Search results for: computational electromagnetic
1563 On the Qarat Kibrit Salt Dome Faulting System South of Adam, Oman: In Search of Uranium Anomalies
Authors: Alaeddin Ebrahimi, Narasimman Sundararajan, Bernhard Pracejus
Abstract:
Development of salt domes, often a rising from depths of some 10 km or more, causes an intense faulting of the surrounding host rocks (salt tectonics). The fractured rocks then present ideal space for oil that can migrate and get trapped. If such moving of hydrocarbons passes uranium-carrying rock units (e.g., shales), uranium is collected and enriched by organic carbon compounds. Brines from the salt body are also ideal carriers for oxidized uranium species and will further dislocate uranium when in contact with uranium-enriched oils. Uranium then has the potential to mineralize in the vicinity of the dome (blue halite is evidence for radiation having affected salt deposits elsewhere in the world). Based on this knowledge, the Qarat Kibrit salt dome was investigated by a well-established geophysical method like very low frequency electromagnetic (VLF-EM) along five traverses approximately 250 m in length (10 m intervals) in order to identify subsurface fault systems. In-phase and quadrature components of the VLF-EM signal were recorded at two different transmitter frequencies (24.0 and 24.9 kHz). The images of Fraser filtered response of the in-phase components indicate a conductive zone (fault) in the southeast and southwest of the study area. The Karous-Hjelt current density pseudo section delineates subsurface faults at depths between 10 and 40 m. The stacked profiles of the Fraser filtered responses brought out two plausible trends/directions of faults. However, there seems to be no evidence for uranium enrichment has been recorded in this area.Keywords: salt dome, uranium, fault, in-phase component, quadrature component, Fraser filter, Karous-Hjelt current density
Procedia PDF Downloads 2401562 Analysis and Modeling of the Building’s Facades in Terms of Different Convection Coefficients
Authors: Enes Yasa, Guven Fidan
Abstract:
Building Simulation tools need to better evaluate convective heat exchanges between external air and wall surfaces. Previous analysis demonstrated the significant effects of convective heat transfer coefficient values on the room energy balance. Some authors have pointed out that large discrepancies observed between widely used building thermal models can be attributed to the different correlations used to calculate or impose the value of the convective heat transfer coefficients. Moreover, numerous researchers have made sensitivity calculations and proved that the choice of Convective Heat Transfer Coefficient values can lead to differences from 20% to 40% of energy demands. The thermal losses to the ambient from a building surface or a roof mounted solar collector represent an important portion of the overall energy balance and depend heavily on the wind induced convection. In an effort to help designers make better use of the available correlations in the literature for the external convection coefficients due to the wind, a critical discussion and a suitable tabulation is presented, on the basis of algebraic form of the coefficients and their dependence upon characteristic length and wind direction, in addition to wind speed. Many research works have been conducted since early eighties focused on the convection heat transfer problems inside buildings. In this context, a Computational Fluid Dynamics (CFD) program has been used to predict external convective heat transfer coefficients at external building surfaces. For the building facades model, effects of wind speed and temperature differences between the surfaces and the external air have been analyzed, showing different heat transfer conditions and coefficients. In order to provide further information on external convective heat transfer coefficients, a numerical work is presented in this paper, using a Computational Fluid Dynamics (CFD) commercial package (CFX) to predict convective heat transfer coefficients at external building surface.Keywords: CFD in buildings, external convective heat transfer coefficients, building facades, thermal modelling
Procedia PDF Downloads 4211561 The Impact of Intelligent Control Systems on Biomedical Engineering and Research
Authors: Melkamu Tadesse Getachew
Abstract:
Intelligent control systems have revolutionized biomedical engineering, advancing research and enhancing medical practice. This review paper examines the impact of intelligent control on various aspects of biomedical engineering. It analyzes how these systems enhance precision and accuracy in biomedical instrumentation, improving diagnostics, monitoring, and treatment. Integration challenges are addressed, and potential solutions are proposed. The paper also investigates the optimization of drug delivery systems through intelligent control. It explores how intelligent systems contribute to precise dosing, targeted drug release, and personalized medicine. Challenges related to controlled drug release and patient variability are discussed, along with potential avenues for overcoming them. The comparison of algorithms used in intelligent control systems in biomedical control is also reviewed. The implications of intelligent control in computational and systems biology are explored, showcasing how these systems enable enhanced analysis and prediction of complex biological processes. Challenges such as interpretability, human-machine interaction, and machine reliability are examined, along with potential solutions. Intelligent control in biomedical engineering also plays a crucial role in risk management during surgical operations. This section demonstrates how intelligent systems improve patient safety and surgical outcomes when integrated into surgical robots, augmented reality, and preoperative planning. The challenges associated with these implementations and potential solutions are discussed in detail. In summary, this review paper comprehensively explores the widespread impact of intelligent control on biomedical engineering, showing the future of human health issues promising. It discusses application areas, challenges, and potential solutions, highlighting the transformative potential of these systems in advancing research and improving medical practice.Keywords: Intelligent control systems, biomedical instrumentation, drug delivery systems, robotic surgical instruments, Computational monitoring and modeling
Procedia PDF Downloads 441560 DeepLig: A de-novo Computational Drug Design Approach to Generate Multi-Targeted Drugs
Authors: Anika Chebrolu
Abstract:
Mono-targeted drugs can be of limited efficacy against complex diseases. Recently, multi-target drug design has been approached as a promising tool to fight against these challenging diseases. However, the scope of current computational approaches for multi-target drug design is limited. DeepLig presents a de-novo drug discovery platform that uses reinforcement learning to generate and optimize novel, potent, and multitargeted drug candidates against protein targets. DeepLig’s model consists of two networks in interplay: a generative network and a predictive network. The generative network, a Stack- Augmented Recurrent Neural Network, utilizes a stack memory unit to remember and recognize molecular patterns when generating novel ligands from scratch. The generative network passes each newly created ligand to the predictive network, which then uses multiple Graph Attention Networks simultaneously to forecast the average binding affinity of the generated ligand towards multiple target proteins. With each iteration, given feedback from the predictive network, the generative network learns to optimize itself to create molecules with a higher average binding affinity towards multiple proteins. DeepLig was evaluated based on its ability to generate multi-target ligands against two distinct proteins, multi-target ligands against three distinct proteins, and multi-target ligands against two distinct binding pockets on the same protein. With each test case, DeepLig was able to create a library of valid, synthetically accessible, and novel molecules with optimal and equipotent binding energies. We propose that DeepLig provides an effective approach to design multi-targeted drug therapies that can potentially show higher success rates during in-vitro trials.Keywords: drug design, multitargeticity, de-novo, reinforcement learning
Procedia PDF Downloads 971559 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning
Authors: Nicholas V. Scott, Jack McCarthy
Abstract:
Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization
Procedia PDF Downloads 1421558 Computational Modeling of Load Limits of Carbon Fibre Composite Laminates Subjected to Low-Velocity Impact Utilizing Convolution-Based Fast Fourier Data Filtering Algorithms
Authors: Farhat Imtiaz, Umar Farooq
Abstract:
In this work, we developed a computational model to predict ply level failure in impacted composite laminates. Data obtained from physical testing from flat and round nose impacts of 8-, 16-, 24-ply laminates were considered. Routine inspections of the tested laminates were carried out to approximate ply by ply inflicted damage incurred. Plots consisting of load–time, load–deflection, and energy–time history were drawn to approximate the inflicted damages. Impact test generated unwanted data logged due to restrictions on testing and logging systems were also filtered. Conventional filters (built-in, statistical, and numerical) reliably predicted load thresholds for relatively thin laminates such as eight and sixteen ply panels. However, for relatively thick laminates such as twenty-four ply laminates impacted by flat nose impact generated clipped data which can just be de-noised using oscillatory algorithms. The literature search reveals that modern oscillatory data filtering and extrapolation algorithms have scarcely been utilized. This investigation reports applications of filtering and extrapolation of the clipped data utilising fast Fourier Convolution algorithm to predict load thresholds. Some of the results were related to the impact-induced damage areas identified with Ultrasonic C-scans and found to be in acceptable agreement. Based on consistent findings, utilizing of modern data filtering and extrapolation algorithms to data logged by the existing machines has efficiently enhanced data interpretations without resorting to extra resources. The algorithms could be useful for impact-induced damage approximations of similar cases.Keywords: fibre reinforced laminates, fast Fourier algorithms, mechanical testing, data filtering and extrapolation
Procedia PDF Downloads 1351557 Contextual Distribution for Textual Alignment
Authors: Yuri Bizzoni, Marianne Reboul
Abstract:
Our program compares French and Italian translations of Homer’s Odyssey, from the XVIth to the XXth century. We focus on the third point, showing how distributional semantics systems can be used both to improve alignment between different French translations as well as between the Greek text and a French translation. Although we focus on French examples, the techniques we display are completely language independent.Keywords: classical receptions, computational linguistics, distributional semantics, Homeric poems, machine translation, translation studies, text alignment
Procedia PDF Downloads 4341556 Magnetoresistance Transition from Negative to Positive in Functionalization of Carbon Nanotube and Composite with Polyaniline
Authors: Krishna Prasad Maity, Narendra Tanty, Ananya Patra, V. Prasad
Abstract:
Carbon nanotube (CNT) is a well-known material for very good electrical, thermal conductivity and high tensile strength. Because of that, it’s widely used in many fields like nanotechnology, electronics, optics, etc. In last two decades, polyaniline (PANI) with CNT and functionalized CNT (fCNT) have been promising materials in application of gas sensing, electromagnetic shielding, electrode of capacitor etc. So, the study of electrical conductivity of PANI/CNT and PANI/fCNT is important to understand the charge transport and interaction between PANI and CNT in the composite. It is observed that a transition in magnetoresistance (MR) with lowering temperature, increasing magnetic field and decreasing CNT percentage in CNT/PANI composite. Functionalization of CNT prevent the nanotube aggregation, improves interfacial interaction, dispersion and stabilized in polymer matrix. However, it shortens the length, breaks C-C sp² bonds and enhances the disorder creating defects on the side walls. We have studied electrical resistivity and MR in PANI with CNT and fCNT composites for different weight percentages down to the temperature 4.2K and up to magnetic field 5T. Resistivity increases significantly in composite at low temperature due to functionalization of CNT compared to only CNT. Interestingly a transition from negative to positive magnetoresistance has been observed when the filler is changed from pure CNT to functionalized CNT after a certain percentage (10wt%) as the effect of more disorder in fCNT/PANI composite. The transition of MR has been explained on the basis of polaron-bipolaron model. The long-range Coulomb interaction between two polarons screened by disorder in the composite of fCNT/PANI, increases the effective on-site Coulomb repulsion energy to form bipolaron which leads to change the sign of MR from negative to positive.Keywords: coulomb interaction, magnetoresistance transition, polyaniline composite, polaron-bipolaron
Procedia PDF Downloads 1721555 The Impact of Artificial Intelligence on Pharmacy and Pharmacology
Authors: Mamdouh Milad Adly Morkos
Abstract:
Despite having the greatest rates of mortality and morbidity in the world, low- and middle-income (LMIC) nations trail high-income nations in terms of the number of clinical trials, the number of qualified researchers, and the amount of research information specific to their people. Health inequities and the use of precision medicine may be hampered by a lack of local genomic data, clinical pharmacology and pharmacometrics competence, and training opportunities. These issues can be solved by carrying out health care infrastructure development, which includes data gathering and well-designed clinical pharmacology training in LMICs. It will be advantageous if there is international cooperation focused at enhancing education and infrastructure and promoting locally motivated clinical trials and research. This paper outlines various instances where clinical pharmacology knowledge could be put to use, including pharmacogenomic opportunities that could lead to better clinical guideline recommendations. Examples of how clinical pharmacology training can be successfully implemented in LMICs are also provided, including clinical pharmacology and pharmacometrics training programmes in Africa and a Tanzanian researcher's personal experience while on a training sabbatical in the United States. These training initiatives will profit from advocacy for clinical pharmacologists' employment prospects and career development pathways, which are gradually becoming acknowledged and established in LMICs. The advancement of training and research infrastructure to increase clinical pharmacologists' knowledge in LMICs would be extremely beneficial because they have a significant role to play in global healthKeywords: electromagnetic solar system, nano-material, nano pharmacology, pharmacovigilance, quantum theoryclinical simulation, education, pharmacology, simulation, virtual learning low- and middle-income, clinical pharmacology, pharmacometrics, career development pathways
Procedia PDF Downloads 811554 Full-Scale 3D Simulation of the Electroslag Rapid Remelting Process
Authors: E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig
Abstract:
The standard electroslag remelting (ESR) process can ideally control the solidification of an ingot and produce homogeneous structure with minimum defects. However, the melt rate of electrode is rather low that makes the whole process uneconomical especially to produce small ingot sizes. In contrast, continuous casting is an economical process to produce small ingots such as billets at high casting speed. Unfortunately, deep liquid melt pool forms in the billet ingot of continuous casting that leads to center porosity and segregation. As such, continuous casting is not suitable to produce segregation prone alloys like tool steel or several super alloys. On the other hand, the electro slag rapid remelting (ESRR) process has advantages of both traditional ESR and continuous casting processes to produce billets. In the ESRR process, a T-shaped mold is used including a graphite ring that takes major amount of current through the mold. There are only a few reports available in the literature discussing about this topic. The research on the ESRR process is currently ongoing aiming to improve the design of the T-shaped mold, to decrease overall heat loss in the process, and to obtain a higher temperature at metal meniscus. In the present study, a 3D model is proposed to investigate the electromagnetic, thermal, and flow fields in the whole process as well as solidification of the billet ingot. We performed a fully coupled numerical simulation to explore the influence of the electromagnetically driven flow (MHD) on the thermal field in the slag and ingot. The main goal is to obtain some fundamental understanding of the formation of melt pool of the solidifying billet ingot in the ESRR process.Keywords: billet ingot, magnetohydrodynamics (mhd), numerical simulation, remelting, solidification, t-shaped mold.
Procedia PDF Downloads 2941553 Detecting Memory-Related Gene Modules in sc/snRNA-seq Data by Deep-Learning
Authors: Yong Chen
Abstract:
To understand the detailed molecular mechanisms of memory formation in engram cells is one of the most fundamental questions in neuroscience. Recent single-cell RNA-seq (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) techniques have allowed us to explore the sparsely activated engram ensembles, enabling access to the molecular mechanisms that underlie experience-dependent memory formation and consolidation. However, the absence of specific and powerful computational methods to detect memory-related genes (modules) and their regulatory relationships in the sc/snRNA-seq datasets has strictly limited the analysis of underlying mechanisms and memory coding principles in mammalian brains. Here, we present a deep-learning method named SCENTBOX, to detect memory-related gene modules and causal regulatory relationships among themfromsc/snRNA-seq datasets. SCENTBOX first constructs codifferential expression gene network (CEGN) from case versus control sc/snRNA-seq datasets. It then detects the highly correlated modules of differential expression genes (DEGs) in CEGN. The deep network embedding and attention-based convolutional neural network strategies are employed to precisely detect regulatory relationships among DEG genes in a module. We applied them on scRNA-seq datasets of TRAP; Ai14 mouse neurons with fear memory and detected not only known memory-related genes, but also the modules and potential causal regulations. Our results provided novel regulations within an interesting module, including Arc, Bdnf, Creb, Dusp1, Rgs4, and Btg2. Overall, our methods provide a general computational tool for processing sc/snRNA-seq data from case versus control studie and a systematic investigation of fear-memory-related gene modules.Keywords: sc/snRNA-seq, memory formation, deep learning, gene module, causal inference
Procedia PDF Downloads 1201552 Ramp Rate and Constriction Factor Based Dual Objective Economic Load Dispatch Using Particle Swarm Optimization
Authors: Himanshu Shekhar Maharana, S. K .Dash
Abstract:
Economic Load Dispatch (ELD) proves to be a vital optimization process in electric power system for allocating generation amongst various units to compute the cost of generation, the cost of emission involving global warming gases like sulphur dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, we emphasize ramp rate constriction factor based particle swarm optimization (RRCPSO) for analyzing various performance objectives, namely cost of generation, cost of emission, and a dual objective function involving both these objectives through the experimental simulated results. A 6-unit 30 bus IEEE test case system has been utilized for simulating the results involving improved weight factor advanced ramp rate limit constraints for optimizing total cost of generation and emission. This method increases the tendency of particles to venture into the solution space to ameliorate their convergence rates. Earlier works through dispersed PSO (DPSO) and constriction factor based PSO (CPSO) give rise to comparatively higher computational time and less good optimal solution at par with current dissertation. This paper deals with ramp rate and constriction factor based well defined ramp rate PSO to compute various objectives namely cost, emission and total objective etc. and compares the result with DPSO and weight improved PSO (WIPSO) techniques illustrating lesser computational time and better optimal solution.Keywords: economic load dispatch (ELD), constriction factor based particle swarm optimization (CPSO), dispersed particle swarm optimization (DPSO), weight improved particle swarm optimization (WIPSO), ramp rate and constriction factor based particle swarm optimization (RRCPSO)
Procedia PDF Downloads 3821551 Fires in Historic Buildings: Assessment of Evacuation of People by Computational Simulation
Authors: Ivana R. Moser, Joao C. Souza
Abstract:
Building fires are random phenomena that can be extremely violent, and safe evacuation of people is the most guaranteed tactic in saving lives. The correct evacuation of buildings, and other spaces occupied by people, means leaving the place in a short time and by the appropriate way. It depends on the perception of spaces by the individual, the architectural layout and the presence of appropriate routing systems. As historical buildings were constructed in other times, when, as in general, the current security requirements were not available yet, it is necessary to adapt these spaces to make them safe. Computer models of evacuation simulation are widely used tools for assessing the safety of people in a building or agglomeration sites and these are associated with the analysis of human behaviour, makes the results of emergency evacuation more correct and conclusive. The objective of this research is the performance evaluation of historical interest buildings, regarding the safe evacuation of people, through computer simulation, using PTV Viswalk software. The buildings objects of study are the Colégio Catarinense, centennial building, located in the city of Florianópolis, Santa Catarina / Brazil. The software used uses the variables of human behaviour, such as: avoid collision with other pedestrians and avoid obstacles. Scenarios were run on the three-dimensional models and the contribution to safety in risk situations was verified as an alternative measure, especially in the impossibility of applying those measures foreseen by the current fire safety codes in Brazil. The simulations verified the evacuation time in situations of normality and emergency situations, as well as indicate the bottlenecks and critical points of the studied buildings, to seek solutions to prevent and correct these undesirable events. It is understood that adopting an advanced computational performance-based approach promotes greater knowledge of the building and how people behave in these specific environments, in emergency situations.Keywords: computer simulation, escape routes, fire safety, historic buildings, human behavior
Procedia PDF Downloads 1871550 An Evolutionary Approach for Automated Optimization and Design of Vivaldi Antennas
Authors: Sahithi Yarlagadda
Abstract:
The design of antenna is constrained by mathematical and geometrical parameters. Though there are diverse antenna structures with wide range of feeds yet, there are many geometries to be tried, which cannot be customized into predefined computational methods. The antenna design and optimization qualify to apply evolutionary algorithmic approach since the antenna parameters weights dependent on geometric characteristics directly. The evolutionary algorithm can be explained simply for a given quality function to be maximized. We can randomly create a set of candidate solutions, elements of the function's domain, and apply the quality function as an abstract fitness measure. Based on this fitness, some of the better candidates are chosen to seed the next generation by applying recombination and permutation to them. In conventional approach, the quality function is unaltered for any iteration. But the antenna parameters and geometries are wide to fit into single function. So, the weight coefficients are obtained for all possible antenna electrical parameters and geometries; the variation is learnt by mining the data obtained for an optimized algorithm. The weight and covariant coefficients of corresponding parameters are logged for learning and future use as datasets. This paper drafts an approach to obtain the requirements to study and methodize the evolutionary approach to automated antenna design for our past work on Vivaldi antenna as test candidate. The antenna parameters like gain, directivity, etc. are directly caged by geometries, materials, and dimensions. The design equations are to be noted here and valuated for all possible conditions to get maxima and minima for given frequency band. The boundary conditions are thus obtained prior to implementation, easing the optimization. The implementation mainly aimed to study the practical computational, processing, and design complexities that incur while simulations. HFSS is chosen for simulations and results. MATLAB is used to generate the computations, combinations, and data logging. MATLAB is also used to apply machine learning algorithms and plotting the data to design the algorithm. The number of combinations is to be tested manually, so HFSS API is used to call HFSS functions from MATLAB itself. MATLAB parallel processing tool box is used to run multiple simulations in parallel. The aim is to develop an add-in to antenna design software like HFSS, CSTor, a standalone application to optimize pre-identified common parameters of wide range of antennas available. In this paper, we have used MATLAB to calculate Vivaldi antenna parameters like slot line characteristic impedance, impedance of stripline, slot line width, flare aperture size, dielectric and K means, and Hamming window are applied to obtain the best test parameters. HFSS API is used to calculate the radiation, bandwidth, directivity, and efficiency, and data is logged for applying the Evolutionary genetic algorithm in MATLAB. The paper demonstrates the computational weights and Machine Learning approach for automated antenna optimizing for Vivaldi antenna.Keywords: machine learning, Vivaldi, evolutionary algorithm, genetic algorithm
Procedia PDF Downloads 1101549 Improving Efficiencies of Planting Configurations on Draft Environment of Town Square: The Case Study of Taichung City Hall in Taichung, Taiwan
Authors: Yu-Wen Huang, Yi-Cheng Chiang
Abstract:
With urban development, lots of buildings are built around the city. The buildings always affect the urban wind environment. The accelerative situation of wind caused of buildings often makes pedestrians uncomfortable, even causes the accidents and dangers. Factors influencing pedestrian level wind including atmospheric boundary layer, wind direction, wind velocity, planting, building volume, geometric shape of the buildings and adjacent interference effects, etc. Planting has many functions including scraping and slowing urban heat island effect, creating a good visual landscape, increasing urban green area and improve pedestrian level wind. On the other hand, urban square is an important space element supporting the entrance to buildings, city landmarks, and activity collections, etc. The appropriateness of urban square environment usually dominates its success. This research focuses on the effect of tree-planting on the wind environment of urban square. This research studied the square belt of Taichung City Hall. Taichung City Hall is a cuboid building with a large mass opening. The square belt connects the front square, the central opening and the back square. There is often wind draft on the square belt. This phenomenon decreases the activities on the squares. This research applies tree-planting to improve the wind environment and evaluate the effects of two types of planting configuration. The Computational Fluid Dynamics (CFD) simulation analysis and extensive field measurements are applied to explore the improve efficiency of planting configuration on wind environment. This research compares efficiencies of different kinds of planting configuration, including the clustering array configuration and the dispersion, and evaluates the efficiencies by the SET*.Keywords: micro-climate, wind environment, planting configuration, comfortableness, computational fluid dynamics (CFD)
Procedia PDF Downloads 3101548 Improving the Penalty-free Multi-objective Evolutionary Design Optimization of Water Distribution Systems
Authors: Emily Kambalame
Abstract:
Water distribution networks necessitate many investments for construction, prompting researchers to seek cost reduction and efficient design solutions. Optimization techniques are employed in this regard to address these challenges. In this context, the penalty-free multi-objective evolutionary algorithm (PFMOEA) coupled with pressure-dependent analysis (PDA) was utilized to develop a multi-objective evolutionary search for the optimization of water distribution systems (WDSs). The aim of this research was to find out if the computational efficiency of the PFMOEA for WDS optimization could be enhanced. This was done by applying real coding representation and retaining different percentages of feasible and infeasible solutions close to the Pareto front in the elitism step of the optimization. Two benchmark network problems, namely the Two-looped and Hanoi networks, were utilized in the study. A comparative analysis was then conducted to assess the performance of the real-coded PFMOEA in relation to other approaches described in the literature. The algorithm demonstrated competitive performance for the two benchmark networks by implementing real coding. The real-coded PFMOEA achieved the novel best-known solutions ($419,000 and $6.081 million) and a zero-pressure deficit for the two networks, requiring fewer function evaluations than the binary-coded PFMOEA. In previous PFMOEA studies, elitism applied a default retention of 30% of the least cost-feasible solutions while excluding all infeasible solutions. It was found in this study that by replacing 10% and 15% of the feasible solutions with infeasible ones that are close to the Pareto front with minimal pressure deficit violations, the computational efficiency of the PFMOEA was significantly enhanced. The configuration of 15% feasible and 15% infeasible solutions outperformed other retention allocations by identifying the optimal solution with the fewest function evaluationKeywords: design optimization, multi-objective evolutionary, penalty-free, water distribution systems
Procedia PDF Downloads 621547 The Systems Biology Verification Endeavor: Harness the Power of the Crowd to Address Computational and Biological Challenges
Authors: Stephanie Boue, Nicolas Sierro, Julia Hoeng, Manuel C. Peitsch
Abstract:
Systems biology relies on large numbers of data points and sophisticated methods to extract biologically meaningful signal and mechanistic understanding. For example, analyses of transcriptomics and proteomics data enable to gain insights into the molecular differences in tissues exposed to diverse stimuli or test items. Whereas the interpretation of endpoints specifically measuring a mechanism is relatively straightforward, the interpretation of big data is more complex and would benefit from comparing results obtained with diverse analysis methods. The sbv IMPROVER project was created to implement solutions to verify systems biology data, methods, and conclusions. Computational challenges leveraging the wisdom of the crowd allow benchmarking methods for specific tasks, such as signature extraction and/or samples classification. Four challenges have already been successfully conducted and confirmed that the aggregation of predictions often leads to better results than individual predictions and that methods perform best in specific contexts. Whenever the scientific question of interest does not have a gold standard, but may greatly benefit from the scientific community to come together and discuss their approaches and results, datathons are set up. The inaugural sbv IMPROVER datathon was held in Singapore on 23-24 September 2016. It allowed bioinformaticians and data scientists to consolidate their ideas and work on the most promising methods as teams, after having initially reflected on the problem on their own. The outcome is a set of visualization and analysis methods that will be shared with the scientific community via the Garuda platform, an open connectivity platform that provides a framework to navigate through different applications, databases and services in biology and medicine. We will present the results we obtained when analyzing data with our network-based method, and introduce a datathon that will take place in Japan to encourage the analysis of the same datasets with other methods to allow for the consolidation of conclusions.Keywords: big data interpretation, datathon, systems toxicology, verification
Procedia PDF Downloads 2781546 Modelling of Heat Transfer during Controlled Cooling of Thermo-Mechanically Treated Rebars Using Computational Fluid Dynamics Approach
Authors: Rohit Agarwal, Mrityunjay K. Singh, Soma Ghosh, Ramesh Shankar, Biswajit Ghosh, Vinay V. Mahashabde
Abstract:
Thermo-mechanical treatment (TMT) of rebars is a critical process to impart sufficient strength and ductility to rebar. TMT rebars are produced by the Tempcore process, involves an 'in-line' heat treatment in which hot rolled bar (temperature is around 1080°C) is passed through water boxes where it is quenched under high pressure water jets (temperature is around 25°C). The quenching rate dictates composite structure consisting (four non-homogenously distributed phases of rebar microstructure) pearlite-ferrite, bainite, and tempered martensite (from core to rim). The ferrite and pearlite phases present at core induce ductility to rebar while martensitic rim induces appropriate strength. The TMT process is difficult to model as it brings multitude of complex physics such as heat transfer, highly turbulent fluid flow, multicomponent and multiphase flow present in the control volume. Additionally the presence of film boiling regime (above Leidenfrost point) due to steam formation adds complexity to domain. A coupled heat transfer and fluid flow model based on computational fluid dynamics (CFD) has been developed at product technology division of Tata Steel, India which efficiently predicts temperature profile and percentage martensite rim thickness of rebar during quenching process. The model has been validated with 16 mm rolling of New Bar mill (NBM) plant of Tata Steel Limited, India. Furthermore, based on the scenario analyses, optimal configuration of nozzles was found which helped in subsequent increase in rolling speed.Keywords: boiling, critical heat flux, nozzles, thermo-mechanical treatment
Procedia PDF Downloads 2151545 Analysis of the Influence of Fiber Volume and Fiber Orientation on Post-Cracking Behavior of Steel Fiber Reinforced Concrete
Authors: Marilia M. Camargo, Luisa A. Gachet-Barbosa, Rosa C. C. Lintz
Abstract:
The addition of fibers into concrete matrix can enhance some properties of the composite, such as tensile, flexural and impact strengths, toughness, deformation capacity and post-cracking ductility. Many factors affect the mechanical behavior of fiber reinforced concrete, such as concrete matrix (concrete strength, additions, aggregate diameter, etc.), characteristics of the fiber (geometry, type, aspect ratio, volume, orientation, distribution, strength, stiffness, etc.), specimen (size, geometry, method of preparation and loading rate). This research investigates the effects of fiber volume and orientation on the post-cracking behavior of steel fiber reinforced concrete (SFRC). Hooked-end steel fibers with aspect ratios of 45 were added into concrete with volume of 0,32%, 0,64%, 0,94%. The post-cracking behaviour was assessed by double punch test of cubic specimens and the actual volume and orientation of the fibers were determined by non-destructive tests by means of electromagnetic induction. The results showed that the actual volume of fibers in each sample differs in a small amount from the dosed volume of fibers and that the deformation and toughness of the concrete increase with the increase in the actual volume of fibers. In determining the orientation of the fibers, it was found that they tend to distribute more in the X and Y axes due to the influence of the walls of the mold. In addition, it was concluded that the orientation of the fibers is important in the post-cracking behaviour of FRC when analyzed together with the actual volume of fibers, since the greater the volume of fibers, the greater the number of fibers oriented orthogonally to the application of loadings and, consequently, there is a better mechanical behavior of the composite. These results provide a better understanding of the influence of volume and fiber orientation on the post-cracking behavior of the FRC.Keywords: fiber reinforced concrete, steel fibers, volume of fibers, orientation of fibers, post-cracking behaviour
Procedia PDF Downloads 1791544 Space Weather and Earthquakes: A Case Study of Solar Flare X9.3 Class on September 6, 2017
Authors: Viktor Novikov, Yuri Ruzhin
Abstract:
The studies completed to-date on a relation of the Earth's seismicity and solar processes provide the fuzzy and contradictory results. For verification of an idea that solar flares can trigger earthquakes, we have analyzed a case of a powerful surge of solar flash activity early in September 2017 during approaching the minimum of 24th solar cycle was accompanied by significant disturbances of space weather. On September 6, 2017, a group of sunspots AR2673 generated a large solar flare of X9.3 class, the strongest flare over the past twelve years. Its explosion produced a coronal mass ejection partially directed towards the Earth. We carried out a statistical analysis of the catalogs of earthquakes USGS and EMSC for determination of the effect of solar flares on global seismic activity. New evidence of earthquake triggering due to the Sun-Earth interaction has been demonstrated by simple comparison of behavior of Earth's seismicity before and after the strong solar flare. The global number of earthquakes with magnitude of 2.5 to 5.5 within 11 days after the solar flare has increased by 30 to 100%. A possibility of electric/electromagnetic triggering of earthquake due to space weather disturbances is supported by results of field and laboratory studies, where the earthquakes (both natural and laboratory) were initiated by injection of electrical current into the Earth crust. For the specific case of artificial electric earthquake triggering the current density at a depth of earthquake, sources are comparable with estimations of a density of telluric currents induced by variation of space weather conditions due to solar flares. Acknowledgment: The work was supported by RFBR grant No. 18-05-00255.Keywords: solar flare, earthquake activity, earthquake triggering, solar-terrestrial relations
Procedia PDF Downloads 1431543 Optimization of an Electro-Submersible Pump for Crude Oil Extraction Processes
Authors: Deisy Becerra, Nicolas Rios, Miguel Asuaje
Abstract:
The Electrical Submersible Pump (ESP) is one of the most artificial lifting methods used in the last years, which consists of a serial arrangement of centrifugal pumps. One of the main concerns when handling crude oil is the formation of O/W or W/O (oil/water or water/oil) emulsions inside the pump, due to the shear rate imparted and the presence of high molecular weight substances that act as natural surfactants. Therefore, it is important to perform an analysis of the flow patterns inside the pump to increase the percentage of oil recovered using the centrifugal force and the difference in density between the oil and the water to generate the separation of liquid phases. For this study, a Computational Fluid Dynamic (CFD) model was developed on STAR-CCM+ software based on 3D geometry of a Franklin Electric 4400 4' four-stage ESP. In this case, the modification of the last stage was carried out to improve the centrifugal effect inside the pump, and a perforated double tube was designed with three different holes configurations disposed at the outlet section, through which the cut water flows. The arrangement of holes used has different geometrical configurations such as circles, rectangles, and irregular shapes determined as grating around the tube. The two-phase flow was modeled using an Eulerian approach with the Volume of Fluid (VOF) method, which predicts the distribution and movement of larger interfaces in immiscible phases. Different water-oil compositions were evaluated, such as 70-30% v/v, 80-20% v/v and 90-10% v/v, respectively. Finally, greater recovery of oil was obtained. For the several compositions evaluated, the volumetric oil fraction was greater than 0.55 at the pump outlet. Similarly, it is possible to show an inversely proportional relationship between the Water/Oil rate (WOR) and the volumetric flow. The volumetric fractions evaluated, the oil flow increased approximately between 41%-10% for circular perforations and 49%-19% for rectangular shaped perforations, regarding the inlet flow. Besides, the elimination of the pump diffuser in the last stage of the pump reduced the head by approximately 20%.Keywords: computational fluid dynamic, CFD, electrical submersible pump, ESP, two phase flow, volume of fluid, VOF, water/oil rate, WOR
Procedia PDF Downloads 1581542 CFD Study for Normal and Rifled Tube with a Convergence Check
Authors: Sharfi Dirar, Shihab Elhaj, Ahmed El Fatih
Abstract:
Computational fluid dynamics were used to simulate and study the heated water boiler tube for both normal and rifled tube with a refinement of the mesh to check the convergence. The operation condition was taken from GARRI power station and used in a boundary condition accordingly. The result indicates the rifled tube has higher heat transfer efficiency than the normal tube.Keywords: boiler tube, convergence check, normal tube, rifled tube
Procedia PDF Downloads 3341541 Design and Computational Fluid Dynamics Analysis of Aerodynamic Package of a Formula Student Car
Authors: Aniketh Ravukutam, Rajath Rao M., Pradyumna S. A.
Abstract:
In the past few decades there has been great advancement in use of aerodynamics in cars. Now its use has been evident from commercial cars to race cars for achieving higher speeds, stability and efficiency. This paper focusses on studying the effects of aerodynamics in Formula Student car. These cars weigh around 200kgs with an average speed of 60kmph. With increasing competition every year, developing a competitive car is a herculean task. The race track comprises mostly of tight corners and little or no straights thus testing the car’s cornering capabilities. Higher cornering speeds can be achieved by increasing traction at the tires. Studying the aerodynamics helps in achieving higher traction without much addition in overall weight of car. The main focus is to develop an aerodynamic package involving front wing, under tray and body to obtain an optimum value of down force. The initial process involves the detail study of geometrical constraints mentioned in the rule book and calculating the limiting value of drag as per the engine specifications. The successive steps involve conduction of various iterations in ANSYS for selection of airfoils, deciding the number of elements, designing the nose for low drag, channelizing the flow under the body and obtain an optimum value of down force within the limits defined in the initial process. The final step involves design of model using these results in Virtual environment called OptimumLap® for detailed study of performance with and without the presence of aerodynamics. The CFD analysis results showed an overall down force of 377.44N with a drag of 164.08N. The corresponding parameters of the last model were applied in OptimumLap® and an improvement of 3.5 seconds in lap times was observed.Keywords: aerodynamics, formula student, traction, front wing, undertray, body, rule book, drag, down force, virtual environment, computational fluid dynamics (CFD)
Procedia PDF Downloads 2411540 Cannabis Sativa L as Natural Source of Promising Anti-Alzheimer Drug Candidates: A Comprehensive Computational Approach Including Molecular Docking, Molecular Dynamics, Admet and MM-PBSA Studies
Authors: Hassan Nour, Nouh Mounadi, Oussama Abchir, Belaidi Salah, Samir Chtita
Abstract:
Cholinesterase enzymes are biological catalysts essential for the transformation of acetylcholine, which is a neurotransmitter implicated in memory and learning, into acetic acid and choline, altering the neurotransmission process in Alzheimer’s disease patients. Therefore, inhibition of cholinesterase enzymes is a relevant strategy for the symptomatic treatment of Alzheimer’s disease. The current investigation aims to explore potential Cholinesterase (ChE) inhibitors through a comprehensive computational approach. Forty-nine phytoconstituents extracted from Cannabis sativa L were in-silico screened using molecular docking, pharmacokinetic and toxicological analysis to evaluate their possible inhibitory effect towards the cholinesterase enzymes. Two phytoconstituents belonging to cannabinoid derivatives were revealed to be promising candidates for Alzheimer therapy by acting as cholinesterase inhibitors. They have exhibited high binding affinities towards the cholinesterase enzymes and showed their ability to interact with key residues involved in cholinesterase enzymatic activity. In addition, they presented good ADMET profiles allowing them to be promising oral drug candidates. Furthermore, molecular dynamics (MD) simulations were executed to explore their interactions stability under mimetic biological conditions and thus support our findings. To corroborate the docking results, the binding free energy corresponding to the more stable ligand-ChE complexes was re-estimated by applying the MM-PBSA method. MD and MM-PBSA studies affirmed that the ligand-ChE recognition is spontaneous reaction leading to stable complexes. The conducted investigations have led to great findings that would strongly guide the pharmaceutical industries towards the rational development of potent anti-Alzheimer agents.Keywords: alzheimer’s disease, molecular docking, cannabis sativa l, cholinesterase inhibitors
Procedia PDF Downloads 731539 DNA-Polycation Condensation by Coarse-Grained Molecular Dynamics
Authors: Titus A. Beu
Abstract:
Many modern gene-delivery protocols rely on condensed complexes of DNA with polycations to introduce the genetic payload into cells by endocytosis. In particular, polyethyleneimine (PEI) stands out by a high buffering capacity (enabling the efficient condensation of DNA) and relatively simple fabrication. Realistic computational studies can offer essential insights into the formation process of DNA-PEI polyplexes, providing hints on efficient designs and engineering routes. We present comprehensive computational investigations of solvated PEI and DNA-PEI polyplexes involving calculations at three levels: ab initio, all-atom (AA), and coarse-grained (CG) molecular mechanics. In the first stage, we developed a rigorous AA CHARMM (Chemistry at Harvard Macromolecular Mechanics) force field (FF) for PEI on the basis of accurate ab initio calculations on protonated model pentamers. We validated this atomistic FF by matching the results of extensive molecular dynamics (MD) simulations of structural and dynamical properties of PEI with experimental data. In a second stage, we developed a CG MARTINI FF for PEI by Boltzmann inversion techniques from bead-based probability distributions obtained from AA simulations and ensuring an optimal match between the AA and CG structural and dynamical properties. In a third stage, we combined the developed CG FF for PEI with the standard MARTINI FF for DNA and performed comprehensive CG simulations of DNA-PEI complex formation and condensation. Various technical aspects which are crucial for the realistic modeling of DNA-PEI polyplexes, such as options of treating electrostatics and the relevance of polarizable water models, are discussed in detail. Massive CG simulations (with up to 500 000 beads) shed light on the mechanism and provide time scales for DNA polyplex formation independence of PEI chain size and protonation pattern. The DNA-PEI condensation mechanism is shown to primarily rely on the formation of DNA bundles, rather than by changes of the DNA-strand curvature. The gained insights are expected to be of significant help for designing effective gene-delivery applications.Keywords: DNA condensation, gene-delivery, polyethylene-imine, molecular dynamics.
Procedia PDF Downloads 1201538 Planning a Haemodialysis Process by Minimum Time Control of Hybrid Systems with Sliding Motion
Authors: Radoslaw Pytlak, Damian Suski
Abstract:
The aim of the paper is to provide a computational tool for planning a haemodialysis process. It is shown that optimization methods can be used to obtain the most effective treatment focused on removing both urea and phosphorus during the process. In order to achieve that, the IV–compartment model of phosphorus kinetics is applied. This kinetics model takes into account a rebound phenomenon that can occur during haemodialysis and results in a hybrid model of the process. Furthermore, vector fields associated with the model equations are such that it is very likely that using the most intuitive objective functions in the planning problem could lead to solutions which include sliding motions. Therefore, building computational tools for solving the problem of planning a haemodialysis process has required constructing numerical algorithms for solving optimal control problems with hybrid systems. The paper concentrates on minimum time control of hybrid systems since this control objective is the most suitable for the haemodialysis process considered in the paper. The presented approach to optimal control problems with hybrid systems is different from the others in several aspects. First of all, it is assumed that a hybrid system can exhibit sliding modes. Secondly, the system’s motion on the switching surface is described by index 2 differential–algebraic equations, and that guarantees accurate tracking of the sliding motion surface. Thirdly, the gradients of the problem’s functionals are evaluated with the help of adjoint equations. The adjoint equations presented in the paper take into account sliding motion and exhibit jump conditions at transition times. The optimality conditions in the form of the weak maximum principle for optimal control problems with hybrid systems exhibiting sliding modes and with piecewise constant controls are stated. The presented sensitivity analysis can be used to construct globally convergent algorithms for solving considered problems. The paper presents numerical results of solving the haemodialysis planning problem.Keywords: haemodialysis planning process, hybrid systems, optimal control, sliding motion
Procedia PDF Downloads 1951537 Graphical Modeling of High Dimension Processes with an Environmental Application
Authors: Ali S. Gargoum
Abstract:
Graphical modeling plays an important role in providing efficient probability calculations in high dimensional problems (computational efficiency). In this paper, we address one of such problems where we discuss fragmenting puff models and some distributional assumptions concerning models for the instantaneous, emission readings and for the fragmenting process. A graphical representation in terms of a junction tree of the conditional probability breakdown of puffs and puff fragments is proposed.Keywords: graphical models, influence diagrams, junction trees, Bayesian nets
Procedia PDF Downloads 3961536 Modulating Plasmon Induced Transparency in Terahertz Metamaterials
Authors: Gagan Kumar, Koijam M. Devi, Amarendra K. Sarma, Dibakar Roy Chowdhury
Abstract:
Research in metamaterials has been gaining momentum over the past decade owing to its ability in controlling electromagnetic wave properties through careful design at the sub-wavelength scale. The metamaterials have led to several important phenomena which are useful in a variety of applications. One such phenomenon is the electromagnetically induced transparency (EIT) effect in which a narrow transparency region is created in an otherwise absorptive spectrum. In our work, we explore plasmon induced transparency (PIT) in terahertz metamaterials which is analogues to EIT effect. The PIT effect is achieved using the plasmonic metamaterials in which a unit cell is comprised of two C (2C) shaped resonators and a cut-wire (CW). When terahertz wave of a particular polarization is normally incident on the proposed metamaterials geometry, it strongly couples with the cut wire, resulting in the excitation of the bright mode. However due to the specific polarization of the incident beam, the fundamental modes of the C-shaped resonators are not excited by the incident terahertz, hence they are termed as the dark mode. The PIT effect occurs as a result of interference between the bright and the dark mode. In order to observe PIT effect, both the bright and dark modes should have similar resonant frequencies with a little deviation. We further have examined that the PIT window can be modulated by displacing the C-shaped resonators w.r.t. the cut-wire. The numerical observations for different coupling configurations can be explained through an equivalent lumped element circuit model. Moving ahead the PIT effect is further explored in a metamaterial comprising of a cross like structure and four C-shaped resonators. For such configuration, equally strong PIT effect is observed for two orthogonally polarized lights. Therefore, such metamaterials demonstrate a polarization independent PIT response w.r.t the incident terahertz radiation. The proposed study could be significant in the development of slow light devices and polarization independent sensing applications.Keywords: terahertz, metamaterial, split ring resonator, plasmon
Procedia PDF Downloads 2131535 All-Optical Gamma-Rays and Positrons Source by Ultra-Intense Laser Irradiating an Al Cone
Authors: T. P. Yu, J. J. Liu, X. L. Zhu, Y. Yin, W. Q. Wang, J. M. Ouyang, F. Q. Shao
Abstract:
A strong electromagnetic field with E>1015V/m can be supplied by an intense laser such as ELI and HiPER in the near future. Exposing in such a strong laser field, laser-matter interaction enters into the near quantum electrodynamics (QED) regime and highly non-linear physics may occur during the laser-matter interaction. Recently, the multi-photon Breit-Wheeler (BW) process attracts increasing attention because it is capable to produce abundant positrons and it enhances the positron generation efficiency significantly. Here, we propose an all-optical scheme for bright gamma rays and dense positrons generation by irradiating a 1022 W/cm2 laser pulse onto an Al cone filled with near-critical-density plasmas. Two-dimensional (2D) QED particle-in-cell (PIC) simulations show that, the radiation damping force becomes large enough to compensate for the Lorentz force in the cone, causing radiation-reaction trapping of a dense electron bunch in the laser field. The trapped electrons oscillate in the laser electric field and emits high-energy gamma photons in two ways: (1) nonlinear Compton scattering due to the oscillation of electrons in the laser fields, and (2) Compton backwardscattering resulting from the bunch colliding with the reflected laser by the cone tip. The multi-photon Breit-Wheeler process is thus initiated and abundant electron-positron pairs are generated with a positron density ~1027m-3. The scheme is finally demonstrated by full 3D PIC simulations, which indicate the positron flux is up to 109. This compact gamma ray and positron source may have promising applications in future.Keywords: BW process, electron-positron pairs, gamma rays emission, ultra-intense laser
Procedia PDF Downloads 2601534 Computational Team Dynamics and Interaction Patterns in New Product Development Teams
Authors: Shankaran Sitarama
Abstract:
New Product Development (NPD) is invariably a team effort and involves effective teamwork. NPD team has members from different disciplines coming together and working through the different phases all the way from conceptual design phase till the production and product roll out. Creativity and Innovation are some of the key factors of successful NPD. Team members going through the different phases of NPD interact and work closely yet challenge each other during the design phases to brainstorm on ideas and later converge to work together. These two traits require the teams to have a divergent and a convergent thinking simultaneously. There needs to be a good balance. The team dynamics invariably result in conflicts among team members. While some amount of conflict (ideational conflict) is desirable in NPD teams to be creative as a group, relational conflicts (or discords among members) could be detrimental to teamwork. Team communication truly reflect these tensions and team dynamics. In this research, team communication (emails) between the members of the NPD teams is considered for analysis. The email communication is processed through a semantic analysis algorithm (LSA) to analyze the content of communication and a semantic similarity analysis to arrive at a social network graph that depicts the communication amongst team members based on the content of communication. The amount of communication (content and not frequency of communication) defines the interaction strength between the members. Social network adjacency matrix is thus obtained for the team. Standard social network analysis techniques based on the Adjacency Matrix (AM) and Dichotomized Adjacency Matrix (DAM) based on network density yield network graphs and network metrics like centrality. The social network graphs are then rendered for visual representation using a Metric Multi-Dimensional Scaling (MMDS) algorithm for node placements and arcs connecting the nodes (representing team members) are drawn. The distance of the nodes in the placement represents the tie-strength between the members. Stronger tie-strengths render nodes closer. Overall visual representation of the social network graph provides a clear picture of the team’s interactions. This research reveals four distinct patterns of team interaction that are clearly identifiable in the visual representation of the social network graph and have a clearly defined computational scheme. The four computational patterns of team interaction defined are Central Member Pattern (CMP), Subgroup and Aloof member Pattern (SAP), Isolate Member Pattern (IMP), and Pendant Member Pattern (PMP). Each of these patterns has a team dynamics implication in terms of the conflict level in the team. For instance, Isolate member pattern, clearly points to a near break-down in communication with the member and hence a possible high conflict level, whereas the subgroup or aloof member pattern points to a non-uniform information flow in the team and some moderate level of conflict. These pattern classifications of teams are then compared and correlated to the real level of conflict in the teams as indicated by the team members through an elaborate self-evaluation, team reflection, feedback form and results show a good correlation.Keywords: team dynamics, team communication, team interactions, social network analysis, sna, new product development, latent semantic analysis, LSA, NPD teams
Procedia PDF Downloads 70