Search results for: train positioning
146 Curriculum Transformation: Multidisciplinary Perspectives on ‘Decolonisation’ and ‘Africanisation’ of the Curriculum in South Africa’s Higher Education
Authors: Andre Bechuke
Abstract:
The years of 2015-2017 witnessed a huge campaign, and in some instances, violent protests in South Africa by students and some groups of academics advocating the decolonisation of the curriculum of universities. These protests have forced through high expectations for universities to teach a curriculum relevant to the country, and the continent as well as enabled South Africa to participate in the globalised world. To realise this purpose, most universities are currently undertaking steps to transform and decolonise their curriculum. However, the transformation process is challenged and delayed by lack of a collective understanding of the concepts ‘decolonisation’ and ‘africanisation’ that should guide its application. Even more challenging is lack of a contextual understanding of these concepts across different university disciplines. Against this background, and underpinned in a qualitative research paradigm, the perspectives of these concepts as applied by different university disciplines were examined in order to understand and establish their implementation in the curriculum transformation agenda. Data were collected by reviewing the teaching and learning plans of 8 faculties of an institution of higher learning in South Africa and analysed through content and textual analysis. The findings revealed varied understanding and use of these concepts in the transformation of the curriculum across faculties. Decolonisation, according to the faculties of Law and Humanities, is perceived as the eradication of the Eurocentric positioning in curriculum content and the constitutive rules and norms that control thinking. This is not done by ignoring other knowledge traditions but does call for an affirmation and validation of African views of the world and systems of thought, mixing it with current knowledge. For the Faculty of Natural and Agricultural Sciences, decolonisation is seen as making the content of the curriculum relevant to students, fulfilling the needs of industry and equipping students for job opportunities. This means the use of teaching strategies and methods that are inclusive of students from diverse cultures, and to structure the learning experience in ways that are not alien to the cultures of the students. For the Health Sciences, decolonisation of the curriculum refers to the need for a shift in Western thinking towards being more sensitive to all cultural beliefs and thoughts. Collectively, decolonisation of education thus entails that a nation must become independent with regard to the acquisition of knowledge, skills, values, beliefs, and habits. Based on the findings, for universities to successfully transform their curriculum and integrate the concepts of decolonisation and Africanisation, there is a need to contextually determine the meaning of the concepts generally and narrow them down to what they should mean to specific disciplines. Universities should refrain from considering an umbrella approach to these concepts. Decolonisation should be seen as a means and not an end. A decolonised curriculum should equally be developed based on the finest knowledge skills, values, beliefs and habits around the world and not limited to one country or continent.Keywords: Africanisation, curriculum, transformation, decolonisation, multidisciplinary perspectives, South Africa’s higher education
Procedia PDF Downloads 160145 Copyright Clearance for Artificial Intelligence Training Data: Challenges and Solutions
Authors: Erva Akin
Abstract:
– The use of copyrighted material for machine learning purposes is a challenging issue in the field of artificial intelligence (AI). While machine learning algorithms require large amounts of data to train and improve their accuracy and creativity, the use of copyrighted material without permission from the authors may infringe on their intellectual property rights. In order to overcome copyright legal hurdle against the data sharing, access and re-use of data, the use of copyrighted material for machine learning purposes may be considered permissible under certain circumstances. For example, if the copyright holder has given permission to use the data through a licensing agreement, then the use for machine learning purposes may be lawful. It is also argued that copying for non-expressive purposes that do not involve conveying expressive elements to the public, such as automated data extraction, should not be seen as infringing. The focus of such ‘copy-reliant technologies’ is on understanding language rules, styles, and syntax and no creative ideas are being used. However, the non-expressive use defense is within the framework of the fair use doctrine, which allows the use of copyrighted material for research or educational purposes. The questions arise because the fair use doctrine is not available in EU law, instead, the InfoSoc Directive provides for a rigid system of exclusive rights with a list of exceptions and limitations. One could only argue that non-expressive uses of copyrighted material for machine learning purposes do not constitute a ‘reproduction’ in the first place. Nevertheless, the use of machine learning with copyrighted material is difficult because EU copyright law applies to the mere use of the works. Two solutions can be proposed to address the problem of copyright clearance for AI training data. The first is to introduce a broad exception for text and data mining, either mandatorily or for commercial and scientific purposes, or to permit the reproduction of works for non-expressive purposes. The second is that copyright laws should permit the reproduction of works for non-expressive purposes, which opens the door to discussions regarding the transposition of the fair use principle from the US into EU law. Both solutions aim to provide more space for AI developers to operate and encourage greater freedom, which could lead to more rapid innovation in the field. The Data Governance Act presents a significant opportunity to advance these debates. Finally, issues concerning the balance of general public interests and legitimate private interests in machine learning training data must be addressed. In my opinion, it is crucial that robot-creation output should fall into the public domain. Machines depend on human creativity, innovation, and expression. To encourage technological advancement and innovation, freedom of expression and business operation must be prioritised.Keywords: artificial intelligence, copyright, data governance, machine learning
Procedia PDF Downloads 83144 Towards Creative Movie Title Generation Using Deep Neural Models
Authors: Simon Espigolé, Igor Shalyminov, Helen Hastie
Abstract:
Deep machine learning techniques including deep neural networks (DNN) have been used to model language and dialogue for conversational agents to perform tasks, such as giving technical support and also for general chit-chat. They have been shown to be capable of generating long, diverse and coherent sentences in end-to-end dialogue systems and natural language generation. However, these systems tend to imitate the training data and will only generate the concepts and language within the scope of what they have been trained on. This work explores how deep neural networks can be used in a task that would normally require human creativity, whereby the human would read the movie description and/or watch the movie and come up with a compelling, interesting movie title. This task differs from simple summarization in that the movie title may not necessarily be derivable from the content or semantics of the movie description. Here, we train a type of DNN called a sequence-to-sequence model (seq2seq) that takes as input a short textual movie description and some information on e.g. genre of the movie. It then learns to output a movie title. The idea is that the DNN will learn certain techniques and approaches that the human movie titler may deploy that may not be immediately obvious to the human-eye. To give an example of a generated movie title, for the movie synopsis: ‘A hitman concludes his legacy with one more job, only to discover he may be the one getting hit.’; the original, true title is ‘The Driver’ and the one generated by the model is ‘The Masquerade’. A human evaluation was conducted where the DNN output was compared to the true human-generated title, as well as a number of baselines, on three 5-point Likert scales: ‘creativity’, ‘naturalness’ and ‘suitability’. Subjects were also asked which of the two systems they preferred. The scores of the DNN model were comparable to the scores of the human-generated movie title, with means m=3.11, m=3.12, respectively. There is room for improvement in these models as they were rated significantly less ‘natural’ and ‘suitable’ when compared to the human title. In addition, the human-generated title was preferred overall 58% of the time when pitted against the DNN model. These results, however, are encouraging given the comparison with a highly-considered, well-crafted human-generated movie title. Movie titles go through a rigorous process of assessment by experts and focus groups, who have watched the movie. This process is in place due to the large amount of money at stake and the importance of creating an effective title that captures the audiences’ attention. Our work shows progress towards automating this process, which in turn may lead to a better understanding of creativity itself.Keywords: creativity, deep machine learning, natural language generation, movies
Procedia PDF Downloads 326143 The Effect of Using Universal Design for Learning to Improve the Quality of Vocational Programme with Intellectual Disabilities and the Challenges Facing This Method from the Teachers' Point of View
Authors: Ohud Adnan Saffar
Abstract:
This study aims to know the effect of using universal design for learning (UDL) to improve the quality of vocational programme with intellectual disabilities (SID) and the challenges facing this method from the teachers' point of view. The significance of the study: There are comparatively few published studies on UDL in emerging nations. Therefore, this study will encourage the researchers to consider a new approaches teaching. Development of this study will contribute significant information on the cognitively disabled community on a universal scope. In order to collect and evaluate the data and for the verification of the results, this study has been used the mixed research method, by using two groups comparison method. To answer the study questions, we were used the questionnaire, lists of observations, open questions, and pre and post-test. Thus, the study explored the advantages and drawbacks, and know about the impact of using the UDL method on integrating SID with students non-special education needs in the same classroom. Those aims were realized by developing a workshop to explain the three principles of the UDL and train (16) teachers in how to apply this method to teach (12) students non-special education needs and the (12) SID in the same classroom, then take their opinion by using the questionnaire and questions. Finally, this research will explore the effects of the UDL on the teaching of professional photography skills for the SID in Saudi Arabia. To achieve this goal, the research method was a comparison of the performance of the SID using the UDL method with that of female students with the same challenges applying other strategies by teachers in control and experiment groups, we used the observation lists, pre and post-test. Initial results: It is clear from the previous response to the participants that most of the answers confirmed that the use of UDL achieves the principle of inclusion between the SID and students non-special education needs by 93.8%. In addition, the results show that the majority of the sampled people see that the most important advantages of using UDL in teaching are creating an interactive environment with using new and various teaching methods, with a percentage of 56.2%. Following this result, the UDL is useful for integrating students with general education, with a percentage of 31.2%. Moreover, the finding indicates to improve understanding through using the new technology and exchanging the primitive ways of teaching with the new ones, with a percentage of 25%. The result shows the percentages of the sampled people's opinions about the financial obstacles, and it concluded that the majority see that the cost is high and there is no computer maintenance available, with 50%. There are no smart devices in schools to help in implementing and applying for the program, with a percentage of 43.8%.Keywords: universal design for learning, intellectual disabilities, vocational programme, the challenges facing this method
Procedia PDF Downloads 129142 An Open Trial of Mobile-Assisted Cognitive Behavioral Therapy for Negative Symptoms in Schizophrenia: Pupillometry Predictors of Outcome
Authors: Eric Granholm, Christophe Delay, Jason Holden, Peter Link
Abstract:
Negative symptoms are an important unmet treatment needed for schizophrenia. We conducted an open trial of a novel blended intervention called mobile-assisted cognitive behavior therapy for negative symptoms (mCBTn). mCBTn is a weekly group therapy intervention combining in-person and smartphone-based CBT (CBT2go app) to improve experiential negative symptoms in people with schizophrenia. Both the therapy group and CBT2go app included recovery goal setting, thought challenging, scheduling of pleasurable activities and social interactions, and pleasure savoring interventions to modify defeatist attitudes, a target mechanism associated with negative symptoms, and improve experiential negative symptoms. We tested whether participants with schizophrenia or schizoaffective disorder (N=31) who met prospective criteria for persistent negative symptoms showed improvement in experiential negative symptoms. Retention was excellent (87% at 18 weeks) and severity of defeatist attitudes and motivation and pleasure negative symptoms declined significantly in mCBTn with large effect sizes. We also tested whether pupillary responses, a measure of cognitive effort, predicted improvement in negative symptoms mCBTn. Pupillary responses were recorded at baseline using a Tobii pupillometer during the digit span task with 3-, 6- and 9-digit spans. Mixed models showed that greater dilation during the task at baseline significantly predicted a greater reduction in experiential negative symptoms. Pupillary responses may provide a much-needed prognostic biomarker of which patients are most likely to benefit from CBT. Greater pupil dilation during a cognitive task predicted greater improvement in experiential negative symptoms. Pupil dilation has been linked to motivation and engagement of executive control, so these factors may contribute to benefits in interventions that train cognitive skills to manage negative thoughts and emotions. The findings suggest mCBTn is a feasible and effective treatment for experiential negative symptoms and justify a larger randomized controlled clinical trial. The findings also provide support for the defeatist attitude model of experiential negative symptoms and suggest that mobile-assisted interventions like mCBTn can strengthen and shorten intensive psychosocial interventions for schizophrenia.Keywords: cognitive-behavioral therapy, mobile interventions, negative symptoms, pupillometry schizophrenia
Procedia PDF Downloads 180141 Developing Curricula for Signaling and Communication Course at Malaysia Railway Academy (MyRA) through Industrial Collaboration Program
Authors: Mohd Fairus Humar, Ibrahim Sulaiman, Pedro Cruz, Hasry Harun
Abstract:
This paper presents the propose knowledge transfer program on railway signaling and communication by Original Equipment Manufacturer (OEM) Thales Portugal. The fundamental issue is that there is no rail related course offered by local universities and colleges in Malaysia which could be an option to pursue student career path. Currently, dedicated trainings related to the rail technology are provided by in-house training academies established by the respective rail operators such as Malaysia Railway Academy (MyRA) and Rapid Rail Training Centre. In this matter, the content of training and facilities need to be strengthened to keep up-to-date with the dynamic evolvement of the rail technology. This is because rail products have evolved to be more sophisticated and embedded with high technology components which no longer exist in the mechanical form alone but combined with electronics, information technology and others. These demand for a workforce imbued with knowledge, multi-skills and competency to deal with specialized technical areas. Talent is needed to support sustainability in Southeast Asia. Keeping the above factors in mind, an Industrial Collaboration Program (ICP) was carried out to transfer knowledge on curricula of railway signaling and communication to a selected railway operators and tertiary educational institution in Malaysia. In order to achieve the aim, a partnership was formed between Technical Depository Agency (TDA), Thales Portugal and MyRA for two years with three main stages of program implementation comprising of: i) training on basic railway signaling and communication for 1 month with Thales in Malaysia; ii) training on advance railway signaling and communication for 4 months with Thales in Portugal and; iii) a series of workshop. Two workshops were convened to develop and harmonize curricula of railway signaling and communication course and were followed by one training for installation equipment of railway signaling and Controlled Train Centre (CTC) system from Thales Portugal. With active involvement from Technical Depository Agency (TDA), railway operators, universities, and colleges, in planning, executing, monitoring, control and closure, the program module of railway signaling and communication course with a lab railway signaling field equipment and CTC simulator were developed. Through this program, contributions from various parties help to build committed societies to engage important issues in relation to railway signaling and communication towards creating a sustainable future.Keywords: knowledge transfer program, railway signaling and communication, curricula, module and teaching aid simulator
Procedia PDF Downloads 192140 Students' ExperiEnce Enhancement Through Simulaton. A Process Flow in Logistics and Transportation Field
Authors: Nizamuddin Zainuddin, Adam Mohd Saifudin, Ahmad Yusni Bahaudin, Mohd Hanizan Zalazilah, Roslan Jamaluddin
Abstract:
Students’ enhanced experience through simulation is a crucial factor that brings reality to the classroom. The enhanced experience is all about developing, enriching and applications of a generic process flow in the field of logistics and transportations. As educational technology has improved, the effective use of simulations has greatly increased to the point where simulations should be considered a valuable, mainstream pedagogical tool. Additionally, in this era of ongoing (some say never-ending) assessment, simulations offer a rich resource for objective measurement and comparisons. Simulation is not just another in the long line of passing fads (or short-term opportunities) in educational technology. It is rather a real key to helping our students understand the world. It is a way for students to acquire experience about how things and systems in the world behave and react, without actually touching them. In short, it is about interactive pretending. Simulation is all about representing the real world which includes grasping the complex issues and solving intricate problems. Therefore, it is crucial before stimulate the real process of inbound and outbound logistics and transportation a generic process flow shall be developed. The paper will be focusing on the validization of the process flow by looking at the inputs gains from the sample. The sampling of the study focuses on multi-national and local manufacturing companies, third party companies (3PL) and government agency, which are selected in Peninsular Malaysia. A simulation flow chart was proposed in the study that will be the generic flow in logistics and transportation. A qualitative approach was mainly conducted to gather data in the study. It was found out from the study that the systems used in the process of outbound and inbound are System Application Products (SAP) and Material Requirement Planning (MRP). Furthermore there were some companies using Enterprises Resources Planning (ERP) and Electronic Data Interchange (EDI) as part of the Suppliers Own Inventories (SOI) networking as a result of globalized business between one countries to another. Computerized documentations and transactions were all mandatory requirement by the Royal Custom and Excise Department. The generic process flow will be the basis of developing a simulation program that shall be used in the classroom with the objective of further enhanced the students’ learning experience. Thus it will contributes to the body of knowledge on the enrichment of the student’s employability and also shall be one of the way to train new workers in the logistics and transportation filed.Keywords: enhancement, simulation, process flow, logistics, transportation
Procedia PDF Downloads 329139 The Outcome of Using Machine Learning in Medical Imaging
Authors: Adel Edwar Waheeb Louka
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery
Procedia PDF Downloads 73138 Synthetic Classicism: A Machine Learning Approach to the Recognition and Design of Circular Pavilions
Authors: Federico Garrido, Mostafa El Hayani, Ahmed Shams
Abstract:
The exploration of the potential of artificial intelligence (AI) in architecture is still embryonic, however, its latent capacity to change design disciplines is significant. 'Synthetic Classism' is a research project that questions the underlying aspects of classically organized architecture not just in aesthetic terms but also from a geometrical and morphological point of view, intending to generate new architectural information using historical examples as source material. The main aim of this paper is to explore the uses of artificial intelligence and machine learning algorithms in architectural design while creating a coherent narrative to be contained within a design process. The purpose is twofold: on one hand, to develop and train machine learning algorithms to produce architectural information of small pavilions and on the other, to synthesize new information from previous architectural drawings. These algorithms intend to 'interpret' graphical information from each pavilion and then generate new information from it. The procedure, once these algorithms are trained, is the following: parting from a line profile, a synthetic 'front view' of a pavilion is generated, then using it as a source material, an isometric view is created from it, and finally, a top view is produced. Thanks to GAN algorithms, it is also possible to generate Front and Isometric views without any graphical input as well. The final intention of the research is to produce isometric views out of historical information, such as the pavilions from Sebastiano Serlio, James Gibbs, or John Soane. The idea is to create and interpret new information not just in terms of historical reconstruction but also to explore AI as a novel tool in the narrative of a creative design process. This research also challenges the idea of the role of algorithmic design associated with efficiency or fitness while embracing the possibility of a creative collaboration between artificial intelligence and a human designer. Hence the double feature of this research, both analytical and creative, first by synthesizing images based on a given dataset and then by generating new architectural information from historical references. We find that the possibility of creatively understand and manipulate historic (and synthetic) information will be a key feature in future innovative design processes. Finally, the main question that we propose is whether an AI could be used not just to create an original and innovative group of simple buildings but also to explore the possibility of fostering a novel architectural sensibility grounded on the specificities on the architectural dataset, either historic, human-made or synthetic.Keywords: architecture, central pavilions, classicism, machine learning
Procedia PDF Downloads 140137 Single-Parent Families and Its Impact on the Psycho Child Development in Schools
Authors: Sylvie Sossou, Grégoire Gansou, Ildevert Egue
Abstract:
Introduction: The mission of the family and the school is to educate and train citizens of the city. But the family’s values , parental roles, respect for life collapse in their traditional African form. Indeed laxity with regard to divorce, liberal ideas about child rearing influence the emotional life of the latter. Several causes may contribute to the decline in academic performance. In order to seek a psychological solution to the issue, a study was conducted in 6 schools at the 9th district in Cotonou, cosmopolitan city of Benin. Objective: To evaluate the impact of single parenthood on the psycho child development. Materials and Methods: Questionnaires and interviews were used to gather verbal information. The questionnaires were administered to parents and children (schoolchildren 4, 5 and six form) from 7 to 12 years in lone parenthood. The interview was done with teachers and school leaders. We identified 209 cases of children living with a "single-parent" and 68 single parents. Results: Of the 209 children surveyed the results showed that 116 children are cut relational triangle in early childhood (before 3 years). The psychological effects showed that the separation has caused sadness for 52 children, anger 22, shame 17, crying at 31 children, fear for 14, the silence at 58 children. In front of complete family’s children, these children experience feelings of aggression in 11.48%; sadness in 30.64%; 5.26% the shame, the 6.69% tears; jealousy in 2.39% and 2.87% of indifference. The option to get married in 44.15% of children is a challenge to want to give a happy childhood for their offspring; 22.01% feel rejected, there is uncertainty for 11.48% of cases and 25.36% didn’t give answer. 49, 76% of children want to see their family together; 7.65% are against to avoid disputes and in many cases to save the mother of the father's physical abuse. 27.75% of the ex-partners decline responsibility in the care of the child. Furthermore family difficulties affecting the intellectual capacities of children: 37.32% of children see school difficulties related to family problems despite all the pressure single-parent to see his child succeed. Single parenthood affects inter-family relations: pressure 33.97%; nervousness 24.88%; overprotection 29.18%; backbiting 11.96%, are the lives of these families. Conclusion: At the end of the investigation, results showed that there is a causal relationship between psychological disorders, academic difficulties of children and quality of parental relationships. Other cases may exist, but the lack of resources meant that we have only limited at 6 schools. Early psychological treatment for these children is needed.Keywords: single-parent, psycho child, school, Cotonou
Procedia PDF Downloads 389136 Exploring Identity of Female British Pakistani Student with Shifting and Re-shifting of Cultures
Authors: Haleema Sadia
Abstract:
The study is aimed at exploring the identity construction of female British born Pakistani postgraduate student who shifted to Pakistan at the age of 12, stayed there for 8 years and re-shifted to UK for Higher Education. Research questions are: 1. What is the academic and socio-cultural background of the participant prior to joining the UoM as a postgrad student? 2. How the participant talk, see herself and act in relation to cultural and social norms and practices? Participant’ identity is explored through positioning theory of Holland et al. (1998), referring to the ways people understand and enact their social positions in the figured world. The research is a case study based on narrative interview of Shabana, a British-born Pakistani female postgraduate student, who has recently joined the university of Manchester. Shabana received her primary education in UK during the first twelve years of her life. She is the youngest among the three sisters, with only one brother younger to her. Her father, although not well educated is a successful entrepreneur, maintaining offices in UK and Pakistan. Her mother is a housewife with no formal education. Shabana’s elder sister got involved in a relationship with a Pakistani boy against cultural norms of arranged marriage. Resultantly the three sisters were shifted to Pakistan to be equated with socio-religious norms. Shabana termed her first year in Pakistan as disgusting and she hated her father for the decision. However after a year’s time and shifting from an orthodox city to the provincial capital Lahore, she developed liking for the Pakistani culture. She gradually developed a new socio-religious identity during her stay, which she expressed as a turning point in her life. After completing O level Shabana returned back to UK and joined the University of Hull as undergraduate Student. At Hull she remained isolated, missed the religious environment and relished the memories of Lahore. She would visit Pakistan almost three times a year. After obtaining her BSc degree from Hull she went back to Pakistan. Soon after she decided to improve her academic qualification. She came to UK to join her parents and got admission in the MSc chemistry program at UoM. Presently Shabana talks about the dominant role of male members in the family culture in decision-making. She strongly feels to struggle hard and attain equal status with males in education, employment, earning, authority and freedom. She sees herself in a position to share the authority with her (would be) husband in important family and other matters. Shabana has developed a new identity of a mix of both Pakistani and UK culture. She is appreciative of the socio-cultural values of UK while still regarding the cultural and religious values of Pakistan in high esteem.Keywords: postgraduate students, identity construction, cultural shifts, female british pakistani student
Procedia PDF Downloads 625135 Clinicians' and Nurses' Documentation Practices in Palliative and Hospice Care: A Mixed Methods Study Providing Evidence for Quality Improvement at Mobile Hospice Mbarara, Uganda
Authors: G. Natuhwera, M. Rabwoni, P. Ellis, A. Merriman
Abstract:
Aims: Health workers are likely to document patients’ care inaccurately, especially when using new and revised case tools, and this could negatively impact patient care. This study set out to; (1) assess nurses’ and clinicians’ documentation practices when using a new patients’ continuation case sheet (PCCS) and (2) explore nurses’ and clinicians’ experiences regarding documentation of patients’ information in the new PCCS. The purpose of introducing the PCCS was to improve continuity of care for patients attending clinics at which they were unlikely to see the same clinician or nurse consistently. Methods: This was a mixed methods study. The cross-sectional inquiry retrospectively reviewed 100 case notes of active patients on hospice and palliative care program. Data was collected using a structured questionnaire with constructs formulated from the new PCCS under study. The qualitative element was face-to-face audio-recorded, open-ended interviews with a purposive sample of one palliative care clinician, and four palliative care nurse specialists. Thematic analysis was used. Results: Missing patients’ biogeographic information was prevalent at 5-10%. Spiritual and psychosocial issues were not documented in 42.6%, and vital signs in 49.2%. Poorest documentation practices were observed in past medical history part of the PCCS at 40-63%. Four themes emerged from interviews with clinicians and nurses-; (1) what remains unclear and challenges, (2) comparing the past with the present, (3) experiential thoughts, and (4) transition and adapting to change. Conclusions: The PCCS seems to be a comprehensive and simple tool to be used to document patients’ information at subsequent visits. The comprehensiveness and utility of the PCCS does paper to be limited by the failure to train staff in its use prior to introducing. The authors find the PCCS comprehensive and suitable to capture patients’ information and recommend it can be adopted and used in other palliative and hospice care settings, if suitable introductory training accompanies its introduction. Otherwise, the reliability and validity of patients’ information collected by this PCCS can be significantly reduced if some sections therein are unclear to the clinicians/nurses. The study identified clinicians- and nurses-related pitfalls in documentation of patients’ care. Clinicians and nurses need to prioritize accurate and complete documentation of patient care in the PCCS for quality care provision. This study should be extended to other sites using similar tools to ensure representative and generalizable findings.Keywords: documentation, information case sheet, palliative care, quality improvement
Procedia PDF Downloads 150134 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs
Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.
Abstract:
Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification
Procedia PDF Downloads 125133 Finite Element Analysis of the Anaconda Device: Efficiently Predicting the Location and Shape of a Deployed Stent
Authors: Faidon Kyriakou, William Dempster, David Nash
Abstract:
Abdominal Aortic Aneurysm (AAA) is a major life-threatening pathology for which modern approaches reduce the need for open surgery through the use of stenting. The success of stenting though is sometimes jeopardized by the final position of the stent graft inside the human artery which may result in migration, endoleaks or blood flow occlusion. Herein, a finite element (FE) model of the commercial medical device AnacondaTM (Vascutek, Terumo) has been developed and validated in order to create a numerical tool able to provide useful clinical insight before the surgical procedure takes place. The AnacondaTM device consists of a series of NiTi rings sewn onto woven polyester fabric, a structure that despite its column stiffness is flexible enough to be used in very tortuous geometries. For the purposes of this study, a FE model of the device was built in Abaqus® (version 6.13-2) with the combination of beam, shell and surface elements; the choice of these building blocks was made to keep the computational cost to a minimum. The validation of the numerical model was performed by comparing the deployed position of a full stent graft device inside a constructed AAA with a duplicate set-up in Abaqus®. Specifically, an AAA geometry was built in CAD software and included regions of both high and low tortuosity. Subsequently, the CAD model was 3D printed into a transparent aneurysm, and a stent was deployed in the lab following the steps of the clinical procedure. Images on the frontal and sagittal planes of the experiment allowed the comparison with the results of the numerical model. By overlapping the experimental and computational images, the mean and maximum distances between the rings of the two models were measured in the longitudinal, and the transverse direction and, a 5mm upper bound was set as a limit commonly used by clinicians when working with simulations. The two models showed very good agreement of their spatial positioning, especially in the less tortuous regions. As a result, and despite the inherent uncertainties of a surgical procedure, the FE model allows confidence that the final position of the stent graft, when deployed in vivo, can also be predicted with significant accuracy. Moreover, the numerical model run in just a few hours, an encouraging result for applications in the clinical routine. In conclusion, the efficient modelling of a complicated structure which combines thin scaffolding and fabric has been demonstrated to be feasible. Furthermore, the prediction capabilities of the location of each stent ring, as well as the global shape of the graft, has been shown. This can allow surgeons to better plan their procedures and medical device manufacturers to optimize their designs. The current model can further be used as a starting point for patient specific CFD analysis.Keywords: AAA, efficiency, finite element analysis, stent deployment
Procedia PDF Downloads 191132 Training 'Green Ambassadors' in the Community-Action Learning Course
Authors: Friman Hen, Banner Ifaa, Shalom-Tuchin Bosmat, Einav Yulia
Abstract:
The action learning course is an academic course which involves academic learning and social activities. The courses deal with processes and social challenges, reveal different ideologies, and develop critical thinking and pragmatic ideas. Students receive course credits and a grade for being part of such courses. Participating students enroll in courses that involve action and activities to engage in the experiential learning process, thereby creating a dialogue and cross-fertilization between being taught in the classroom and experiencing the reality in the real world. A learning experience includes meeting with social organizations, institutions, and state authorities and carrying out practical work with diverse populations. Through experience, students strengthen their academic skills, formulate ethical attitudes toward reality, develop professional and civilian perspectives, and realize how they can influence their surrounding in the present and the hereafter. Under the guidance and supervision of Dr. Hen Friman, H.I.T. has built an innovative course that combines action and activities to increase the awareness and accessibility of the community in an experiential way. The end goal is to create Green Ambassadors—children with a high level of environmental awareness. This course is divided into two parts. The first part, focused on frontal teaching, delivers knowledge from extensive environmental fields to students. These areas include introduction to ecology, the process of electricity generation, air pollution, renewable energy, water economy, waste and recycling, and energy efficiency (first stage). In addition to the professional content in the environment field, students learn the method of effective and experiential teaching to younger learners (4 to 8 years old). With the attainment of knowledge, students are divided into operating groups. The second part of the course shows how the theory becomes practical and concrete. At this stage, students are asked to introduce to the first- and second-graders of ‘Revivim’ School in Holon a lesson of 90 minutes focused on presenting the issues and their importance during the course (second stage). This course is the beginning of a paradigm shift regarding energy usage in the modern society in Israel. The objective of the course is to expand worldwide and train the first and second-graders, and even pre-schoolers, in a wide scope to increase population awareness rate, both in Israel and all over the world, for a green future.Keywords: air pollution, green ambassador, recycling, renewable energy
Procedia PDF Downloads 242131 Application of Improved Semantic Communication Technology in Remote Sensing Data Transmission
Authors: Tingwei Shu, Dong Zhou, Chengjun Guo
Abstract:
Semantic communication is an emerging form of communication that realize intelligent communication by extracting semantic information of data at the source and transmitting it, and recovering the data at the receiving end. It can effectively solve the problem of data transmission under the situation of large data volume, low SNR and restricted bandwidth. With the development of Deep Learning, semantic communication further matures and is gradually applied in the fields of the Internet of Things, Uumanned Air Vehicle cluster communication, remote sensing scenarios, etc. We propose an improved semantic communication system for the situation where the data volume is huge and the spectrum resources are limited during the transmission of remote sensing images. At the transmitting, we need to extract the semantic information of remote sensing images, but there are some problems. The traditional semantic communication system based on Convolutional Neural Network cannot take into account the global semantic information and local semantic information of the image, which results in less-than-ideal image recovery at the receiving end. Therefore, we adopt the improved vision-Transformer-based structure as the semantic encoder instead of the mainstream one using CNN to extract the image semantic features. In this paper, we first perform pre-processing operations on remote sensing images to improve the resolution of the images in order to obtain images with more semantic information. We use wavelet transform to decompose the image into high-frequency and low-frequency components, perform bilinear interpolation on the high-frequency components and bicubic interpolation on the low-frequency components, and finally perform wavelet inverse transform to obtain the preprocessed image. We adopt the improved Vision-Transformer structure as the semantic coder to extract and transmit the semantic information of remote sensing images. The Vision-Transformer structure can better train the huge data volume and extract better image semantic features, and adopt the multi-layer self-attention mechanism to better capture the correlation between semantic features and reduce redundant features. Secondly, to improve the coding efficiency, we reduce the quadratic complexity of the self-attentive mechanism itself to linear so as to improve the image data processing speed of the model. We conducted experimental simulations on the RSOD dataset and compared the designed system with a semantic communication system based on CNN and image coding methods such as BGP and JPEG to verify that the method can effectively alleviate the problem of excessive data volume and improve the performance of image data communication.Keywords: semantic communication, transformer, wavelet transform, data processing
Procedia PDF Downloads 78130 Intensive Care Nursing Experience of a Lung Cancer Patient Receiving Palliative
Authors: Huang Wei-Yi
Abstract:
Objective: This article explores the intensive care nursing experience of a terminal lung cancer patient who received palliative care after tracheal intubation. The patient was nearing death, and the family experienced sadness and grief as they faced the patient’s deteriorating condition and impending death. Methods: The patient was diagnosed with lung cancer in 2018 and received chemotherapy and radiation therapy with regular outpatient follow-ups. Due to brain metastasis and recent poor pain control and treatment outcomes, the patient was admitted to the intensive care unit (ICU), where the tracheal tube was removed, and palliative care was initiated. During the care period, a holistic assessment was conducted, addressing the physical, psychological, social, and spiritual aspects of care. Medical records were reviewed, interviews and family meetings were held, and a comprehensive assessment was carried out by the critical care team in collaboration with the palliative care team. The primary nursing issues identified included pain, ineffective breathing patterns, fear of death, and altered tissue perfusion. Results: Throughout the care process, the palliative care nurse, along with the family, utilized listening, caring, companionship, pain management, essential oil massage, distraction, and comfortable positioning to alleviate the patient’s pain and breathing difficulties. The use of Morphine 6mg in 0.9% N/S 50ml IV drip q6h reduced the FLACC pain score from 6 to 3. The patient’s respiratory rate improved from 28 breaths/min to 18-22 breaths/min, and sleep duration increased from 4 to 7 uninterrupted hours. The holistic palliative care approach, coupled with the involvement of the palliative care team, facilitated expressions of gratitude, apologies, and love between the patient and family. Visiting hours were extended, and with the nurse’s assistance, these moments were recorded and shared with the patient’s consent, providing cherished memories for the family. The patient’s end-of-life experience was thus improved, and the family was able to find peace. This case also served to promote the concept of palliative care, ensuring that more patients and families receive high-quality nursing care. Conclusion: When caring for terminal patients, collaboration with the palliative care team, including social workers, clergy, psychologists, and nutritionists, is essential. Involving the family in decision-making and providing opportunities for closeness and expressions of gratitude improve personalized care and enhance the patient's quality of life. Upon transferring to the ward, the patient’s hemodynamic stability was maintained, including SBP 110-130 mmHg, respiratory rate 20-22 breaths/min, and pain score <3. The patient was later discharged and transitioned to home hospice care for ongoing support.Keywords: intensive care, lung cancer, palliative care, ICU
Procedia PDF Downloads 23129 Irradion: Portable Small Animal Imaging and Irradiation Unit
Authors: Josef Uher, Jana Boháčová, Richard Kadeřábek
Abstract:
In this paper, we present a multi-robot imaging and irradiation research platform referred to as Irradion, with full capabilities of portable arbitrary path computed tomography (CT). Irradion is an imaging and irradiation unit entirely based on robotic arms for research on cancer treatment with ion beams on small animals (mice or rats). The platform comprises two subsystems that combine several imaging modalities, such as 2D X-ray imaging, CT, and particle tracking, with precise positioning of a small animal for imaging and irradiation. Computed Tomography: The CT subsystem of the Irradion platform is equipped with two 6-joint robotic arms that position a photon counting detector and an X-ray tube independently and freely around the scanned specimen and allow image acquisition utilizing computed tomography. Irradiation measures nearly all conventional 2D and 3D trajectories of X-ray imaging with precisely calibrated and repeatable geometrical accuracy leading to a spatial resolution of up to 50 µm. In addition, the photon counting detectors allow X-ray photon energy discrimination, which can suppress scattered radiation, thus improving image contrast. It can also measure absorption spectra and recognize different materials (tissue) types. X-ray video recording and real-time imaging options can be applied for studies of dynamic processes, including in vivo specimens. Moreover, Irradion opens the door to exploring new 2D and 3D X-ray imaging approaches. We demonstrate in this publication various novel scan trajectories and their benefits. Proton Imaging and Particle Tracking: The Irradion platform allows combining several imaging modules with any required number of robots. The proton tracking module comprises another two robots, each holding particle tracking detectors with position, energy, and time-sensitive sensors Timepix3. Timepix3 detectors can track particles entering and exiting the specimen and allow accurate guiding of photon/ion beams for irradiation. In addition, quantifying the energy losses before and after the specimen brings essential information for precise irradiation planning and verification. Work on the small animal research platform Irradion involved advanced software and hardware development that will offer researchers a novel way to investigate new approaches in (i) radiotherapy, (ii) spectral CT, (iii) arbitrary path CT, (iv) particle tracking. The robotic platform for imaging and radiation research developed for the project is an entirely new product on the market. Preclinical research systems with precision robotic irradiation with photon/ion beams combined with multimodality high-resolution imaging do not exist currently. The researched technology can potentially cause a significant leap forward compared to the current, first-generation primary devices.Keywords: arbitrary path CT, robotic CT, modular, multi-robot, small animal imaging
Procedia PDF Downloads 89128 Peer Corrective Feedback on Written Errors in Computer-Mediated Communication
Authors: S. H. J. Liu
Abstract:
This paper aims to explore the role of peer Corrective Feedback (CF) in improving written productions by English-as-a- foreign-language (EFL) learners who work together via Wikispaces. It attempted to determine the effect of peer CF on form accuracy in English, such as grammar and lexis. Thirty-four EFL learners at the tertiary level were randomly assigned into the experimental (with peer feedback) or the control (without peer feedback) group; each group was subdivided into small groups of two or three. This resulted in six and seven small groups in the experimental and control groups, respectively. In the experimental group, each learner played a role as an assessor (providing feedback to others), as well as an assessee (receiving feedback from others). Each participant was asked to compose his/her written work and revise it based on the feedback. In the control group, on the other hand, learners neither provided nor received feedback but composed and revised their written work on their own. Data collected from learners’ compositions and post-task interviews were analyzed and reported in this study. Following the completeness of three writing tasks, 10 participants were selected and interviewed individually regarding their perception of collaborative learning in the Computer-Mediated Communication (CMC) environment. Language aspects to be analyzed included lexis (e.g., appropriate use of words), verb tenses (e.g., present and past simple), prepositions (e.g., in, on, and between), nouns, and articles (e.g., a/an). Feedback types consisted of CF, affective, suggestive, and didactic. Frequencies of feedback types and the accuracy of the language aspects were calculated. The results first suggested that accurate items were found more in the experimental group than in the control group. Such results entail that those who worked collaboratively outperformed those who worked non-collaboratively on the accuracy of linguistic aspects. Furthermore, the first type of CF (e.g., corrections directly related to linguistic errors) was found to be the most frequently employed type, whereas affective and didactic were the least used by the experimental group. The results further indicated that most participants perceived that peer CF was helpful in improving the language accuracy, and they demonstrated a favorable attitude toward working with others in the CMC environment. Moreover, some participants stated that when they provided feedback to their peers, they tended to pay attention to linguistic errors in their peers’ work but overlook their own errors (e.g., past simple tense) when writing. Finally, L2 or FL teachers or practitioners are encouraged to employ CMC technologies to train their students to give each other feedback in writing to improve the accuracy of the language and to motivate them to attend to the language system.Keywords: peer corrective feedback, computer-mediated communication (CMC), second or foreign language (L2 or FL) learning, Wikispaces
Procedia PDF Downloads 245127 Experimental Measurement of Equatorial Ring Current Generated by Magnetoplasma Sail in Three-Dimensional Spatial Coordinate
Authors: Masato Koizumi, Yuya Oshio, Ikkoh Funaki
Abstract:
Magnetoplasma Sail (MPS) is a future spacecraft propulsion that generates high levels of thrust by inducing an artificial magnetosphere to capture and deflect solar wind charged particles in order to transfer momentum to the spacecraft. By injecting plasma in the spacecraft’s magnetic field region, the ring current azimuthally drifts on the equatorial plane about the dipole magnetic field generated by the current flowing through the solenoid attached on board the spacecraft. This ring current results in magnetosphere inflation which improves the thrust performance of MPS spacecraft. In this present study, the ring current was experimentally measured using three Rogowski Current Probes positioned in a circular array about the laboratory model of MPS spacecraft. This investigation aims to determine the detailed structure of ring current through physical experimentation performed under two different magnetic field strengths engendered by varying the applied voltage on the solenoid with 300 V and 600 V. The expected outcome was that the three current probes would detect the same current since all three probes were positioned at equal radial distance of 63 mm from the center of the solenoid. Although experimental results were numerically implausible due to probable procedural error, the trends of the results revealed three pieces of perceptive evidence of the ring current behavior. The first aspect is that the drift direction of the ring current depended on the strength of the applied magnetic field. The second aspect is that the diamagnetic current developed at a radial distance not occupied by the three current probes under the presence of solar wind. The third aspect is that the ring current distribution varied along the circumferential path about the spacecraft’s magnetic field. Although this study yielded experimental evidence that differed from the original hypothesis, the three key findings of this study have informed two critical MPS design solutions that will potentially improve thrust performance. The first design solution is the positioning of the plasma injection point. Based on the implication of the first of the three aspects of ring current behavior, the plasma injection point must be located at a distance instead of at close proximity from the MPS Solenoid for the ring current to drift in the direction that will result in magnetosphere inflation. The second design solution, predicated by the third aspect of ring current behavior, is the symmetrical configuration of plasma injection points. In this study, an asymmetrical configuration of plasma injection points using one plasma source resulted in a non-uniform distribution of ring current along the azimuthal path. This distorts the geometry of the inflated magnetosphere which minimizes the deflection area for the solar wind. Therefore, to realize a ring current that best provides the maximum possible inflated magnetosphere, multiple plasma sources must be spaced evenly apart for the plasma to be injected evenly along its azimuthal path.Keywords: Magnetoplasma Sail, magnetosphere inflation, ring current, spacecraft propulsion
Procedia PDF Downloads 310126 Democratic Information Behavior of Social Scientists and Policy Makers in India
Authors: Mallikarjun Vaddenkeri, Suresh Jange
Abstract:
This research study reports results of information behaviour by members of faculty and research scholars of various departments of social sciences working at universities with a sample of 300 and Members of Legislative Assembly and Council with 216 samples in Karnataka State, India. The results reveal that 29.3% and 20.3% of Social Scientists indicated medium and high level of awareness of primary sources - Primary Journals are found to be at scale level 5 and 9. The usage of primary journals by social scientists is found to be 28% at level 4, 24% of the respondent’s opined use of primary Conference Proceedings at level 5 as medium level of use. Similarly, the use of Secondary Information Sources at scale 8 and 9 particularly in case of Dictionaries (31.0% and 5.0%), Encyclopaedias (22.3% and 6.3%), Indexing Periodicals (7.0% and 15.3%) and Abstracting Periodicals (5.7% and 20.7%). For searching information from Journals Literature available in CD-ROM version, Keywords (43.7%) followed by Keywords with logical operators (39.7%) have been used for finding the required information. Statistical inference reveals rejection of null hypothesis `there is no association between designation of the respondents and awareness of primary information resources’. On the other hand, educational qualification possessed by Legislative members, more than half of them possess graduate degree as their academic qualification (57.4%) and just 16.7% of the respondents possess graduate degree while only 26.8% of the respondents possess degree in law and just 1.8% possess post-graduate degree in law. About 42.6% indicated the importance of information required to discharge their duties and responsibilities as a Policy Maker in the scale 8, as a Scholar (27.8%) on a scale 6, as a politician (64.8%) on a scale 10 and as a Councillor (51.9%) on a scale 8. The most preferred information agencies/sources very often contacted for obtaining useful information are by means of contacting the people of Karnataka State Legislative Library, listening Radio programmes, viewing Television programmes and reading the newspapers. The methods adopted for obtaining needed information quite often by means of sending their assistants to libraries to gather information (35.2%) and personally visiting the information source (64.8%). The null hypotheses `There is no association between Members of Legislature and Opinion on the usefulness of the resources of the Karnataka State Legislature Library’ is accepted using F ANOVA test. The studies conclude with a note revamp the existing library system in its structure and adopt latest technologies and educate and train social scientists and Legislators in using these resources in the interest of academic, government policies and decision making of the country.Keywords: information use behaviour, government information, searching behaviour, policy makers
Procedia PDF Downloads 139125 AS-Geo: Arbitrary-Sized Image Geolocalization with Learnable Geometric Enhancement Resizer
Authors: Huayuan Lu, Chunfang Yang, Ma Zhu, Baojun Qi, Yaqiong Qiao, Jiangqian Xu
Abstract:
Image geolocalization has great application prospects in fields such as autonomous driving and virtual/augmented reality. In practical application scenarios, the size of the image to be located is not fixed; it is impractical to train different networks for all possible sizes. When its size does not match the size of the input of the descriptor extraction model, existing image geolocalization methods usually directly scale or crop the image in some common ways. This will result in the loss of some information important to the geolocalization task, thus affecting the performance of the image geolocalization method. For example, excessive down-sampling can lead to blurred building contour, and inappropriate cropping can lead to the loss of key semantic elements, resulting in incorrect geolocation results. To address this problem, this paper designs a learnable image resizer and proposes an arbitrary-sized image geolocation method. (1) The designed learnable image resizer employs the self-attention mechanism to enhance the geometric features of the resized image. Firstly, it applies bilinear interpolation to the input image and its feature maps to obtain the initial resized image and the resized feature maps. Then, SKNet (selective kernel net) is used to approximate the best receptive field, thus keeping the geometric shapes as the original image. And SENet (squeeze and extraction net) is used to automatically select the feature maps with strong contour information, enhancing the geometric features. Finally, the enhanced geometric features are fused with the initial resized image, to obtain the final resized images. (2) The proposed image geolocalization method embeds the above image resizer as a fronting layer of the descriptor extraction network. It not only enables the network to be compatible with arbitrary-sized input images but also enhances the geometric features that are crucial to the image geolocalization task. Moreover, the triplet attention mechanism is added after the first convolutional layer of the backbone network to optimize the utilization of geometric elements extracted by the first convolutional layer. Finally, the local features extracted by the backbone network are aggregated to form image descriptors for image geolocalization. The proposed method was evaluated on several mainstream datasets, such as Pittsburgh30K, Tokyo24/7, and Places365. The results show that the proposed method has excellent size compatibility and compares favorably to recently mainstream geolocalization methods.Keywords: image geolocalization, self-attention mechanism, image resizer, geometric feature
Procedia PDF Downloads 214124 Sentiment Analysis on University Students’ Evaluation of Teaching and Their Emotional Engagement
Authors: Elisa Santana-Monagas, Juan L. Núñez, Jaime León, Samuel Falcón, Celia Fernández, Rocío P. Solís
Abstract:
Teaching practices have been widely studied in relation to students' outcomes, positioning themselves as one of their strongest catalysts and influencing students' emotional experiences. In the higher education context, teachers become even more crucial as many students ground their decisions on which courses to enroll in based on opinions and ratings of teachers from other students. Unfortunately, sometimes universities do not provide the personal, social, and academic stimulation students demand to be actively engaged. To evaluate their teachers, universities often rely on students' evaluations of teaching (SET) collected via Likert scale surveys. Despite its usefulness, such a method has been questioned in terms of validity and reliability. Alternatively, researchers can rely on qualitative answers to open-ended questions. However, the unstructured nature of the answers and a large amount of information obtained requires an overwhelming amount of work. The present work presents an alternative approach to analyse such data: sentiment analysis. To the best of our knowledge, no research before has included results from SA into an explanatory model to test how students' sentiments affect their emotional engagement in class. The sample of the present study included a total of 225 university students (Mean age = 26.16, SD = 7.4, 78.7 % women) from the Educational Sciences faculty of a public university in Spain. Data collection took place during the academic year 2021-2022. Students accessed an online questionnaire using a QR code. They were asked to answer the following open-ended question: "If you had to explain to a peer who doesn't know your teacher how he or she communicates in class, what would you tell them?". Sentiment analysis was performed using Microsoft's pre-trained model. The reliability of the measure was estimated between the tool and one of the researchers who coded all answers independently. The Cohen's kappa and the average pairwise percent agreement were estimated with ReCal2. Cohen's kappa was .68, and the agreement reached was 90.8%, both considered satisfactory. To test the hypothesis relations among SA and students' emotional engagement, a structural equation model (SEM) was estimated. Results demonstrated a good fit of the data: RMSEA = .04, SRMR = .03, TLI = .99, CFI = .99. Specifically, the results showed that student’s sentiment regarding their teachers’ teaching positively predicted their emotional engagement (β == .16 [.02, -.30]). In other words, when students' opinion toward their instructors' teaching practices is positive, it is more likely for students to engage emotionally in the subject. Altogether, the results show a promising future for sentiment analysis techniques in the field of education. They suggest the usefulness of this tool when evaluating relations among teaching practices and student outcomes.Keywords: sentiment analysis, students' evaluation of teaching, structural-equation modelling, emotional engagement
Procedia PDF Downloads 83123 Control of Belts for Classification of Geometric Figures by Artificial Vision
Authors: Juan Sebastian Huertas Piedrahita, Jaime Arturo Lopez Duque, Eduardo Luis Perez Londoño, Julián S. Rodríguez
Abstract:
The process of generating computer vision is called artificial vision. The artificial vision is a branch of artificial intelligence that allows the obtaining, processing, and analysis of any type of information especially the ones obtained through digital images. Actually the artificial vision is used in manufacturing areas for quality control and production, as these processes can be realized through counting algorithms, positioning, and recognition of objects that can be measured by a single camera (or more). On the other hand, the companies use assembly lines formed by conveyor systems with actuators on them for moving pieces from one location to another in their production. These devices must be previously programmed for their good performance and must have a programmed logic routine. Nowadays the production is the main target of every industry, quality, and the fast elaboration of the different stages and processes in the chain of production of any product or service being offered. The principal base of this project is to program a computer that recognizes geometric figures (circle, square, and triangle) through a camera, each one with a different color and link it with a group of conveyor systems to organize the mentioned figures in cubicles, which differ from one another also by having different colors. This project bases on artificial vision, therefore the methodology needed to develop this project must be strict, this one is detailed below: 1. Methodology: 1.1 The software used in this project is QT Creator which is linked with Open CV libraries. Together, these tools perform to realize the respective program to identify colors and forms directly from the camera to the computer. 1.2 Imagery acquisition: To start using the libraries of Open CV is necessary to acquire images, which can be captured by a computer’s web camera or a different specialized camera. 1.3 The recognition of RGB colors is realized by code, crossing the matrices of the captured images and comparing pixels, identifying the primary colors which are red, green, and blue. 1.4 To detect forms it is necessary to realize the segmentation of the images, so the first step is converting the image from RGB to grayscale, to work with the dark tones of the image, then the image is binarized which means having the figure of the image in a white tone with a black background. Finally, we find the contours of the figure in the image to detect the quantity of edges to identify which figure it is. 1.5 After the color and figure have been identified, the program links with the conveyor systems, which through the actuators will classify the figures in their respective cubicles. Conclusions: The Open CV library is a useful tool for projects in which an interface between a computer and the environment is required since the camera obtains external characteristics and realizes any process. With the program for this project any type of assembly line can be optimized because images from the environment can be obtained and the process would be more accurate.Keywords: artificial intelligence, artificial vision, binarized, grayscale, images, RGB
Procedia PDF Downloads 378122 Examining Attrition in English Education: A Qualitative Study of the Impact of Preparation, Persistence, and Dispositions in Teacher Education
Authors: Pamela K. Coke, Heidi Frederiksen, Ann Sebald
Abstract:
Over the past three years, the researchers have been tracking a rise in the number of teacher education candidates leaving the field before completing their university’s educator preparation program. At their institution, this rise is most pronounced in English Education. The purpose of this qualitative research study is to understand English Education teacher candidates' expectations in becoming prepared educators at each phase of their four phase teacher education program at one institution of higher education in the United States. Research questions include: To what extent do we find differences in teacher candidates' expectations of their teacher training program and student teaching experiences based upon undergraduate and graduate programs? Why do (or do not) teacher candidates persist in their teacher training program and student teaching experiences? How do dispositions develop through the course of the teacher training program? What supports do teacher candidates self-identify as needing at each phase of the teacher training program? Based upon participant interviews at each phase of the teacher education program, the researchers, all teacher educators, examine the extent to which English Education students feel prepared to student teach, focusing on preparation, persistence, and dispositions. The Colorado State University Center for Educator Preparation (CEP) provides students with information about teaching dispositions, or desired professional behaviors, throughout their education program. CEP focuses these dispositions around nine categories: Professional Behaviors, Initiative and Dependability, Tact and Judgment, Ethical Behavior and Integrity, Collegiality and Responsiveness, Effective Communicator, Desire to Improve Own Performance, Culturally Responsive, and Commitment to the Profession. Currently, in the first phase of a four phase study, initial results indicate participants expect their greatest joys will be working with and learning from students. They anticipate their greatest challenges will involve discipline and confidence. They predict they will persist in their program because they believe the country needs well-prepared teachers and they have a commitment to their professional growth. None of the participants thus far could imagine why they would leave the program. With regard to strongest and weakest dispositions, results are mixed. Some participants see Tact and Judgment as their strongest disposition; others see it as their weakest. All participants stated mentoring is a necessary support at every phase of the teacher preparation process. This study informs the way teacher educators train and evaluate teacher candidates, and has implications for the frequency and types of feedback students receive from mentors and supervisors. This research contributes to existing work on teacher retention, candidate persistence, and dispositional development.Keywords: English education, dispositions, persistence, teacher preparation
Procedia PDF Downloads 322121 Effects of Acacia Honey Drink Ingestion during Rehydration after Exercise Compared to Sports Drink on Physiological Parameters and Subsequent Running Performance in the Heat
Authors: Foong Kiew Ooi, Aidi Naim Mohamad Samsani, Chee Keong Chen, Mohamed Saat Ismail
Abstract:
Introduction: Prolonged exercise in a hot and humid environment can result in glycogen depletion and associated with loss of body fluid. Carbohydrate contained in sports beverages is beneficial for improving sports performance and preventing dehydration. Carbohydrate contained in honey is believed can be served as an alternative form of carbohydrate for enhancing sports performance. Objective: To investigate the effectiveness of honey drink compared to sports drink as a recovery aid for running performance and physiological parameters in the heat. Method: Ten male recreational athletes (age: 22.2 ± 2.0 years, VO2max: 51.5 ± 3.7 ml.kg-1.min-1) participated in this randomized cross-over study. On each trial, participants were required to run for 1 hour in the glycogen depletion phase (Run-1), followed by a rehydration phase for 2 hours and subsequently a 20 minutes time trial performance (Run-2). During Run-1, subjects were required to run on the treadmill in the heat (31°C) with 70% relative humidity at 70 % of their VO2max. During rehydration phase, participants drank either honey drink or sports drink, or plain water with amount equivalent to 150% of body weight loss in dispersed interval (60 %, 50 % and 40 %) at 0 min, 30 min and 60 min respectively. Subsequently, time trial was performed by the participants in 20 minutes and the longest distance covered was recorded. Physiological parameters were analysed using two-way ANOVA with repeated measure and time trial performance was analysed using one-way ANOVA. Results: Result showed that Acacia honey elicited a better time trial performance with significantly longer distance compared to water trial (P<0.05). However, there was no significant difference between Acacia honey and sport drink trials (P > 0.05). Acacia honey and sports drink trials elicited 249 m (8.24 %) and 211 m (6.79 %) longer in distance compared to the water trial respectively. For physiological parameters, plasma glucose, plasma insulin and plasma free fatty acids in Acacia honey and sports drink trials were significantly higher compared to the water trial respectively during rehydration phase and time trial running performance phase. There were no significant differences in body weight changes, oxygen uptake, hematocrit, plasma volume changes and plasma cortisol in all the trials. Conclusion: Acacia honey elicited greatest beneficial effects on sports performance among the drinks, thus it has potential to be used for rehydration in athletes who train and compete in hot environment.Keywords: honey drink, rehydration, sports performance, plasma glucose, plasma insulin, plasma cortisol
Procedia PDF Downloads 309120 Efficiency of Maritime Simulator Training in Oil Spill Response Competence Development
Authors: Antti Lanki, Justiina Halonen, Juuso Punnonen, Emmi Rantavuo
Abstract:
Marine oil spill response operation requires extensive vessel maneuvering and navigation skills. At-sea oil containment and recovery include both single vessel and multi-vessel operations. Towing long oil containment booms that are several hundreds of meters in length, is a challenge in itself. Boom deployment and towing in multi-vessel configurations is an added challenge that requires precise coordination and control of the vessels. Efficient communication, as a prerequisite for shared situational awareness, is needed in order to execute the response task effectively. To gain and maintain adequate maritime skills, practical training is needed. Field exercises are the most effective way of learning, but especially the related vessel operations are resource-intensive and costly. Field exercises may also be affected by environmental limitations such as high sea-state or other adverse weather conditions. In Finland, the seasonal ice-coverage also limits the training period to summer seasons only. In addition, environmental sensitiveness of the sea area restricts the use of real oil or other target substances. This paper examines, whether maritime simulator training can offer a complementary method to overcome the training challenges related to field exercises. The objective is to assess the efficiency and the learning impact of simulator training, and the specific skills that can be trained most effectively in simulators. This paper provides an overview of learning results from two oil spill response pilot courses, in which maritime navigational bridge simulators were used to train the oil spill response authorities. The simulators were equipped with an oil spill functionality module. The courses were targeted at coastal Fire and Rescue Services responsible for near shore oil spill response in Finland. The competence levels of the participants were surveyed before and after the course in order to measure potential shifts in competencies due to the simulator training. In addition to the quantitative analysis, the efficiency of the simulator training is evaluated qualitatively through feedback from the participants. The results indicate that simulator training is a valid and effective method for developing marine oil spill response competencies that complement traditional field exercises. Simulator training provides a safe environment for assessing various oil containment and recovery tactics. One of the main benefits of the simulator training was found to be the immediate feedback the spill modelling software provides on the oil spill behaviour as a reaction to response measures.Keywords: maritime training, oil spill response, simulation, vessel manoeuvring
Procedia PDF Downloads 172119 Improving Patient Outcomes for Aspiration Pneumonia
Authors: Mary Farrell, Maria Soubra, Sandra Vega, Dorothy Kakraba, Joanne Fontanilla, Moira Kendra, Danielle Tonzola, Stephanie Chiu
Abstract:
Pneumonia is the most common infectious cause of hospitalizations in the United States, with more than one million admissions annually and costs of $10 billion every year, making it the 8th leading cause of death. Aspiration pneumonia is an aggressive type of pneumonia that results from inhalation of oropharyngeal secretions and/or gastric contents and is preventable. The authors hypothesized that an evidence-based aspiration pneumonia clinical care pathway could reduce 30-day hospital readmissions and mortality rates, while improving the overall care of patients. We conducted a retrospective chart review on 979 patients discharged with aspiration pneumonia from January 2021 to December 2022 at Overlook Medical Center. The authors identified patients who were coded with aspiration pneumonia and/or stable sepsis. Secondarily, we identified 30-day readmission rates for aspiration pneumonia from a SNF. The Aspiration Pneumonia Clinical Care Pathway starts in the emergency department (ED) with the initiation of antimicrobials within 4 hours of admission and early recognition of aspiration. Once this is identified, a swallow test is initiated by the bedside nurse, and if the patient demonstrates dysphagia, they are maintained on strict nothing by mouth (NPO) followed by a speech and language pathologist (SLP) referral for an appropriate modified diet recommendation. Aspiration prevention techniques included the avoidance of straws, 45-degree positioning, no talking during meals, taking small bites, placement of the aspiration wrist band, and consuming meals out of the bed in a chair. Nursing education was conducted with a newly created online learning module about aspiration pneumonia. The authors identified 979 patients, with an average age of 73.5 years old, who were diagnosed with aspiration pneumonia on the index hospitalization. These patients were reviewed for a 30-day readmission for aspiration pneumonia or stable sepsis, and mortality rates from January 2021 to December 2022 at Overlook Medical Center (OMC). The 30-day readmission rates were significantly lower in the cohort that received the clinical care pathway (35.0% vs. 27.5%, p = 0.011). When evaluating the mortality rates in the pre and post intervention cohort the authors discovered the mortality rates were lower in the post intervention cohort (23.7% vs 22.4%, p = 0.61) Mortality among non-white (self-reported as non-white) patients were lower in the post intervention cohort (34.4% vs. 21.0% , p = 0.05). Patients who reported as a current smoker/vaper in the pre and post cohorts had increased mortality rates (5.9% vs 22%). There was a decrease in mortality for the male population but an increase in mortality for women in the pre and post cohorts (19% vs. 25%). The authors attributed this increase in mortality in the post intervention cohort to more active smokers, more former smokers, and more being admitted from a SNF. This research identified that implementation of an Aspiration Pneumonia Clinical Care Pathway showed a statistically significant decrease in readmission rates and mortality rates in non-whites. The 30-day readmission rates were lower in the cohort that received the clinical care pathway (35.0% vs. 27.5%, p = 0.011).Keywords: aspiration pneumonia, mortality, quality improvement, 30-day pneumonia readmissions
Procedia PDF Downloads 62118 Data-Driven Surrogate Models for Damage Prediction of Steel Liquid Storage Tanks under Seismic Hazard
Authors: Laura Micheli, Majd Hijazi, Mahmoud Faytarouni
Abstract:
The damage reported by oil and gas industrial facilities revealed the utmost vulnerability of steel liquid storage tanks to seismic events. The failure of steel storage tanks may yield devastating and long-lasting consequences on built and natural environments, including the release of hazardous substances, uncontrolled fires, and soil contamination with hazardous materials. It is, therefore, fundamental to reliably predict the damage that steel liquid storage tanks will likely experience under future seismic hazard events. The seismic performance of steel liquid storage tanks is usually assessed using vulnerability curves obtained from the numerical simulation of a tank under different hazard scenarios. However, the computational demand of high-fidelity numerical simulation models, such as finite element models, makes the vulnerability assessment of liquid storage tanks time-consuming and often impractical. As a solution, this paper presents a surrogate model-based strategy for predicting seismic-induced damage in steel liquid storage tanks. In the proposed strategy, the surrogate model is leveraged to reduce the computational demand of time-consuming numerical simulations. To create the data set for training the surrogate model, field damage data from past earthquakes reconnaissance surveys and reports are collected. Features representative of steel liquid storage tank characteristics (e.g., diameter, height, liquid level, yielding stress) and seismic excitation parameters (e.g., peak ground acceleration, magnitude) are extracted from the field damage data. The collected data are then utilized to train a surrogate model that maps the relationship between tank characteristics, seismic hazard parameters, and seismic-induced damage via a data-driven surrogate model. Different types of surrogate algorithms, including naïve Bayes, k-nearest neighbors, decision tree, and random forest, are investigated, and results in terms of accuracy are reported. The model that yields the most accurate predictions is employed to predict future damage as a function of tank characteristics and seismic hazard intensity level. Results show that the proposed approach can be used to estimate the extent of damage in steel liquid storage tanks, where the use of data-driven surrogates represents a viable alternative to computationally expensive numerical simulation models.Keywords: damage prediction , data-driven model, seismic performance, steel liquid storage tanks, surrogate model
Procedia PDF Downloads 143117 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification
Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens
Abstract:
Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage
Procedia PDF Downloads 189