Search results for: improving the quality of image
13926 Towards an Enhanced Quality of IPTV Media Server Architecture over Software Defined Networking
Authors: Esmeralda Hysenbelliu
Abstract:
The aim of this paper is to present the QoE (Quality of Experience) IPTV SDN-based media streaming server enhanced architecture for configuring, controlling, management and provisioning the improved delivery of IPTV service application with low cost, low bandwidth, and high security. Furthermore, it is given a virtual QoE IPTV SDN-based topology to provide an improved IPTV service based on QoE Control and Management of multimedia services functionalities. Inside OpenFlow SDN Controller there are enabled in high flexibility and efficiency Service Load-Balancing Systems; based on the Loading-Balance module and based on GeoIP Service. This two Load-balancing system improve IPTV end-users Quality of Experience (QoE) with optimal management of resources greatly. Through the key functionalities of OpenFlow SDN controller, this approach produced several important features, opportunities for overcoming the critical QoE metrics for IPTV Service like achieving incredible Fast Zapping time (Channel Switching time) < 0.1 seconds. This approach enabled Easy and Powerful Transcoding system via FFMPEG encoder. It has the ability to customize streaming dimensions bitrates, latency management and maximum transfer rates ensuring delivering of IPTV streaming services (Audio and Video) in high flexibility, low bandwidth and required performance. This QoE IPTV SDN-based media streaming architecture unlike other architectures provides the possibility of Channel Exchanging between several IPTV service providers all over the word. This new functionality brings many benefits as increasing the number of TV channels received by end –users with low cost, decreasing stream failure time (Channel Failure time < 0.1 seconds) and improving the quality of streaming services.Keywords: improved quality of experience (QoE), OpenFlow SDN controller, IPTV service application, softwarization
Procedia PDF Downloads 14613925 Pore Pressure and In-situ Stress Magnitudes with Image Log Processing and Geological Interpretation in the Haoud Berkaoui Hydrocarbon Field, Northeastern Algerian Sahara
Authors: Rafik Baouche, Rabah Chaouchi
Abstract:
This work reports the first comprehensive stress field interpretation from the eleven recently drilled wells in the Berkaoui Basin, Algerian Sahara. A cumulative length of 7000+m acoustic image logs from 06 vertical wells were investigated, and a mean NW-SE (128°-145° N) maximum horizontal stress (SHMax) orientation is inferred from the B-D quality wellbore breakouts. The study integrates log-based approach with the downhole measurements to infer pore pressure, in-situ stress magnitudes. Vertical stress (Sv), interpreted from the bulk-density profiles, has an average gradient of 22.36 MPa/km. The Ordovician and Cambrian reservoirs have a pore pressure gradient of 13.47-13.77 MPa/km, which is more than the hydrostatic pressure regime. A 17.2-18.3 MPa/km gradient of minimum horizontal stress (Shmin) is inferred from the fracture closure pressure in the reservoirs. Breakout widths constrained the SHMax magnitude in the 23.8-26.5 MPa/km range. Subsurface stress distribution in the central Saharan Algeria indicates that the present-day stress field in the Berkaoui Basin is principally strike-slip faulting (SHMax > Sv > Shmin). Inferences are drawn on the regional stress pattern and drilling and reservoir development.Keywords: stress, imagery, breakouts, sahara
Procedia PDF Downloads 7413924 Estimation of PM10 Concentration Using Ground Measurements and Landsat 8 OLI Satellite Image
Authors: Salah Abdul Hameed Saleh, Ghada Hasan
Abstract:
The aim of this work is to produce an empirical model for the determination of particulate matter (PM10) concentration in the atmosphere using visible bands of Landsat 8 OLI satellite image over Kirkuk city- IRAQ. The suggested algorithm is established on the aerosol optical reflectance model. The reflectance model is a function of the optical properties of the atmosphere, which can be related to its concentrations. The concentration of PM10 measurements was collected using Particle Mass Profiler and Counter in a Single Handheld Unit (Aerocet 531) meter simultaneously by the Landsat 8 OLI satellite image date. The PM10 measurement locations were defined by a handheld global positioning system (GPS). The obtained reflectance values for visible bands (Coastal aerosol, Blue, Green and blue bands) of landsat 8 OLI image were correlated with in-suite measured PM10. The feasibility of the proposed algorithms was investigated based on the correlation coefficient (R) and root-mean-square error (RMSE) compared with the PM10 ground measurement data. A choice of our proposed multispectral model was founded on the highest value correlation coefficient (R) and lowest value of the root mean square error (RMSE) with PM10 ground data. The outcomes of this research showed that visible bands of Landsat 8 OLI were capable of calculating PM10 concentration with an acceptable level of accuracy.Keywords: air pollution, PM10 concentration, Lansat8 OLI image, reflectance, multispectral algorithms, Kirkuk area
Procedia PDF Downloads 44113923 Assessment of Environmental Quality of an Urban Setting
Authors: Namrata Khatri
Abstract:
The rapid growth of cities is transforming the urban environment and posing significant challenges for environmental quality. This study examines the urban environment of Belagavi in Karnataka, India, using geostatistical methods to assess the spatial pattern and land use distribution of the city and to evaluate the quality of the urban environment. The study is driven by the necessity to assess the environmental impact of urbanisation. Satellite data was utilised to derive information on land use and land cover. The investigation revealed that land use had changed significantly over time, with a drop in plant cover and an increase in built-up areas. High-resolution satellite data was also utilised to map the city's open areas and gardens. GIS-based research was used to assess public green space accessibility and to identify regions with inadequate waste management practises. The findings revealed that garbage collection and disposal techniques in specific areas of the city needed to be improved. Moreover, the study evaluated the city's thermal environment using Landsat 8 land surface temperature (LST) data. The investigation found that built-up regions had higher LST values than green areas, pointing to the city's urban heat island (UHI) impact. The study's conclusions have far-reaching ramifications for urban planners and politicians in Belgaum and other similar cities. The findings may be utilised to create sustainable urban planning strategies that address the environmental effect of urbanisation while also improving the quality of life for city dwellers. Satellite data and high-resolution satellite pictures were gathered for the study, and remote sensing and GIS tools were utilised to process and analyse the data. Ground truthing surveys were also carried out to confirm the accuracy of the remote sensing and GIS-based data. Overall, this study provides a complete assessment of Belgaum's environmental quality and emphasizes the potential of remote sensing and geographic information systems (GIS) approaches in environmental assessment and management.Keywords: environmental quality, UEQ, remote sensing, GIS
Procedia PDF Downloads 8013922 Understanding Retail Benefits Trade-offs of Dynamic Expiration Dates (DED) Associated with Food Waste
Authors: Junzhang Wu, Yifeng Zou, Alessandro Manzardo, Antonio Scipioni
Abstract:
Dynamic expiration dates (DEDs) play an essential role in reducing food waste in the context of the sustainable cold chain and food system. However, it is unknown for the trades-off in retail benefits when setting an expiration date on fresh food products. This study aims to develop a multi-dimensional decision-making model that integrates DEDs with food waste based on wireless sensor network technology. The model considers the initial quality of fresh food and the change rate of food quality with the storage temperature as cross-independent variables to identify the potential impacts of food waste in retail by applying s DEDs system. The results show that retail benefits from the DEDs system depend on each scenario despite its advanced technology. In the DEDs, the storage temperature of the retail shelf leads to the food waste rate, followed by the change rate of food quality and the initial quality of food products. We found that the DEDs system could reduce food waste when food products are stored at lower temperature areas. Besides, the potential of food savings in an extended replenishment cycle is significantly more advantageous than the fixed expiration dates (FEDs). On the other hand, the information-sharing approach of the DEDs system is relatively limited in improving sustainable assessment performance of food waste in retail and even misleads consumers’ choices. The research provides a comprehensive understanding to support the techno-economic choice of the DEDs associated with food waste in retail.Keywords: dynamic expiry dates (DEDs), food waste, retail benefits, fixed expiration dates (FEDs)
Procedia PDF Downloads 11213921 Brand Extension and Customer WOM: Evidence from the Sports Industry
Authors: Jim Shih-Chiao Chin, Yu Ting Yeh, Shui Lien Chen, Yi-Fen Tsai
Abstract:
his study is taking Adidas Company as the object, explored the brand awareness directly or indirectly affects brand affect and word of mouth. First, explored the brand awareness on category fit and image fit, and examined the influence of category fit and image fit on extension attitude. This study then designates the effect of extension attitude on brand affect and word-of-mouth. The relationship of brand awareness on brand affect and word-of-mouth was also explored. The study participants are people who have purchased Adidas extension products. A total of 700 valid questionnaires were collected and statistical software AMOS 20.0 was used to examine the research hypotheses by using structural equation modeling (SEM). Finally, theoretical implications and research directions are provided for future studies.Keywords: brand extension, brand awareness, product category fit, brand image fit, brand affect, word-of-mouth (WOM)
Procedia PDF Downloads 33113920 Identification System for Grading Banana in Food Processing Industry
Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan
Abstract:
In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.Keywords: banana, food processing, identification system, neural network
Procedia PDF Downloads 46613919 Immature Palm Tree Detection Using Morphological Filter for Palm Counting with High Resolution Satellite Image
Authors: Nur Nadhirah Rusyda Rosnan, Nursuhaili Najwa Masrol, Nurul Fatiha MD Nor, Mohammad Zafrullah Mohammad Salim, Sim Choon Cheak
Abstract:
Accurate inventories of oil palm planted areas are crucial for plantation management as this would impact the overall economy and production of oil. One of the technological advancements in the oil palm industry is semi-automated palm counting, which is replacing conventional manual palm counting via digitizing aerial imagery. Most of the semi-automated palm counting method that has been developed was limited to mature palms due to their ideal canopy size represented by satellite image. Therefore, immature palms were often left out since the size of the canopy is barely visible from satellite images. In this paper, an approach using a morphological filter and high-resolution satellite image is proposed to detect immature palm trees. This approach makes it possible to count the number of immature oil palm trees. The method begins with an erosion filter with an appropriate window size of 3m onto the high-resolution satellite image. The eroded image was further segmented using watershed segmentation to delineate immature palm tree regions. Then, local minimum detection was used because it is hypothesized that immature oil palm trees are located at the local minimum within an oil palm field setting in a grayscale image. The detection points generated from the local minimum are displaced to the center of the immature oil palm region and thinned. Only one detection point is left that represents a tree. The performance of the proposed method was evaluated on three subsets with slopes ranging from 0 to 20° and different planting designs, i.e., straight and terrace. The proposed method was able to achieve up to more than 90% accuracy when compared with the ground truth, with an overall F-measure score of up to 0.91.Keywords: immature palm count, oil palm, precision agriculture, remote sensing
Procedia PDF Downloads 7413918 Marker-Controlled Level-Set for Segmenting Breast Tumor from Thermal Images
Authors: Swathi Gopakumar, Sruthi Krishna, Shivasubramani Krishnamoorthy
Abstract:
Contactless, painless and radiation-free thermal imaging technology is one of the preferred screening modalities for detection of breast cancer. However, poor signal to noise ratio and the inexorable need to preserve edges defining cancer cells and normal cells, make the segmentation process difficult and hence unsuitable for computer-aided diagnosis of breast cancer. This paper presents key findings from a research conducted on the appraisal of two promising techniques, for the detection of breast cancer: (I) marker-controlled, Level-set segmentation of anisotropic diffusion filtered preprocessed image versus (II) Segmentation using marker-controlled level-set on a Gaussian-filtered image. Gaussian-filtering processes the image uniformly, whereas anisotropic filtering processes only in specific areas of a thermographic image. The pre-processed (Gaussian-filtered and anisotropic-filtered) images of breast samples were then applied for segmentation. The segmentation of breast starts with initial level-set function. In this study, marker refers to the position of the image to which initial level-set function is applied. The markers are generally placed on the left and right side of the breast, which may vary with the breast size. The proposed method was carried out on images from an online database with samples collected from women of varying breast characteristics. It was observed that the breast was able to be segmented out from the background by adjustment of the markers. From the results, it was observed that as a pre-processing technique, anisotropic filtering with level-set segmentation, preserved the edges more effectively than Gaussian filtering. Segmented image, by application of anisotropic filtering was found to be more suitable for feature extraction, enabling automated computer-aided diagnosis of breast cancer.Keywords: anisotropic diffusion, breast, Gaussian, level-set, thermograms
Procedia PDF Downloads 37813917 Virtual Metrology for Copper Clad Laminate Manufacturing
Authors: Misuk Kim, Seokho Kang, Jehyuk Lee, Hyunchang Cho, Sungzoon Cho
Abstract:
In semiconductor manufacturing, virtual metrology (VM) refers to methods to predict properties of a wafer based on machine parameters and sensor data of the production equipment, without performing the (costly) physical measurement of the wafer properties (Wikipedia). Additional benefits include avoidance of human bias and identification of important factors affecting the quality of the process which allow improving the process quality in the future. It is however rare to find VM applied to other areas of manufacturing. In this work, we propose to use VM to copper clad laminate (CCL) manufacturing. CCL is a core element of a printed circuit board (PCB) which is used in smartphones, tablets, digital cameras, and laptop computers. The manufacturing of CCL consists of three processes: Treating, lay-up, and pressing. Treating, the most important process among the three, puts resin on glass cloth, heat up in a drying oven, then produces prepreg for lay-up process. In this process, three important quality factors are inspected: Treated weight (T/W), Minimum Viscosity (M/V), and Gel Time (G/T). They are manually inspected, incurring heavy cost in terms of time and money, which makes it a good candidate for VM application. We developed prediction models of the three quality factors T/W, M/V, and G/T, respectively, with process variables, raw material, and environment variables. The actual process data was obtained from a CCL manufacturer. A variety of variable selection methods and learning algorithms were employed to find the best prediction model. We obtained prediction models of M/V and G/T with a high enough accuracy. They also provided us with information on “important” predictor variables, some of which the process engineers had been already aware and the rest of which they had not. They were quite excited to find new insights that the model revealed and set out to do further analysis on them to gain process control implications. T/W did not turn out to be possible to predict with a reasonable accuracy with given factors. The very fact indicates that the factors currently monitored may not affect T/W, thus an effort has to be made to find other factors which are not currently monitored in order to understand the process better and improve the quality of it. In conclusion, VM application to CCL’s treating process was quite successful. The newly built quality prediction model allowed one to reduce the cost associated with actual metrology as well as reveal some insights on the factors affecting the important quality factors and on the level of our less than perfect understanding of the treating process.Keywords: copper clad laminate, predictive modeling, quality control, virtual metrology
Procedia PDF Downloads 34913916 Assessment of Technical and Vocational Education and Training Training Quality Factors and Their Impact on Low Enrollment Rates in Ethiopian Technical and Vocational Education and Training Colleges
Authors: Abebe Tibebu
Abstract:
This study investigates the quality of training factors in Ethiopian Technical and Vocational Education and Training (TVET) colleges and their impact on declining enrollment rates. Employing a descriptive survey design, both quantitative and qualitative data were collected from diverse stakeholders, including Grade 12 graduates, current TVET trainees, trainers, college deans, community members, high school directors, teachers, and officials from TVET government agencies. The sample included 20 TVET centers from various Ethiopian regions. Secondary data were obtained from college and government documents, while primary data were gathered through questionnaires, interviews, focus group discussions, and observations. Analysis was conducted using descriptive statistics with SPSS, capturing response frequencies and percentages. The study's findings highlight several key factors affecting TVET enrollment: limited infrastructure capacity, insufficient trainer competency, misaligned curriculum, low-quality training delivery particularly in cooperative training implementation and industry partnership and low success rates on Certification of Competency (CoC) exams. Many TVET institutions lack qualified trainers, adequate machinery, and timely provision of materials for practical skills training. Based on these findings, the study recommends enhanced infrastructure investment, professional development for trainers, curriculum adjustments to better align with industry needs, and standardized assessment practices. Addressing these areas through collaborative efforts with government bodies and industry stakeholders is essential to improving the quality and appeal of Ethiopian TVET programs, ultimately strengthening enrollment and outcomes.Keywords: TVET, quality factors, enrollment, potentially enrolled
Procedia PDF Downloads 713915 Estimation of Asphalt Pavement Surfaces Using Image Analysis Technique
Authors: Mohammad A. Khasawneh
Abstract:
Asphalt concrete pavements gradually lose their skid resistance causing safety problems especially under wet conditions and high driving speeds. In order to enact the actual field polishing and wearing process of asphalt pavement surfaces in a laboratory setting, several laboratory-scale accelerated polishing devices were developed by different agencies. To mimic the actual process, friction and texture measuring devices are needed to quantify surface deterioration at different polishing intervals that reflect different stages of the pavement life. The test could still be considered lengthy and to some extent labor-intensive. Therefore, there is a need to come up with another method that can assist in investigating the bituminous pavement surface characteristics in a practical and time-efficient test procedure. The purpose of this paper is to utilize a well-developed image analysis technique to characterize asphalt pavement surfaces without the need to use conventional friction and texture measuring devices in an attempt to shorten and simplify the polishing procedure in the lab. Promising findings showed the possibility of using image analysis in lieu of the labor-sensitive-variable-in-nature friction and texture measurements. It was found that the exposed aggregate surface area of asphalt specimens made from limestone and gravel aggregates produced solid evidence of the validity of this method in describing asphalt pavement surfaces. Image analysis results correlated well with the British Pendulum Numbers (BPN), Polish Values (PV) and Mean Texture Depth (MTD) values.Keywords: friction, image analysis, polishing, statistical analysis, texture
Procedia PDF Downloads 30413914 Guests’ Perceptions of Service Quality Performance in Saudi Hotels: Testing the Relation with Brand Loyalty, and Gender through SERVPERF
Authors: Mohamed Mohsen
Abstract:
The purpose of this study is to explore the level of service quality performance from the perspectives of hotel guests. The aim is to examine hotel guests’ perceptions of service quality performance and its relation with their brand loyalty and gender. The study utilized the instrument of SERVPERF developed by Cronin and Taylor (1992) to measure service quality performance. The study was conducted in three upscale hotels in Saudi Arabia. The study found that service quality performance is significantly correlated to both brand loyalty and gender of hotel guests. The study also found that loyal and female hotel guests have perceptions of service quality performance than do non-loyal and male hotel guests. This research is the first empirical study in the Middle East that links service quality performance with brand loyalty and gender of hotel guests.Keywords: service quality, SERVPERF, customer satisfaction, brand loyalty, gender
Procedia PDF Downloads 34713913 Deep Neural Networks for Restoration of Sky Images Affected by Static and Anisotropic Aberrations
Authors: Constanza A. Barriga, Rafael Bernardi, Amokrane Berdja, Christian D. Guzman
Abstract:
Most image restoration methods in astronomy rely upon probabilistic tools that infer the best solution for a deconvolution problem. They achieve good performances when the point spread function (PSF) is spatially invariable in the image plane. However, this latter condition is not always satisfied with real optical systems. PSF angular variations cannot be evaluated directly from the observations, neither be corrected at a pixel resolution. We have developed a method for the restoration of images affected by static and anisotropic aberrations using deep neural networks that can be directly applied to sky images. The network is trained using simulated sky images corresponding to the T-80 telescope optical system, an 80 cm survey imager at Cerro Tololo (Chile), which are synthesized using a Zernike polynomial representation of the optical system. Once trained, the network can be used directly on sky images, outputting a corrected version of the image, which has a constant and known PSF across its field-of-view. The method was tested with the T-80 telescope, achieving better results than with PSF deconvolution techniques. We present the method and results on this telescope.Keywords: aberrations, deep neural networks, image restoration, variable point spread function, wide field images
Procedia PDF Downloads 13413912 A Custom Convolutional Neural Network with Hue, Saturation, Value Color for Malaria Classification
Authors: Ghazala Hcini, Imen Jdey, Hela Ltifi
Abstract:
Malaria disease should be considered and handled as a potential restorative catastrophe. One of the most challenging tasks in the field of microscopy image processing is due to differences in test design and vulnerability of cell classifications. In this article, we focused on applying deep learning to classify patients by identifying images of infected and uninfected cells. We performed multiple forms, counting a classification approach using the Hue, Saturation, Value (HSV) color space. HSV is used since of its superior ability to speak to image brightness; at long last, for classification, a convolutional neural network (CNN) architecture is created. Clusters of focus were used to deliver the classification. The highlights got to be forbidden, and a few more clamor sorts are included in the information. The suggested method has a precision of 99.79%, a recall value of 99.55%, and provides 99.96% accuracy.Keywords: deep learning, convolutional neural network, image classification, color transformation, HSV color, malaria diagnosis, malaria cells images
Procedia PDF Downloads 8613911 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores
Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay
Abstract:
Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.Keywords: retail stores, faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition
Procedia PDF Downloads 15413910 Transdisciplinary Attitude in the Classroom: Producing Quality of Being
Authors: Marie-Laure Mimoun-Sorel
Abstract:
Scholars concerned with the destiny of human species point out that our future will not only depend on progress made in technology and sciences but above all it will depend on human progress understood as quality of being. Teachers are significant force in developing a knowledgeable, creative, productive and democratic society. The values that underpin their profession are integrity, respect and responsibility. Therefore, being a teacher in the context of the 21st century requires embracing a Transdisciplinary Attitude which is about venturing within, between, across and beyond disciplines in order to bring forth quality of being in every learning process. In this article, the Transdisciplinary Attitude is defined and its benefits are shown through examples of Transdisciplinary inquiries in an Australian school. Finally, the conclusion invites to reflect on quality of teaching in regard to the development of individual autonomy, community participation and awareness of belonging to the human species.Keywords: human progress, quality of being, quality of teaching, transdisciplinary attitude in education
Procedia PDF Downloads 36713909 Service Quality Improvement in Ghana's Healthcare Supply Chain
Authors: Ammatu Alhassan
Abstract:
Quality healthcare delivery is a crucial indicator in assessing the overall developmental status of a country. There are many limitations in the Ghanaian healthcare supply chain due to the lack of studies about the correlation between quality health service and the healthcare supply chain. Patients who visit various healthcare providers face unpleasant experiences such as delays in the availability of their medications. In this study, an assessment of the quality of services provided to Ghanaian outpatients who visit public healthcare providers was investigated to establish its effect on the healthcare supply chain using a conceptual model. The Donabedian’s structure, process, and outcome theory for service quality evaluation were used to analyse 20 Ghanaian hospitals. The data obtained was tested using the structural equation model (SEM). The findings from this research will help us to improve the overall quality of the Ghanaian healthcare supply chain. The model which will be developed will help us to understand better the linkage between quality healthcare and the healthcare supply chain as well as serving as a reference tool for future healthcare research in Ghana.Keywords: Ghana, healthcare, outpatients, supply chain
Procedia PDF Downloads 18213908 Blogging vs Paper-and-Pencil Writing: Evidences from an Iranian Academic L2 Setting
Authors: Mehran Memari, Bita Asadi
Abstract:
Second language (L2) classrooms in academic contexts usually consist of learners with diverse L2 proficiency levels. One solution for managing such heterogeneous classes and addressing individual needs of students is to improve learner autonomy by using technological innovations such as blogging. The focus of this study is on investigating the effects of blogging on improving the quality of Iranian university students' writings. For this aim, twenty-six Iranian university students participated in the study. Students in the experimental group (n=13) were required to blog daily while the students in the control group (n=13) were asked to write a daily schedule using paper and pencil. After a 3-month period of instruction, the five last writings of the students from both groups were rated by two experienced raters. Also, students' attitudes toward the traditional method and blogging were surveyed using a questionnaire and a semi-structured interview. The research results showed evidences in favor of the students who used blogging in their writing program. Also, although students in the experimental group found blogging more demanding than the traditional method, they showed an overall positive attitude toward the use of blogging as a way of improving their writing skills. The findings of the study have implications for the incorporation of computer-assisted learning in L2 academic contexts.Keywords: blogging, computer-assisted learning, paper and pencil, writing
Procedia PDF Downloads 40113907 Optimization of Manufacturing Process Parameters: An Empirical Study from Taiwan's Tech Companies
Authors: Chao-Ton Su, Li-Fei Chen
Abstract:
The parameter design is crucial to improving the uniformity of a product or process. In the product design stage, parameter design aims to determine the optimal settings for the parameters of each element in the system, thereby minimizing the functional deviations of the product. In the process design stage, parameter design aims to determine the operating settings of the manufacturing processes so that non-uniformity in manufacturing processes can be minimized. The parameter design, trying to minimize the influence of noise on the manufacturing system, plays an important role in the high-tech companies. Taiwan has many well-known high-tech companies, which show key roles in the global economy. Quality remains the most important factor that enables these companies to sustain their competitive advantage. In Taiwan however, many high-tech companies face various quality problems. A common challenge is related to root causes and defect patterns. In the R&D stage, root causes are often unknown, and defect patterns are difficult to classify. Additionally, data collection is not easy. Even when high-volume data can be collected, data interpretation is difficult. To overcome these challenges, high-tech companies in Taiwan use more advanced quality improvement tools. In addition to traditional statistical methods and quality tools, the new trend is the application of powerful tools, such as neural network, fuzzy theory, data mining, industrial engineering, operations research, and innovation skills. In this study, several examples of optimizing the parameter settings for the manufacturing process in Taiwan’s tech companies will be presented to illustrate proposed approach’s effectiveness. Finally, a discussion of using traditional experimental design versus the proposed approach for process optimization will be made.Keywords: quality engineering, parameter design, neural network, genetic algorithm, experimental design
Procedia PDF Downloads 14513906 Spatial Distribution of Land Use in the North Canal of Beijing Subsidiary Center and Its Impact on the Water Quality
Authors: Alisa Salimova, Jiane Zuo, Christopher Homer
Abstract:
The objective of this study is to analyse the North Canal riparian zone land use with the help of remote sensing analysis in ArcGis using 30 cloudless Landsat8 open-source satellite images from May to August of 2013 and 2017. Land cover, urban construction, heat island effect, vegetation cover, and water system change were chosen as the main parameters and further analysed to evaluate its impact on the North Canal water quality. The methodology involved the following steps: firstly, 30 cloudless satellite images were collected from the Landsat TM image open-source database. The visual interpretation method was used to determine different land types in a catchment area. After primary and secondary classification, 28 land cover types in total were classified. Visual interpretation method was used with the help ArcGIS for the grassland monitoring, US Landsat TM remote sensing image processing with a resolution of 30 meters was used to analyse the vegetation cover. The water system was analysed using the visual interpretation method on the GIS software platform to decode the target area, water use and coverage. Monthly measurements of water temperature, pH, BOD, COD, ammonia nitrogen, total nitrogen and total phosphorus in 2013 and 2017 were taken from three locations of the North Canal in Tongzhou district. These parameters were used for water quality index calculation and compared to land-use changes. The results of this research were promising. The vegetation coverage of North Canal riparian zone in 2017 was higher than the vegetation coverage in 2013. The surface brightness temperature value was positively correlated with the vegetation coverage density and the distance from the surface of the water bodies. This indicates that the vegetation coverage and water system have a great effect on temperature regulation and urban heat island effect. Surface temperature in 2017 was higher than in 2013, indicating a global warming effect. The water volume in the river area has been partially reduced, indicating the potential water scarcity risk in North Canal watershed. Between 2013 and 2017, urban residential, industrial and mining storage land areas significantly increased compared to other land use types; however, water quality has significantly improved in 2017 compared to 2013. This observation indicates that the Tongzhou Water Restoration Plan showed positive results and water management of Tongzhou district had been improved.Keywords: North Canal, land use, riparian vegetation, river ecology, remote sensing
Procedia PDF Downloads 10913905 Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems
Authors: M. Taha, Hala H. Zayed, T. Nazmy, M. Khalifa
Abstract:
Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications.Keywords: day/night detector, daytime/nighttime classification, image classification, vehicle tracking, traffic monitoring
Procedia PDF Downloads 55413904 Impact of Clinical Pharmacist Intervention in Improving Drug Related Problems in Patients with Chronic Kidney Disease
Authors: Aneena Suresh, C. S. Sidharth
Abstract:
Drug related problems (DRPs) are common in chronic kidney disease (CKD) patients and end stage patients undergoing hemodialysis. To treat the co-morbid conditions of the patients, more complex therapeutic regimen is required, and it leads to development of DRPs. So, this calls for frequent monitoring of the patients. Due to the busy work schedules, physicians are unable to deliver optimal care to these patients. Addition of a clinical pharmacist in the team will improve the standard of care offered to CKD patients by minimizing DRPs. In India, the role of clinical pharmacists in the improving the health outcomes in CKD patients is poorly recognized. Therefore, this study is conducted to put an insight on the role of clinical pharmacist in improving Drug Related Problems in patients with chronic kidney disease, thereby helping them to achieve desired therapeutic outcomes in the patients. A prospective interventional study was conducted for a year in a 620 bedded tertiary care hospital in India. Data was collected using an unstructured questionnaire, medication charts, etc. DRPs were categorized using Hepler and Strand classification. Relationships between the age, weight, GFR, average no of medication taken, average no of comorbidities, and average length of hospital days with the DRPs were identified using Mann Whitney U test. The study population primarily constituted of patients above the age of 50 years with a mean age of 59.91±13.59. Our study showed that 25% of the population presented with DRPs. On an average, CKD patients are prescribed at least 8 medications for the treatment in our study. This explains the high incidence of drug interactions in patients suffering from CKD (45.65%). The least common DRPs in our study were found to be sub therapeutic dose (2%) and adverse drug reactions (2%). Out of this, 60 % of the DRPs were addressed successfully. In our study, there is an association between the DRPs with the average number of medications prescribed, the average number of comorbidities, and the length of the hospital days with p value of 0.022, 0.004, and 0.000, respectively. In the current study, 86% of the proposed interventions were accepted, and 41 % were implemented by the physician, and only 14% were rejected. Hence, it is evident that clinical pharmacist interventions will contribute significantly to diminish the DRPs in CKD patients, thereby decreasing the economic burden of healthcare costs and improving patient’s quality of life.Keywords: chronic kidney disease, clinical pharmacist, drug related problem, intervention
Procedia PDF Downloads 12713903 Distributed Energy System - Microgrid Integration of Hybrid Power Systems
Authors: Pedro Esteban
Abstract:
Planning a hybrid power system (HPS) that integrates renewable generation sources, non-renewable generation sources and energy storage, involves determining the capacity and size of various components to be used in the system to be able to supply reliable electricity to the connected load as required. Nowadays it is very common to integrate solar photovoltaic (PV) power plants for renewable generation as part of HPS. The solar PV system is usually balanced via a second form of generation (renewable such as wind power or using fossil fuels such as a diesel generator) or an energy storage system (such as a battery bank). Hybrid power systems can also provide other forms of power such as heat for some applications. Modern hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.Keywords: microgrids, hybrid power systems, energy storage, grid code compliance
Procedia PDF Downloads 14413902 Improving the Quality of Casava Peel-Leaf Mixture through Fermentation with Rhizopus oligosporusas Poultry Ration
Authors: Mirnawati, G. Ciptaan, Ferawati
Abstract:
This study aims to improve the quality of the cassava peel-leaf mixture (CPLM) through fermentation with Rhizopus oligosporusas poultry ration. This research is an experimental study using a completely randomized design (CRD) with four treatments and five replications. The treatments were cassava peel-leaf mixture (CPLM) fermented with Rhizopus oligosporus. The treatments were a combination of cassava peel and leaves with the ratio of; A (9:1), B (8:2), C (7:3), and D (6:4). The observed variables were protease enzyme activity, crude protein, crude fiber, nitrogen retention, digestibility of crude fiber, and metabolic energy. The results of the diversity analysis showed that there was a very significant (p < 0.01) effect on protease activity, crude protein, crude fiber, nitrogen retention, digestibility of crude fiber, and energy metabolism of fermented CPLM. Based on the results of the study, it can be concluded that CPLM (6:4) fermented with Rhizopus oligosporus gave the best results seen from protease activity 7,25 U/ml, 21.23% crude protein, 19.80% crude fiber, 59.65% nitrogen retention, 62.99% crude fiber digestibility and metabolic energy 2671 Kcal/kg.Keywords: quality, Casava peel-leaf mixture, fermentation, Rhizopus oligosporus
Procedia PDF Downloads 18413901 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks
Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam
Abstract:
In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion
Procedia PDF Downloads 12213900 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets
Authors: Kothuri Sriraman, Mattupalli Komal Teja
Abstract:
In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm
Procedia PDF Downloads 34713899 A Trends Analysis of Yatch Simulator
Authors: Jae-Neung Lee, Keun-Chang Kwak
Abstract:
This paper describes an analysis of Yacht Simulator international trends and also explains about Yacht. Examples of yacht Simulator using Yacht Simulator include image processing for totaling the total number of vehicles, edge/target detection, detection and evasion algorithm, image processing using SIFT (scale invariant features transform) matching, and application of median filter and thresholding.Keywords: yacht simulator, simulator, trends analysis, SIFT
Procedia PDF Downloads 43013898 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objetives
Authors: Mingyu Xie, Mietek Brdys
Abstract:
The paper develops a non-linear model predictive control (NMPC) of water quality in drinking water distribution systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives
Procedia PDF Downloads 31513897 Sustainability of the Built Environment of Ranchi District
Authors: Vaidehi Raipat
Abstract:
A city is an expression of coexistence between its users and built environment. The way in which its spaces are animated signify the quality of this coexistence. Urban sustainability is the ability of a city to respond efficiently towards its people, culture, environment, visual image, history, visions and identity. The quality of built environment determines the quality of our lifestyles, but poor ability of the built environment to adapt and sustain itself through the changes leads to degradation of cities. Ranchi was created in November 2000, as the capital of the newly formed state Jharkhand, located on eastern side of India. Before this Ranchi was known as summer capital of Bihar and was a little larger than a town in terms of development. But since then it has been vigorously expanding in size, infrastructure as well as population. This sudden expansion has created a stress on existing built environment. The large forest covers, agricultural land, diverse culture and pleasant climatic conditions have degraded and decreased to a large extent. Narrow roads and old buildings are unable to bear the load of the changing requirements, fast improving technology and growing population. The built environment has hence been rendered unsustainable and unadaptable through fastidious changes of present era. Some of the common hazards that can be easily spotted in the built environment are half-finished built forms, pedestrians and vehicles moving on the same part of the road. Unpaved areas on street edges. Over-sized, bright and randomly placed hoardings. Negligible trees or green spaces. The old buildings have been poorly maintained and the new ones are being constructed over them. Roads are too narrow to cater to the increasing traffic, both pedestrian and vehicular. The streets have a large variety of activities taking place on them, but haphazardly. Trees are being cut down for road widening and new constructions. There is no space for greenery in the commercial as well as old residential areas. The old infrastructure is deteriorating because of poor maintenance and the economic limitations. Pseudo understanding of functionality as well as aesthetics drive the new infrastructure. It is hence necessary to evaluate the extent of sustainability of existing built environment of the city and create or regenerate the existing built environment into a more sustainable and adaptable one. For this purpose, research titled “Sustainability of the Built Environment of Ranchi District” has been carried out. In this research the condition of the built environment of Ranchi are explored so as to figure out the problems and shortcomings existing in the city and provide for design strategies that can make the existing built-environment sustainable. The built environment of Ranchi that include its outdoor spaces like streets, parks, other open areas, its built forms as well as its users, has been analyzed in terms of various urban design parameters. Based on which strategies have been suggested to make the city environmentally, socially, culturally and economically sustainable.Keywords: adaptable, built-environment, sustainability, urban
Procedia PDF Downloads 235