above the 773K. Pillar structural bentonite was used for preparation 1.0% Ru/Carrier (modifying bentonite) support catalysts where is realised alkylation of C2-C4 hydrocarbons. The process of alkylation is carried out at a partial pressure of hydrogen 0.5-1.0MPa. Outcome 2.2.4 three methyl pentane and 2.2.3 trimethylpentane achieved 40%. At alkylation butane-butene mixture outcome of the isooctane is achieved 60%. In this condition of studying the ethene is not undergoing to alkylation.

Keywords: alkylation, butene, pillar structure, ruthenium catalyst

Procedia PDF Downloads 397
47 Upgrading of Bio-Oil by Bio-Pd Catalyst

Authors: Sam Derakhshan Deilami, Iain N. Kings, Lynne E. Macaskie, Brajendra K. Sharma, Anthony V. Bridgwater, Joseph Wood

Abstract:

This paper reports the application of a bacteria-supported palladium catalyst to the hydrodeoxygenation (HDO) of pyrolysis bio-oil, towards producing an upgraded transport fuel. Biofuels are key to the timely replacement of fossil fuels in order to mitigate the emissions of greenhouse gases and depletion of non-renewable resources. The process is an essential step in the upgrading of bio-oils derived from industrial by-products such as agricultural and forestry wastes, the crude oil from pyrolysis containing a large amount of oxygen that requires to be removed in order to create a fuel resembling fossil-derived hydrocarbons. The bacteria supported catalyst manufacture is a means of utilizing recycled metals and second life bacteria, and the metal can also be easily recovered from the spent catalysts after use. Comparisons are made between bio-Pd, and a conventional activated carbon supported Pd/C catalyst. Bio-oil was produced by fast pyrolysis of beechwood at 500 C at a residence time below 2 seconds, provided by Aston University. 5 wt % BioPd/C was prepared under reducing conditions, exposing cells of E. coli MC4100 to a solution of sodium tetrachloropalladate (Na2PdCl4), followed by rinsing, drying and grinding to form a powder. Pd/C was procured from Sigma-Aldrich. The HDO experiments were carried out in a 100 mL Parr batch autoclave using ~20g bio-crude oil and 0.6 g bio-Pd/C catalyst. Experimental variables investigated for optimization included temperature (160-350C) and reaction times (up to 5 h) at a hydrogen pressure of 100 bar. Most of the experiments resulted in an aqueous phase (~40%) and an organic phase (~50-60%) as well as gas phase (<5%) and coke (<2%). Study of the temperature and time upon the process showed that the degree of deoxygenation increased (from ~20 % up to 60 %) at higher temperatures in the region of 350 C and longer residence times up to 5 h. However minimum viscosity (~0.035 Pa.s) occurred at 250 C and 3 h residence time, indicating that some polymerization of the oil product occurs at the higher temperatures. Bio-Pd showed a similar degree of deoxygenation (~20 %) to Pd/C at lower temperatures of 160 C, but did not rise as steeply with temperature. More coke was formed over bio-Pd/C than Pd/C at temperatures above 250 C, suggesting that bio-Pd/C may be more susceptible to coke formation than Pd/C. Reactions occurring during bio-oil upgrading include catalytic cracking, decarbonylation, decarboxylation, hydrocracking, hydrodeoxygenation and hydrogenation. In conclusion, it was shown that bio-Pd/C displays an acceptable rate of HDO, which increases with residence time and temperature. However some undesirable reactions also occur, leading to a deleterious increase in viscosity at higher temperatures. Comparisons are also drawn with earlier work on the HDO of Chlorella derived bio-oil manufactured from micro-algae via hydrothermal liquefaction. Future work will analyze the kinetics of the reaction and investigate the effect of bi-metallic catalysts.

Keywords: bio-oil, catalyst, palladium, upgrading

Procedia PDF Downloads 176
46 Preparation, Solid State Characterization of Etraverine Co-Crystals with Improved Solubility for the Treatment of Human Immunodeficiency Virus

Authors: B. S. Muddukrishna, Karthik Aithal, Aravind Pai

Abstract:

Introduction: Preparation of binary cocrystals of Etraverine (ETR) by using Tartaric Acid (TAR) as a conformer was the main focus of this study. Etravirine is a Class IV drug, as per the BCS classification system. Methods: Cocrystals were prepared by slow evaporation technique. A mixture of total 500mg of ETR: TAR was weighed in molar ratios of 1:1 (371.72mg of ETR and 128.27mg of TAR). Saturated solution of Etravirine was prepared in Acetone: Methanol (50:50) mixture in which tartaric acid is dissolved by sonication and then this solution was stirred using a magnetic stirrer until the solvent got evaporated. Shimadzu FTIR – 8300 system was used to acquire the FTIR spectra of the cocrystals prepared. Shimadzu thermal analyzer was used to achieve DSC measurements. X-ray diffractometer was used to obtain the X-ray powder diffraction pattern. Shake flask method was used to determine the equilibrium dynamic solubility of pure, physical mixture and cocrystals of ETR. USP buffer (pH 6.8) containing 1% of Tween 80 was used as the medium. The pure, physical mixture and the optimized cocrystal of ETR were accurately weighed sufficient to maintain the sink condition and were filled in hard gelatine capsules (size 4). Electrolab-Tablet Dissolution tester using basket apparatus at a rotational speed of 50 rpm and USP phosphate buffer (900 mL, pH = 6.8, 37 ˚C) + 1% Tween80 as a media, was used to carry out dissolution. Shimadzu LC-10 series chromatographic system was used to perform the analysis with PDA detector. An Hypersil BDS C18 (150mm ×4.6 mm ×5 µm) column was used for separation with mobile phase comprising of a mixture of ace¬tonitrile and phosphate buffer 20mM, pH 3.2 in the ratio 60:40 v/v. The flow rate was 1.0mL/min and column temperature was set to 30°C. The detection was carried out at 304 nm for ETR. Results and discussions: The cocrystals were subjected to various solid state characterization and the results confirmed the formation of cocrystals. The C=O stretching vibration (1741cm-1) in tartaric acid was disappeared in the cocrystal and the peak broadening of primary amine indicates hydrogen bond formation. The difference in the melting point of cocrystals when compared to pure Etravirine (265 °C) indicates interaction between the drug and the coformer which proves that first ordered transformation i.e. melting endotherm has disappeared. The difference in 2θ values of pure drug and cocrystals indicates the interaction between the drug and the coformer. Dynamic solubility and dissolution studies were also conducted by shake flask method and USP apparatus one respectively and 3.6 fold increase in the dynamic solubility were observed and in-vitro dissolution study shows four fold increase in the solubility for the ETR: TAR (1:1) cocrystals. The ETR: TAR (1:1) cocrystals shows improved solubility and dissolution as compared to the pure drug which was clearly showed by solid state characterization and dissolution studies.

Keywords: dynamic solubility, Etraverine, in vitro dissolution, slurry method

Procedia PDF Downloads 363
45 Effect of Oxygen Ion Irradiation on the Structural, Spectral and Optical Properties of L-Arginine Acetate Single Crystals

Authors: N. Renuka, R. Ramesh Babu, N. Vijayan

Abstract:

Ion beams play a significant role in the process of tuning the properties of materials. Based on the radiation behavior, the engineering materials are categorized into two different types. The first one comprises organic solids which are sensitive to the energy deposited in their electronic system and the second one comprises metals which are insensitive to the energy deposited in their electronic system. However, exposure to swift heavy ions alters this general behavior. Depending on the mass, kinetic energy and nuclear charge, an ion can produce modifications within a thin surface layer or it can penetrate deeply to produce long and narrow distorted area along its path. When a high energetic ion beam impinges on a material, it causes two different types of changes in the material due to the columbic interaction between the target atom and the energetic ion beam: (i) inelastic collisions of the energetic ion with the atomic electrons of the material; and (ii) elastic scattering from the nuclei of the atoms of the material, which is extremely responsible for relocating the atoms of matter from their lattice position. The exposure of the heavy ions renders the material return to equilibrium state during which the material undergoes surface and bulk modifications which depends on the mass of the projectile ion, physical properties of the target material, its energy, and beam dimension. It is well established that electronic stopping power plays a major role in the defect creation mechanism provided it exceeds a threshold which strongly depends on the nature of the target material. There are reports available on heavy ion irradiation especially on crystalline materials to tune their physical and chemical properties. L-Arginine Acetate [LAA] is a potential semi-organic nonlinear optical crystal and its optical, mechanical and thermal properties have already been reported The main objective of the present work is to enhance or tune the structural and optical properties of LAA single crystals by heavy ion irradiation. In the present study, a potential nonlinear optical single crystal, L-arginine acetate (LAA) was grown by slow evaporation solution growth technique. The grown LAA single crystal was irradiated with oxygen ions at the dose rate of 600 krad and 1M rad in order to tune the structural and optical properties. The structural properties of pristine and oxygen ions irradiated LAA single crystals were studied using Powder X- ray diffraction and Fourier Transform Infrared spectral studies which reveal the structural changes that are generated due to irradiation. Optical behavior of pristine and oxygen ions irradiated crystals is studied by UV-Vis-NIR and photoluminescence analyses. From this investigation we can concluded that oxygen ions irradiation modifies the structural and optical properties of LAA single crystals.

Keywords: heavy ion irradiation, NLO single crystal, photoluminescence, X-ray diffractometer

Procedia PDF Downloads 255
44 Fractional, Component and Morphological Composition of Ambient Air Dust in the Areas of Mining Industry

Authors: S.V. Kleyn, S.Yu. Zagorodnov, А.А. Kokoulina

Abstract:

Technogenic emissions of the mining and processing complex are characterized by a high content of chemical components and solid dust particles. However, each industrial enterprise and the surrounding area have features that require refinement and parameterization. Numerous studies have shown the negative impact of fine dust PM10 and PM2.5 on the health, as well as the possibility of toxic components absorption, including heavy metals by dust particles. The target of the study was the quantitative assessment of the fractional and particle size composition of ambient air dust in the area of impact by primary magnesium production complex. Also, we tried to describe the morphology features of dust particles. Study methods. To identify the dust emission sources, the analysis of the production process has been carried out. The particulate composition of the emissions was measured using laser particle analyzer Microtrac S3500 (covered range of particle size is 20 nm to 2000 km). Particle morphology and the component composition were established by electron microscopy by scanning microscope of high resolution (magnification rate - 5 to 300 000 times) with X-ray fluorescence device S3400N ‘HITACHI’. The chemical composition was identified by X-ray analysis of the samples using an X-ray diffractometer XRD-700 ‘Shimadzu’. Determination of the dust pollution level was carried out using model calculations of emissions in the atmosphere dispersion. The calculations were verified by instrumental studies. Results of the study. The results demonstrated that the dust emissions of different technical processes are heterogeneous and fractional structure is complicated. The percentage of particle sizes up to 2.5 micrometres inclusive was ranged from 0.00 to 56.70%; particle sizes less than 10 microns inclusive – 0.00 - 85.60%; particle sizes greater than 10 microns - 14.40% -100.00%. During microscopy, the presence of nanoscale size particles has been detected. Studied dust particles are round, irregular, cubic and integral shapes. The composition of the dust includes magnesium, sodium, potassium, calcium, iron, chlorine. On the base of obtained results, it was performed the model calculations of dust emissions dispersion and establishment of the areas of fine dust РМ 10 and РМ 2.5 distribution. It was found that the dust emissions of fine powder fractions PM10 and PM2.5 are dispersed over large distances and beyond the border of the industrial site of the enterprise. The population living near the enterprise is exposed to the risk of diseases associated with dust exposure. Data are transferred to the economic entity to make decisions on the measures to minimize the risks. Exposure and risks indicators on the health are used to provide named patient health and preventive care to the citizens living in the area of negative impact of the facility.

Keywords: dust emissions, еxposure assessment, PM 10, PM 2.5

Procedia PDF Downloads 262
43 Detection of Egg Proteins in Food Matrices (2011-2021)

Authors: Daniela Manila Bianchi, Samantha Lupi, Elisa Barcucci, Sandra Fragassi, Clara Tramuta, Lucia Decastelli

Abstract:

Introduction: The undeclared allergens detection in food products plays a fundamental role in the safety of the allergic consumer. The protection of allergic consumers is guaranteed, in Europe, by Regulation (EU) No 1169/2011 of the European Parliament, which governs the consumer's right to information and identifies 14 food allergens to be mandatorily indicated on food labels: among these, an egg is included. An egg can be present as an ingredient or as contamination in raw and cooked products. The main allergen egg proteins are ovomucoid, ovalbumin, lysozyme, and ovotransferrin. This study presents the results of a survey conducted in Northern Italy aimed at detecting the presence of undeclared egg proteins in food matrices in the latest ten years (2011-2021). Method: In the period January 2011 - October 2021, a total of 1205 different types of food matrices (ready-to-eat, meats, and meat products, bakery and pastry products, baby foods, food supplements, pasta, fish and fish products, preparations for soups and broths) were delivered to Food Control Laboratory of Istituto Zooprofilattico Sperimentale of Piemonte Liguria and Valle d’Aosta to be analyzed as official samples in the frame of Regional Monitoring Plan of Food Safety or in the contest of food poisoning. The laboratory is ISO 17025 accredited, and since 2019, it has represented the National Reference Centre for the detection in foods of substances causing food allergies or intolerances (CreNaRiA). All samples were stored in the laboratory according to food business operator instructions and analyzed within the expiry date for the detection of undeclared egg proteins. Analyses were performed with RIDASCREEN®FAST Ei/Egg (R-Biopharm ® Italia srl) kit: the method was internally validated and accredited with a Limit of Detection (LOD) equal to 2 ppm (mg/Kg). It is a sandwich enzyme immunoassay for the quantitative analysis of whole egg powder in foods. Results: The results obtained through this study showed that egg proteins were found in 2% (n. 28) of food matrices, including meats and meat products (n. 16), fish and fish products (n. 4), bakery and pastry products (n. 4), pasta (n. 2), preparations for soups and broths (n.1) and ready-to-eat (n. 1). In particular, in 2011 egg proteins were detected in 5% of samples, in 2012 in 4%, in 2013, 2016 and 2018 in 2%, in 2014, 2015 and 2019 in 3%. No egg protein traces were detected in 2017, 2020, and 2021. Discussion: Food allergies occur in the Western World in 2% of adults and up to 8% of children. Allergy to eggs is one of the most common food allergies in the pediatrics context. The percentage of positivity obtained from this study is, however, low. The trend over the ten years has been slightly variable, with comparable data.

Keywords: allergens, food, egg proteins, immunoassay

Procedia PDF Downloads 139
42 Primary-Color Emitting Photon Energy Storage Nanophosphors for Developing High Contrast Latent Fingerprints

Authors: G. Swati, D. Haranath

Abstract:

Commercially available long afterglow /persistent phosphors are proprietary materials and hence the exact composition and phase responsible for their luminescent characteristics such as initial intensity and afterglow luminescence time are not known. Further to generate various emission colors, commercially available persistence phosphors are physically blended with fluorescent organic dyes such as rodhamine, kiton and methylene blue etc. Blending phosphors with organic dyes results into complete color coverage in visible spectra, however with time, such phosphors undergo thermal and photo-bleaching. This results in the loss of their true emission color. Hence, the current work is dedicated studies on inorganic based thermally and chemically stable primary color emitting nanophosphors namely SrAl2O4:Eu2+, Dy3+, (CaZn)TiO3:Pr3+, and Sr2MgSi2O7:Eu2+, Dy3+. SrAl2O4: Eu2+, Dy3+ phosphor exhibits a strong excitation in UV and visible region (280-470 nm) with a broad emission peak centered at 514 nm is the characteristic emission of parity allowed 4f65d1→4f7 transitions of Eu2+ (8S7/2→2D5/2). Sunlight excitable Sr2MgSi2O7:Eu2+,Dy3+ nanophosphors emits blue color (464 nm) with Commercial international de I’Eclairage (CIE) coordinates to be (0.15, 0.13) with a color purity of 74 % with afterglow time of > 5 hours for dark adapted human eyes. (CaZn)TiO3:Pr3+ phosphor system possess high color purity (98%) which emits intense, stable and narrow red emission at 612 nm due intra 4f transitions (1D2 → 3H4) with afterglow time of 0.5 hour. Unusual property of persistence luminescence of these nanophoshphors supersedes background effects without losing sensitive information these nanophosphors offer several advantages of visible light excitation, negligible substrate interference, high contrast bifurcation of ridge pattern, non-toxic nature revealing finger ridge details of the fingerprints. Both level 1 and level 2 features from a fingerprint can be studied which are useful for used classification, indexing, comparison and personal identification. facile methodology to extract high contrast fingerprints on non-porous and porous substrates using a chemically inert, visible light excitable, and nanosized phosphorescent label in the dark has been presented. The chemistry of non-covalent physisorption interaction between the long afterglow phosphor powder and sweat residue in fingerprints has been discussed in detail. Real-time fingerprint development on porous and non-porous substrates has also been performed. To conclude, apart from conventional dark vision applications, as prepared primary color emitting afterglow phosphors are potentional candidate for developing high contrast latent fingerprints.

Keywords: fingerprints, luminescence, persistent phosphors, rare earth

Procedia PDF Downloads 223
41 Chemistry and Biological Activity of Feed Additive for Poultry Farming

Authors: Malkhaz Jokhadze, Vakhtang Mshvildadze, Levan Makaradze, Ekaterine Mosidze, Salome Barbaqadze, Mariam Murtazashvili, Dali Berashvili, Koba sivsivadze, Lasha Bakuridze, Aliosha Bakuridze

Abstract:

Essential oils are one of the most important groups of biologically active substances present in plants. Due to the chemical diversity of components, essential oils and their preparations have a wide spectrum of pharmacological action. They have bactericidal, antiviral, fungicidal, antiprotozoal, anti-inflammatory, spasmolytic, sedative and other activities. They are expectorant, spasmolytic, sedative, hypotensive, secretion enhancing, antioxidant remedies. Based on preliminary pharmacological studies, we have developed a formulation called “Phytobiotic” containing essential oils, a feed additive for poultry as an alternative to antibiotics. Phytobiotic is a water-soluble powder containing a composition of essential oils of thyme, clary, monarda and auxiliary substances: dry extract of liquorice and inhalation lactose. On this stage of research, the goal was to study the chemical composition of provided phytobiotic, identify the main substances and determine their quantity, investigate the biological activity of phytobiotic through in vitro and in vivo studies. Using gas chromatography-mass spectrometry, 38 components were identified in phytobiotic, representing acyclic-, monocyclic-, bicyclic-, and sesquiterpenes. Together with identification of main active substances, their quantitative content was determined, including acyclic terpene alcohol β-linalool, acyclic terpene ketone linalyl acetate, monocyclic terpenes: D-limonene and γ-terpinene, monocyclic aromatic terpene thymol. Provided phytobiotic has pronounced and at the same time broad spectrum of antibacterial activity. In the cell model, phytobiotic showed weak antioxidant activity, and it was stronger in the ORAC (chemical model) tests. Meanwhile anti-inflammatory activity was also observed. When fowls were supplied feed enriched with phytobiotic, it was observed that gained weight of the chickens in the experimental group exceeded the same data for the control group during the entire period of the experiment. The survival rate of broilers in the experimental group during the growth period was 98% compared to -94% in the control group. As a result of conducted researches probable four different mechanisms which are important for the action of phytobiotics were identified: sensory, metabolic, antioxidant and antibacterial action. General toxic, possible local irritant and allergenic effects of phytobiotic were also investigated. Performed assays proved that formulation is safe.

Keywords: clary, essential oils, monarda, poultry, phytobiotics, thyme

Procedia PDF Downloads 175
40 Improvement of the Traditional Techniques of Artistic Casting through the Development of Open Source 3D Printing Technologies Based on Digital Ultraviolet Light Processing

Authors: Drago Diaz Aleman, Jose Luis Saorin Perez, Cecile Meier, Itahisa Perez Conesa, Jorge De La Torre Cantero

Abstract:

Traditional manufacturing techniques used in artistic contexts compete with highly productive and efficient industrial procedures. The craft techniques and associated business models tend to disappear under the pressure of the appearance of mass-produced products that compete in all niche markets, including those traditionally reserved for the work of art. The surplus value derived from the prestige of the author, the exclusivity of the product or the mastery of the artist, do not seem to be sufficient reasons to preserve this productive model. In the last years, the adoption of open source digital manufacturing technologies in small art workshops can favor their permanence by assuming great advantages such as easy accessibility, low cost, and free modification, adapting to specific needs of each workshop. It is possible to use pieces modeled by computer and made with FDM (Fused Deposition Modeling) 3D printers that use PLA (polylactic acid) in the procedures of artistic casting. Models printed by PLA are limited to approximate minimum sizes of 3 cm, and optimal layer height resolution is 0.1 mm. Due to these limitations, it is not the most suitable technology for artistic casting processes of smaller pieces. An alternative to solve size limitation, are printers from the type (SLS) "selective sintering by laser". And other possibility is a laser hardens, by layers, metal powder and called DMLS (Direct Metal Laser Sintering). However, due to its high cost, it is a technology that is difficult to introduce in small artistic foundries. The low-cost DLP (Digital Light Processing) type printers can offer high resolutions for a reasonable cost (around 0.02 mm on the Z axis and 0.04 mm on the X and Y axes), and can print models with castable resins that allow the subsequent direct artistic casting in precious metals or their adaptation to processes such as electroforming. In this work, the design of a DLP 3D printer is detailed, using backlit LCD screens with ultraviolet light. Its development is totally "open source" and is proposed as a kit made up of electronic components, based on Arduino and easy to access mechanical components in the market. The CAD files of its components can be manufactured in low-cost FDM 3D printers. The result is less than 500 Euros, high resolution and open-design with free access that allows not only its manufacture but also its improvement. In future works, we intend to carry out different comparative analyzes, which allow us to accurately estimate the print quality, as well as the real cost of the artistic works made with it.

Keywords: traditional artistic techniques, DLP 3D printer, artistic casting, electroforming

Procedia PDF Downloads 143
39 Changing from Crude (Rudimentary) to Modern Method of Cassava Processing in the Ngwo Village of Njikwa Sub Division of North West Region of Cameroon

Authors: Loveline Ambo Angwah

Abstract:

The processing of cassava from tubers or roots into food using crude and rudimentary method (hand peeling, grating, frying and to sun drying) is a very cumbersome and difficult process. The crude methods are time consuming and labour intensive. While on the other hand, modern processing method, that is using machines to perform the various processes as washing, peeling, grinding, oven drying, fermentation and frying is easier, less time consuming, and less labour intensive. Rudimentarily, cassava roots are processed into numerous products and utilized in various ways according to local customs and preferences. For the people of Ngwo village, cassava is transformed locally into flour or powder form called ‘cumcum’. It is also sucked into water to give a kind of food call ‘water fufu’ and fried to give ‘garri’. The leaves are consumed as vegetables. Added to these, its relative high yields; ability to stay underground after maturity for long periods give cassava considerable advantage as a commodity that is being used by poor rural folks in the community, to fight poverty. It plays a major role in efforts to alleviate the food crisis because of its efficient production of food energy, year-round availability, tolerance to extreme stress conditions, and suitability to present farming and food systems in Africa. Improvement of cassava processing and utilization techniques would greatly increase labor efficiency, incomes, and living standards of cassava farmers and the rural poor, as well as enhance the-shelf life of products, facilitate their transportation, increase marketing opportunities, and help improve human and livestock nutrition. This paper presents a general overview of crude ways in cassava processing and utilization methods now used by subsistence and small-scale farmers in Ngwo village of the North West region in Cameroon, and examine the opportunities of improving processing technologies. Cassava needs processing because the roots cannot be stored for long because they rot within 3-4 days of harvest. They are bulky with about 70% moisture content, and therefore transportation of the tubers to markets is difficult and expensive. The roots and leaves contain varying amounts of cyanide which is toxic to humans and animals, while the raw cassava roots and uncooked leaves are not palatable. Therefore, cassava must be processed into various forms in order to increase the shelf life of the products, facilitate transportation and marketing, reduce cyanide content and improve palatability.

Keywords: cassava roots, crude ways, food system, poverty

Procedia PDF Downloads 169
38 Optimization of Cobalt Oxide Conversion to Co-Based Metal-Organic Frameworks

Authors: Aleksander Ejsmont, Stefan Wuttke, Joanna Goscianska

Abstract:

Gaining control over particle shape, size and crystallinity is an ongoing challenge for many materials. Especially metalorganic frameworks (MOFs) are recently widely studied. Besides their remarkable porosity and interesting topologies, morphology has proven to be a significant feature. It can affect the further material application. Thus seeking new approaches that enable MOF morphology modulation is important. MOFs are reticular structures, where building blocks are made up of organic linkers and metallic nodes. The most common strategy of ensuring metal source is using salts, which usually exhibit high solubility and hinder morphology control. However, there has been a growing interest in using metal oxides as structure-directing agents towards MOFs due to their very low solubility and shape preservation. Metal oxides can be treated as a metal reservoir during MOF synthesis. Up to now, reports in which receiving MOFs from metal oxides mostly present ZnO conversion to ZIF-8. However, there are other oxides, for instance, Co₃O₄, which often is overlooked due to their structural stability and insolubility in aqueous solutions. Cobalt-based materials are famed for catalytic activity. Therefore the development of their efficient synthesis is worth attention. In the presented work, an optimized Co₃O₄transition to Co-MOFviaa solvothermal approach was proposed. The starting point of the research was the synthesis of Co₃O₄ flower petals and needles under hydrothermal conditions using different cobalt salts (e.g., cobalt(II) chloride and cobalt(II) nitrate), in the presence of urea, and hexadecyltrimethylammonium bromide (CTAB) surfactant as a capping agent. After receiving cobalt hydroxide, the calcination process was performed at various temperatures (300–500 °C). Then cobalt oxides as a source of cobalt cations were subjected to reaction with trimesic acid in solvothermal environment and temperature of 120 °C leading to Co-MOF fabrication. The solution maintained in the system was a mixture of water, dimethylformamide, and ethanol, with the addition of strong acids (HF and HNO₃). To establish how solvents affect metal oxide conversion, several different solvent ratios were also applied. The materials received were characterized with analytical techniques, including X-ray powder diffraction, energy dispersive spectroscopy,low-temperature nitrogen adsorption/desorption, scanning, and transmission electron microscopy. It was confirmed that the synthetic routes have led to the formation of Co₃O₄ and Co-based MOF varied in shape and size of particles. The diffractograms showed receiving crystalline phase for Co₃O₄, and also for Co-MOF. The Co₃O₄ obtained from nitrates and with using low-temperature calcination resulted in smaller particles. The study indicated that cobalt oxide particles of different size influence the efficiency of conversion and morphology of Co-MOF. The highest conversion was achieved using metal oxides with small crystallites.

Keywords: Co-MOF, solvothermal synthesis, morphology control, core-shell

Procedia PDF Downloads 165
37 Influence of Kneading Conditions on the Textural Properties of Alumina Catalysts Supports for Hydrotreating

Authors: Lucie Speyer, Vincent Lecocq, Séverine Humbert, Antoine Hugon

Abstract:

Mesoporous alumina is commonly used as a catalyst support for the hydrotreating of heavy petroleum cuts. The process of fabrication usually involves: the synthesis of the boehmite AlOOH precursor, a kneading-extrusion step, and a calcination in order to obtain the final alumina extrudates. Alumina is described as a complex porous medium, generally agglomerates constituted of aggregated nanocrystallites. Its porous texture directly influences the active phase deposition and mass transfer, and the catalytic properties. Then, it is easy to figure out that each step of the fabrication of the supports has a role on the building of their porous network, and has to be well understood to optimize the process. The synthesis of boehmite by precipitation of aluminum salts was extensively studied in the literature and the effect of various parameters, such as temperature or pH, are known to influence the size and shape of the crystallites and the specific surface area of the support. The calcination step, through the topotactic transition from boehmite to alumina, determines the final properties of the support and can tune the surface area, pore volume and pore diameters from those of boehmite. However, the kneading extrusion step has been subject to a very few studies. It generally consists in two steps: an acid, then a basic kneading, where the boehmite powder is introduced in a mixer and successively added with an acid and a base solution to form an extrudable paste. During the acid kneading, the induced positive charges on the hydroxyl surface groups of boehmite create an electrostatic repulsion which tends to separate the aggregates and even, following the conditions, the crystallites. The basic kneading, by reducing the surface charges, leads to a flocculation phenomenon and can control the reforming of the overall structure. The separation and reassembling of the particles constituting the boehmite paste have a quite obvious influence on the textural properties of the material. In this work, we are focused on the influence of the kneading step on the alumina catalysts supports. Starting from an industrial boehmite, extrudates are prepared using various kneading conditions. The samples are studied by nitrogen physisorption in order to analyze the evolution of the textural properties, and by synchrotron small-angle X-ray scattering (SAXS), a more original method which brings information about agglomeration and aggregation of the samples. The coupling of physisorption and SAXS enables a precise description of the samples, as same as an accurate monitoring of their evolution as a function of the kneading conditions. These ones are found to have a strong influence of the pore volume and pore size distribution of the supports. A mechanism of evolution of the texture during the kneading step is proposed and could be attractive in order to optimize the texture of the supports and then, their catalytic performances.

Keywords: alumina catalyst support, kneading, nitrogen physisorption, small-angle X-ray scattering

Procedia PDF Downloads 255
36 Nephroprotective Effect of Aqueous Extract of Plectranthus amboinicus (Roxb.) Leaves in Adriamycin Induced Acute Renal Failure in Wistar Rats: A Biochemical and Histopathological Assessment

Authors: Ampe Mohottige Sachinthi Sandaruwani Amarasiri, Anoja Priyadarshani Attanayake, Kamani Ayoma Perera Wijewardana Jayatilaka, Lakmini Kumari Boralugoda Mudduwa

Abstract:

The search for alternative pharmacological therapies based on natural extracts for renal failure has become an urgent need, due to paucity of effective pharmacotherapy. The current study was undertaken to evaluate the acute nephroprotective effect of aqueous leaf extract of Plectranthus amboinicus (Roxb.) (Family: Lamiaceae), a medicinal plant used in traditional Ayurvedic medicine for the management of renal diseases in Sri Lanka. The study was performed in adriamycin (ADR) induced nephrotoxic in Wistar rats. Wistar rats were randomly divided into four groups each with six rats. A single dose of ADR (20 mg/kg body wt., ip) was used for the induction of nephrotoxicity in all groups of rats except group one. The treatments were started 24 hours after induction of nephrotoxicity and continued for three days. Group one and two served as healthy and nephrotoxic control rats and were administered equivalent volumes of normal saline (0.9% NaCl) orally. Group three and four nephrotoxic rats were administered the lyophilized powder of the aqueous extract of P. amboinicus (400 mg/ kg body wt.; equivalent human therapeutic dose) and the standard drug, fosinopril sodium (0.09 mg/ kg body wt.) respectively. Urine and blood samples were collected from rats in each group at the end of the period of intervention for the estimation of selected renal parameters. H and E stained sections of the kidney tissues were examined for histopathological changes. Rats treated with the plant extract showed significant improvement in biochemical parameters and histopathological changes compared to ADR induced nephrotoxic group. The elevation of serum concentrations of creatinine and β2-microglobulin were decreased by 38%, and 66% in plant extract treated nephrotoxic rats respectively (p < 0.05). In addition, serum concentrations of total protein and albumin were significantly increased by 25% and 14% in rats treated with P. amboinicus respectively (p < 0.05). The results of β2 –microglobulin and serum total protein demonstrated a significant reduction in the elevated values in rats administered with the plant extract (400 mg/kg) compared to that of fosinopril (0.09 mg/kg). Urinary protein loss in 24hr urine samples was significantly decreased in rats treated with both fosinopril (86%) and P. ambonicus (56%) at the end of the intervention (p < 0.01). Accordingly, an attenuation of morphological destruction was observed in the H and E stained sections of the kidney with the treatments of plant extract and fosinopril. The results of the present study revealed that the aqueous leaf extract of P. amboinicus possesses significant nephroprotective activity at the equivalent therapeutic dose of 400 mg/ kg against adriamycin induced acute nephrotoxicity.

Keywords: biochemical assessment, histopathological assessment, nephroprotective activity, Plectranthus amboinicus

Procedia PDF Downloads 149
35 Bactericidal Efficacy of Quaternary Ammonium Compound on Carriers with Food Additive Grade Calcium Hydroxide against Salmonella Infantis and Escherichia coli

Authors: M. Shahin Alam, Satoru Takahashi, Mariko Itoh, Miyuki Komura, Mayuko Suzuki, Natthanan Sangsriratanakul, Kazuaki Takehara

Abstract:

Cleaning and disinfection are key components of routine biosecurity in livestock farming and food processing industry. The usage of suitable disinfectants and their proper concentration are important factors for a successful biosecurity program. Disinfectants have optimum bactericidal and virucidal efficacies at temperatures above 20°C, but very few studies on application and effectiveness of disinfectants at low temperatures have been done. In the present study, the bactericidal efficacies of food additive grade calcium hydroxide (FdCa(OH)), quaternary ammonium compound (QAC) and their mixture, were investigated under different conditions, including time, organic materials (fetal bovine serum: FBS) and temperature, either in suspension or in carrier test. Salmonella Infantis and Escherichia coli, which are the most prevalent gram negative bacteria in commercial poultry housing and food processing industry, were used in this study. Initially, we evaluated these disinfectants at two different temperatures (4°C and room temperature (RT) (25°C ± 2°C)) and 7 contact times (0, 5 and 30 sec, 1, 3, 20 and 30 min), with suspension tests either in the presence or absence of 5% FBS. Secondly, we investigated the bactericidal efficacies of these disinfectants by carrier tests (rubber, stainless steel and plastic) at same temperatures and 4 contact times (30 sec, 1, 3, and 5 min). Then, we compared the bactericidal efficacies of each disinfectant within their mixtures, as follows. When QAC was diluted with redistilled water (dW2) at 1: 500 (QACx500) to obtain the final concentration of didecyl-dimethylammonium chloride (DDAC) of 200 ppm, it could inactivate Salmonella Infantis within 5 sec at RT either with or without 5% FBS in suspension test; however, at 4°C it required 30 min in presence of 5% FBS. FdCa(OH)2 solution alone could inactivate bacteria within 1 min both at RT and 4°C even with 5% FBS. While FdCa(OH)2 powder was added at final concentration 0.2% to QACx500 (Mix500), the mixture could inactivate bacteria within 30 sec and 5 sec, respectively, with or without 5% FBS at 4°C. The findings from the suspension test indicated that low temperature inhibited the bactericidal efficacy of QAC, whereas Mix500 was effective, regardless of short contact time and low temperature, even with 5% FBS. In the carrier test, single disinfectant required bit more time to inactivate bacteria on rubber and plastic surfaces than on stainless steel. However, Mix500 could inactivate S. Infantis on rubber, stainless steel and plastic surfaces within 30 sec and 1 min, respectively, at RT and 4°C; but, for E. coli, it required only 30 sec at both temperatures. So, synergistic effects were observed on different carriers at both temperatures. For a successful enhancement of biosecurity during winter, the disinfectants should be selected that could have short contact times with optimum efficacy against the target pathogen. The present study findings help farmers to make proper strategies for application of disinfectants in their livestock farming and food processing industry.

Keywords: carrier, food additive grade calcium hydroxide (FdCa(OH)₂), quaternary ammonium compound, synergistic effects

Procedia PDF Downloads 295
34 Elaboration and Characterization of in-situ CrC- Ni(Al, Cr) Composites Elaborated from Ni and Cr₂AlC Precursors

Authors: A. Chiker, A. Benamor, A. Haddad, Y. Hadji, M. Hadji

Abstract:

Metal matrix composites (MMCs) have been of big interest for a few decades. Their major drawback lies in their enhanced mechanical performance over unreinforced alloys. They found ground in many engineering fields, such as aeronautics, aerospace, automotive, and other structural applications. One of the most used alloys as a matrix is nickel alloys, which meet the need for high-temperature mechanical properties; some attempts have been made to develop nickel base composites reinforced by high melt point and high modulus particulates. Among the carbides used as reinforcing particulates, chromium carbide is interesting for wear applications; it is widely used as a tribological coating material in high-temperature applications requiring high wear resistance and hardness. Moreover, a set of properties make it suitable for use in MMCs, such as toughness, the good corrosion and oxidation resistance of its three polymorphs -the cubic (Cr23C6), the hexagonal (Cr7C3), and the orthorhombic (Cr3C2)-, and it’s coefficient of thermal expansion that is almost equal to that of metals. The in-situ synthesis of CrC-reinforced Ni matrix composites could be achieved by the powder metallurgy route. To ensure the in-situ reactions during the sintering process, the use of phase precursors is necessary. Recently, new precursor materials have been proposed; these materials are called MAX phases. The MAX phases are thermodynamically stable nano-laminated materials displaying unusual and sometimes unique properties. These novel phases possess Mn+1AXn chemistry, where n is 1, 2, or 3, M is an early transition metal element, A is an A-group element, and X is C or N. Herein, the pressureless sintering method is used to elaborate Ni/Cr2AlC composites. Four composites were elaborated from 5, 10, 15 and 20 wt% of Cr2AlC MAX phase precursor which fully reacted with Ni-matrix at 1100 °C sintering temperature for 4 h in argon atmosphere. XRD results showed that Cr2AlC MAX phase was totally decomposed forming chromium carbide Cr7C3, and the released Al and Cr atoms diffused in Ni matrix giving rise to γ-Ni(Al,Cr) solid solution and γ’-Ni3(Al,Cr) intermetallic. Scanning Electron Microscopy (SEM) of the elaborated samples showed the presence of nanosized Cr7C3 reinforcing particles embedded in the Ni metal matrix, which have a direct impact on the tribological properties of the composites and their hardness. All the composites exhibited higher hardness than pure Ni; whereas adding 15 wt% of Cr2AlC gives the highest hardness (1.85 GPa). Using a ball-on-disc tribometer, dry sliding tests for the elaborated composites against 100Cr6 steel ball were studied under different applied loads. The microstructures and worn surface characteristics were then analyzed using SEM and Raman spectroscopy. The results show that all the composites exhibited better wear resistance compared to pure Ni, which could be explained by the formation of a lubricious tribo-layer during sliding and the good bonding between the Ni matrix and the reinforcing phases.

Keywords: composites, microscopy, sintering, wear

Procedia PDF Downloads 72
33 Understanding the Lithiation/Delithiation Mechanism of Si₁₋ₓGeₓ Alloys

Authors: Laura C. Loaiza, Elodie Salager, Nicolas Louvain, Athmane Boulaoued, Antonella Iadecola, Patrik Johansson, Lorenzo Stievano, Vincent Seznec, Laure Monconduit

Abstract:

Lithium-ion batteries (LIBs) have an important place among energy storage devices due to their high capacity and good cyclability. However, the advancements in portable and transportation applications have extended the research towards new horizons, and today the development is hampered, e.g., by the capacity of the electrodes employed. Silicon and germanium are among the considered modern anode materials as they can undergo alloying reactions with lithium while delivering high capacities. It has been demonstrated that silicon in its highest lithiated state can deliver up to ten times more capacity than graphite (372 mAh/g): 4200 mAh/g for Li₂₂Si₅ and 3579 mAh/g for Li₁₅Si₄, respectively. On the other hand, germanium presents a capacity of 1384 mAh/g for Li₁₅Ge₄, and a better electronic conductivity and Li ion diffusivity as compared to Si. Nonetheless, the commercialization potential of Ge is limited by its cost. The synergetic effect of Si₁₋ₓGeₓ alloys has been proven, the capacity is increased compared to Ge-rich electrodes and the capacity retention is increased compared to Si-rich electrodes, but the exact performance of this type of electrodes will depend on factors like specific capacity, C-rates, cost, etc. There are several reports on various formulations of Si₁₋ₓGeₓ alloys with promising LIB anode performance with most work performed on complex nanostructures resulting from synthesis efforts implying high cost. In the present work, we studied the electrochemical mechanism of the Si₀.₅Ge₀.₅ alloy as a realistic micron-sized electrode formulation using carboxymethyl cellulose (CMC) as the binder. A combination of a large set of in situ and operando techniques were employed to investigate the structural evolution of Si₀.₅Ge₀.₅ during lithiation and delithiation processes: powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy, and 7Li solid state nuclear magnetic resonance spectroscopy (NMR). The results have presented a whole view of the structural modifications induced by the lithiation/delithiation processes. The Si₀.₅Ge₀.₅ amorphization was observed at the beginning of discharge. Further lithiation induces the formation of a-Liₓ(Si/Ge) intermediates and the crystallization of Li₁₅(Si₀.₅Ge₀.₅)₄ at the end of the discharge. At really low voltages a reversible process of overlithiation and formation of Li₁₅₊δ(Si₀.₅Ge₀.₅)₄ was identified and related with a structural evolution of Li₁₅(Si₀.₅Ge₀.₅)₄. Upon charge, the c-Li₁₅(Si₀.₅Ge₀.₅)₄ was transformed into a-Liₓ(Si/Ge) intermediates. At the end of the process an amorphous phase assigned to a-SiₓGey was recovered. Thereby, it was demonstrated that Si and Ge are collectively active along the cycling process, upon discharge with the formation of a ternary Li₁₅(Si₀.₅Ge₀.₅)₄ phase (with a step of overlithiation) and upon charge with the rebuilding of the a-Si-Ge phase. This process is undoubtedly behind the enhanced performance of Si₀.₅Ge₀.₅ compared to a physical mixture of Si and Ge.

Keywords: lithium ion battery, silicon germanium anode, in situ characterization, X-Ray diffraction

Procedia PDF Downloads 288
32 Rhizobium leguminosarum: Selecting Strain and Exploring Delivery Systems for White Clover

Authors: Laura Villamizar, David Wright, Claudia Baena, Marie Foxwell, Maureen O'Callaghan

Abstract:

Leguminous crops can be self-sufficient for their nitrogen requirements when their roots are nodulated with an effective Rhizobium strain and for this reason seed or soil inoculation is practiced worldwide to ensure nodulation and nitrogen fixation in grain and forage legumes. The most widely used method of applying commercially available inoculants is using peat cultures which are coated onto seeds prior to sowing. In general, rhizobia survive well in peat, but some species die rapidly after inoculation onto seeds. The development of improved formulation methodology is essential to achieve extended persistence of rhizobia on seeds, and improved efficacy. Formulations could be solid or liquid. Most popular solid formulations or delivery systems are: wettable powders (WP), water dispersible granules (WG), and granules (DG). Liquid formulation generally are: suspension concentrates (SC) or emulsifiable concentrates (EC). In New Zealand, R. leguminosarum bv. trifolii strain TA1 has been used as a commercial inoculant for white clover over wide areas for many years. Seeds inoculation is carried out by mixing the seeds with inoculated peat, some adherents and lime, but rhizobial populations on stored seeds decline over several weeks due to a number of factors including desiccation and antibacterial compounds produced by the seeds. In order to develop a more stable and suitable delivery system to incorporate rhizobia in pastures, two strains of R. leguminosarum (TA1 and CC275e) and several formulations and processes were explored (peat granules, self-sticky peat for seed coating, emulsions and a powder containing spray dried microcapsules). Emulsions prepared with fresh broth of strain TA1 were very unstable under storage and after seed inoculation. Formulations where inoculated peat was used as the active ingredient were significantly more stable than those prepared with fresh broth. The strain CC275e was more tolerant to stress conditions generated during formulation and seed storage. Peat granules and peat inoculated seeds using strain CC275e maintained an acceptable loading of 108 CFU/g of granules or 105 CFU/g of seeds respectively, during six months of storage at room temperature. Strain CC275e inoculated on peat was also microencapsulated with a natural biopolymer by spray drying and after optimizing operational conditions, microparticles containing 107 CFU/g and a mean particle size between 10 and 30 micrometers were obtained. Survival of rhizobia during storage of the microcapsules is being assessed. The development of a stable product depends on selecting an active ingredient (microorganism), robust enough to tolerate some adverse conditions generated during formulation, storage, and commercialization and after its use in the field. However, the design and development of an adequate formulation, using compatible ingredients, optimization of the formulation process and selecting the appropriate delivery system, is possibly the best tool to overcome the poor survival of rhizobia and provide farmers with better quality inoculants to use.

Keywords: formulation, Rhizobium leguminosarum, storage stability, white clover

Procedia PDF Downloads 151
31 Strength Properties of Ca-Based Alkali Activated Fly Ash System

Authors: Jung-Il Suh, Hong-Gun Park, Jae-Eun Oh

Abstract:

Recently, the use of long-span precast concrete (PC) construction has increased in modular construction such as storage buildings and parking facilities. When applying long span PC member, reducing weight of long span PC member should be conducted considering lifting capacity of crane and self-weight of PC member and use of structural lightweight concrete made by lightweight aggregate (LWA) can be considered. In the process of lightweight concrete production, segregation and bleeding could occur due to difference of specific gravity between cement (3.3) and lightweight aggregate (1.2~1.8) and reducing weight of binder is needed to prevent the segregation between binder and aggregate. Also, lightweight precast concrete made by cementitious materials such as fly ash and ground granulated blast furnace (GGBFS) which is lower than specific gravity of cement as a substitute for cement has been studied. When only using fly ash for cementless binder alkali-activation of fly ash is most important chemical process in which the original fly ash is dissolved by a strong alkaline medium in steam curing with high-temperature condition. Because curing condition is similar with environment of precast member production, additional process is not needed. Na-based chloride generally used as a strong alkali activator has a practical problem such as high pH toxicity and high manufacturing cost. Instead of Na-based alkali activator calcium hydroxide [Ca(OH)2] and sodium hydroxide [Na2CO3] might be used because it has a lower pH and less expensive than Na-based alkali activator. This study explored the influences on Ca(OH)2-Na2CO3-activated fly ash system in its microstructural aspects and strength and permeability using powder X-ray analysis (XRD), thermogravimetry (TGA), mercury intrusion porosimetry (MIP). On the basis of microstructural analysis, the conclusions are made as follows. Increase of Ca(OH)2/FA wt.% did not affect improvement of compressive strength. Also, Ca(OH)2/FA wt.% and Na2CO3/FA wt.% had little effect on specific gravity of saturated surface dry (SSD) and absolute dry (AD) condition to calculate water absorption. Especially, the binder is appropriate for structural lightweight concrete because specific gravity of the hardened paste has no difference with that of lightweight aggregate. The XRD and TGA/DTG results did not present considerable difference for the types and quantities of hydration products depending on w/b ratio, Ca(OH)2 wt.%, and Na2CO3 wt.%. In the case of higher molar quantity of Ca(OH)2 to Na2CO3, XRD peak indicated unreacted Ca(OH)2 while DTG peak was not presented because of small quantity. Thus, presence of unreacted Ca(OH)2 is too small quantity to effect on mechanical performance. As a result of MIP, the porosity volume related to capillary pore depends on the w/b ratio. In the same condition of w/b ratio, quantities of Ca(OH)2 and Na2CO3 have more influence on pore size distribution rather than total porosity. While average pore size decreased as Na2CO3/FA w.t% increased, the average pore size increased over 20 nm as Ca(OH)2/FA wt.% increased which has inverse proportional relationship between pore size and mechanical properties such as compressive strength and water permeability.

Keywords: Ca(OH)2, compressive strength, microstructure, fly ash, Na2CO3, water absorption

Procedia PDF Downloads 228
30 The Potential Role of Some Nutrients and Drugs in Providing Protection from Neurotoxicity Induced by Aluminium in Rats

Authors: Azza A. Ali, Abeer I. Abd El-Fattah, Shaimaa S. Hussein, Hanan A. Abd El-Samea, Karema Abu-Elfotuh

Abstract:

Background: Aluminium (Al) represents an environmental risk factor. Exposure to high levels of Al causes neurotoxic effects and different diseases. Vinpocetine is widely used to improve cognitive functions, it possesses memory-protective and memory-enhancing properties and has the ability to increase cerebral blood flow and glucose uptake. Cocoa bean represents a rich source of iron as well as a potent antioxidant. It can protect from the impact of free radicals, reduces stress as well as depression and promotes better memory and concentration. Wheatgrass is primarily used as a concentrated source of nutrients. It contains vitamins, minerals, carbohydrates, amino acids and possesses antioxidant and anti-inflammatory activities. Coenzyme Q10 (CoQ10) is an intracellular antioxidant and mitochondrial membrane stabilizer. It is effective in improving cognitive disorders and has been used as anti-aging. Zinc is a structural element of many proteins and signaling messenger that is released by neural activity at many central excitatory synapses. Objective: To study the role of some nutrients and drugs as Vinpocetine, Cocoa, Wheatgrass, CoQ10 and Zinc against neurotoxicity induced by Al in rats as well as to compare between their potency in providing protection. Methods: Seven groups of rats were used and received daily for three weeks AlCl3 (70 mg/kg, IP) for Al-toxicity model groups except for the control group which received saline. All groups of Al-toxicity model except one group (non-treated) were co-administered orally together with AlCl3 the following treatments; Vinpocetine (20mg/kg), Cocoa powder (24mg/kg), Wheat grass (100mg/kg), CoQ10 (200mg/kg) or Zinc (32mg/kg). Biochemical changes in the rat brain as acetyl cholinesterase (ACHE), Aβ, brain derived neurotrophic factor (BDNF), inflammatory mediators (TNF-α, IL-1β), oxidative parameters (MDA, SOD, TAC) were estimated for all groups besides histopathological examinations in different brain regions. Results: Neurotoxicity and neurodegenerations in the rat brain after three weeks of Al exposure were indicated by the significant increase in Aβ, ACHE, MDA, TNF-α, IL-1β, DNA fragmentation together with the significant decrease in SOD, TAC, BDNF and confirmed by the histopathological changes in the brain. On the other hand, co-administration of each of Vinpocetine, Cocoa, Wheatgrass, CoQ10 or Zinc together with AlCl3 provided protection against hazards of neurotoxicity and neurodegenerations induced by Al, their protection were indicated by the decrease in Aβ, ACHE, MDA, TNF-α, IL-1β, DNA fragmentation together with the increase in SOD, TAC, BDNF and confirmed by the histopathological examinations of different brain regions. Vinpocetine and Cocoa showed the most pronounced protection while Zinc provided the least protective effects than the other used nutrients and drugs. Conclusion: Different degrees of protection from neurotoxicity and neuronal degenerations induced by Al could be achieved through the co-administration of some nutrients and drugs during its exposure. Vinpocetine and Cocoa provided the most protection than Wheat grass, CoQ10 or Zinc which showed the least protective effects.

Keywords: aluminum, neurotoxicity, vinpocetine, cocoa, wheat grass, coenzyme Q10, Zinc, rats

Procedia PDF Downloads 251
29 Characterisation, Extraction of Secondary Metabolite from Perilla frutescens for Therapeutic Additives: A Phytogenic Approach

Authors: B. M. Vishal, Monamie Basu, Gopinath M., Rose Havilah Pulla

Abstract:

Though there are several methods of synthesizing silver nano particles, Green synthesis always has its own dignity. Ranging from the cost-effectiveness to the ease of synthesis, the process is simplified in the best possible way and is one of the most explored topics. This study of extracting secondary metabolites from Perilla frutescens and using them for therapeutic additives has its own significance. Unlike the other researches that have been done so far, this study aims to synthesize Silver nano particles from Perilla frutescens using three available forms of the plant: leaves, seed, and commercial leaf extract powder. Perilla frutescens, commonly known as 'Beefsteak Plant', is a perennial plant and belongs to the mint family. The plant has two varieties classed within itself. They are frutescens crispa and frutescens frutescens. The species, frutescens crispa (commonly known as 'Shisho' in Japanese), is generally used for edible purposes. Its leaves occur in two forms, varying on the colors. It is found in two different colors of red with purple streaks and green with crinkly pattern on it. This species is aromatic due to the presence of two major compounds: polyphenols and perillaldehyde. The red (purple streak) variety of this plant is due to the presence of a pigment, Perilla anthocyanin. The species, frutescens frutescens (commonly known as 'Egoma' in Japanese), is the main source for perilla oil. This species is also aromatic, but in this case, the major compound which gives the aroma is Perilla ketone or egoma ketone. Shisho grows short as compared with Wild Sesame and both produce seeds. The seeds of Wild Sesame are large and soft whereas that of Shisho is small and hard. The seeds have a large proportion of lipids, ranging about 38-45 percent. Excluding those, the seeds have a large quantity of Omega-3 fatty acids, linoleic acid, and an Omega-6 fatty acid. Other than these, Perilla leaf extract has gold and silver nano particles in it. The yield comparison in all the cases have been done, and the process’ optimal conditions were modified, keeping in mind the efficiencies. The characterization of secondary metabolites includes GC-MS and FTIR which can be used to identify the components of purpose that actually helps in synthesizing silver nano particles. The analysis of silver was done through a series of characterization tests that include XRD, UV-Vis, EDAX, and SEM. After the synthesis, for being used as therapeutic additives, the toxin analysis was done, and the results were tabulated. The synthesis of silver nano particles was done in a series of multiple cycles of extraction from leaves, seeds and commercially purchased leaf extract. The yield and efficiency comparison were done to bring out the best and the cheapest possible way of synthesizing silver nano particles using Perilla frutescens. The synthesized nano particles can be used in therapeutic drugs, which has a wide range of application from burn treatment to cancer treatment. This will, in turn, replace the traditional processes of synthesizing nano particles, as this method will prove effective in terms of cost and the environmental implications.

Keywords: nanoparticles, green synthesis, Perilla frutescens, characterisation, toxin analysis

Procedia PDF Downloads 234
28 Distribution of Micro Silica Powder at a Ready Mixed Concrete

Authors: Kyong-Ku Yun, Dae-Ae Kim, Kyeo-Re Lee, Kyong Namkung, Seung-Yeon Han

Abstract:

Micro silica is collected as a by-product of the silicon and ferrosilicon alloy production in electric arc furnace using highly pure quartz, wood chips, coke and the like. It consists of about 85% of silicon which has spherical particles with an average particle size of 150 μm. The bulk density of micro silica varies from 150 to 700kg/m^3 and the fineness ranges from 150,000 to 300,000cm^2/g. An amorphous structure with a high silicon oxide content of micro silica induces an active reaction with calcium hydroxide (Ca(OH)₂) generated by the cement hydrate of a large surface area (about 20 m^² / g), and they are also known to form calcium, silicate, hydrate conjugate (C-S-H). Micro silica tends to act as a filler because of the fine particles and the spherical shape. These particles do not get covered by water and they fit well in the space between the relatively rough cement grains which does not freely fluidize concrete. On the contrary, water demand increases since micro silica particles have a tendency to absorb water because of the large surface area. The overall effect of micro silica depends on the amount of micro silica added with other parameters in the water-(cement + micro silica) ratio, and the availability of superplasticizer. In this research, it was studied on cellular sprayed concrete. This method involves a direct re-production of ready mixed concrete into a high performance at a job site. It could reduce the cost of construction by an adding a cellular and a micro silica into a ready mixed concrete truck in a field. Also, micro silica which is difficult with mixing due to high fineness in the field can be added and dispersed in concrete by increasing the fluidity of ready mixed concrete through the surface activity of cellular. Increased air content is converged to a certain level of air content by spraying and it also produces high-performance concrete by remixing of powders in the process of spraying. As it does not use a field mixing equipment the cost of construction decrease and it can be constructed after installing special spray machine in a commercial pump car. Therefore, use of special equipment is minimized, providing economic feasibility through the utilization of existing equipment. This study was carried out to evaluate a highly reliable method of confirming dispersion through a high performance cellular sprayed concrete. A mixture of 25mm coarse aggregate and river sand was applied to the concrete. In addition, by applying silica fume and foam, silica fume dispersion is confirmed in accordance with foam mixing, and the mean and standard deviation is obtained. Then variation coefficient is calculated to finally evaluate the dispersion. Comparison and analysis of before and after spraying were conducted on the experiment variables of 21L, 35L foam for each 7%, 14% silica fume respectively. Taking foam and silica fume as variables, the experiment proceed. Casting a specimen for each variable, a five-day sample is taken from each specimen for EDS test. In this study, it was examined by an experiment materials, plan and mix design, test methods, and equipment, for the evaluation of dispersion in accordance with micro silica and foam.

Keywords: micro silica, distribution, ready mixed concrete, foam

Procedia PDF Downloads 220