Search results for: consumer data right
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25926

Search results for: consumer data right

25026 Legal Regulation of Personal Information Data Transmission Risk Assessment: A Case Study of the EU’s DPIA

Authors: Cai Qianyi

Abstract:

In the midst of global digital revolution, the flow of data poses security threats that call China's existing legislative framework for protecting personal information into question. As a preliminary procedure for risk analysis and prevention, the risk assessment of personal data transmission lacks detailed guidelines for support. Existing provisions reveal unclear responsibilities for network operators and weakened rights for data subjects. Furthermore, the regulatory system's weak operability and a lack of industry self-regulation heighten data transmission hazards. This paper aims to compare the regulatory pathways for data information transmission risks between China and Europe from a legal framework and content perspective. It draws on the “Data Protection Impact Assessment Guidelines” to empower multiple stakeholders, including data processors, controllers, and subjects, while also defining obligations. In conclusion, this paper intends to solve China's digital security shortcomings by developing a more mature regulatory framework and industry self-regulation mechanisms, resulting in a win-win situation for personal data protection and the development of the digital economy.

Keywords: personal information data transmission, risk assessment, DPIA, internet service provider, personal information data transimission, risk assessment

Procedia PDF Downloads 61
25025 Wavelets Contribution on Textual Data Analysis

Authors: Habiba Ben Abdessalem

Abstract:

The emergence of giant set of textual data was the push that has encouraged researchers to invest in this field. The purpose of textual data analysis methods is to facilitate access to such type of data by providing various graphic visualizations. Applying these methods requires a corpus pretreatment step, whose standards are set according to the objective of the problem studied. This step determines the forms list contained in contingency table by keeping only those information carriers. This step may, however, lead to noisy contingency tables, so the use of wavelet denoising function. The validity of the proposed approach is tested on a text database that offers economic and political events in Tunisia for a well definite period.

Keywords: textual data, wavelet, denoising, contingency table

Procedia PDF Downloads 277
25024 Customer Churn Analysis in Telecommunication Industry Using Data Mining Approach

Authors: Burcu Oralhan, Zeki Oralhan, Nilsun Sariyer, Kumru Uyar

Abstract:

Data mining has been becoming more and more important and a wide range of applications in recent years. Data mining is the process of find hidden and unknown patterns in big data. One of the applied fields of data mining is Customer Relationship Management. Understanding the relationships between products and customers is crucial for every business. Customer Relationship Management is an approach to focus on customer relationship development, retention and increase on customer satisfaction. In this study, we made an application of a data mining methods in telecommunication customer relationship management side. This study aims to determine the customers profile who likely to leave the system, develop marketing strategies, and customized campaigns for customers. Data are clustered by applying classification techniques for used to determine the churners. As a result of this study, we will obtain knowledge from international telecommunication industry. We will contribute to the understanding and development of this subject in Customer Relationship Management.

Keywords: customer churn analysis, customer relationship management, data mining, telecommunication industry

Procedia PDF Downloads 316
25023 On Pooling Different Levels of Data in Estimating Parameters of Continuous Meta-Analysis

Authors: N. R. N. Idris, S. Baharom

Abstract:

A meta-analysis may be performed using aggregate data (AD) or an individual patient data (IPD). In practice, studies may be available at both IPD and AD level. In this situation, both the IPD and AD should be utilised in order to maximize the available information. Statistical advantages of combining the studies from different level have not been fully explored. This study aims to quantify the statistical benefits of including available IPD when conducting a conventional summary-level meta-analysis. Simulated meta-analysis were used to assess the influence of the levels of data on overall meta-analysis estimates based on IPD-only, AD-only and the combination of IPD and AD (mixed data, MD), under different study scenario. The percentage relative bias (PRB), root mean-square-error (RMSE) and coverage probability were used to assess the efficiency of the overall estimates. The results demonstrate that available IPD should always be included in a conventional meta-analysis using summary level data as they would significantly increased the accuracy of the estimates. On the other hand, if more than 80% of the available data are at IPD level, including the AD does not provide significant differences in terms of accuracy of the estimates. Additionally, combining the IPD and AD has moderating effects on the biasness of the estimates of the treatment effects as the IPD tends to overestimate the treatment effects, while the AD has the tendency to produce underestimated effect estimates. These results may provide some guide in deciding if significant benefit is gained by pooling the two levels of data when conducting meta-analysis.

Keywords: aggregate data, combined-level data, individual patient data, meta-analysis

Procedia PDF Downloads 375
25022 Analyzing On-Line Process Data for Industrial Production Quality Control

Authors: Hyun-Woo Cho

Abstract:

The monitoring of industrial production quality has to be implemented to alarm early warning for unusual operating conditions. Furthermore, identification of their assignable causes is necessary for a quality control purpose. For such tasks many multivariate statistical techniques have been applied and shown to be quite effective tools. This work presents a process data-based monitoring scheme for production processes. For more reliable results some additional steps of noise filtering and preprocessing are considered. It may lead to enhanced performance by eliminating unwanted variation of the data. The performance evaluation is executed using data sets from test processes. The proposed method is shown to provide reliable quality control results, and thus is more effective in quality monitoring in the example. For practical implementation of the method, an on-line data system must be available to gather historical and on-line data. Recently large amounts of data are collected on-line in most processes and implementation of the current scheme is feasible and does not give additional burdens to users.

Keywords: detection, filtering, monitoring, process data

Procedia PDF Downloads 559
25021 A Collective Approach to Optimisation of Renewing Warranty Policy

Authors: Ming Luo

Abstract:

In this real world, a manufacturer may produce more than one product. The products produced by the same manufacturer may share the same type of parts, similar design, and be produced in the same factory, i.e. some common causes. From the perspective of warranty management, the frequencies of those products’ warranty claims may have statistical dependence caused by the common causes. Warranty policy optimisation in the existing research, majorly, has not considered such dependence, which may increase bias in decision making. In the market, renewing warranty policies are provided to some unrepairable products and consumer electronic products. This paper optimises the renewing warranty policy collectively in a multi-product scenario with a consideration of the dependence among the warranty claims of the products produced by the same manufacturer. The existence of the optimal solution is proved. Numerical examples are used to validate the applicability of the proposed methods.

Keywords: mean-risk framework, modern portfolio theory, renewing warranty policy, warranty policy optimisation

Procedia PDF Downloads 299
25020 Improved Mechanical and Electrical Properties and Thermal Stability of Post-Consumer Polyethylene Terephthalate Glycol Containing Hybrid System of Nanofillers

Authors: Iman Taraghi, Sandra Paszkiewicz, Daria Pawlikowska, Anna Szymczyk, Izabela Irska, Rafal Stanik, Amelia Linares, Tiberio A. Ezquerra, Elżbieta Piesowicz

Abstract:

Currently, the massive use of thermoplastic materials in industrial applications causes huge amounts of polymer waste. The poly (ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PET-G) has been widely used in food packaging and polymer foils. In this research, the PET-G foils have been recycled and reused as a matrix to combine with different types of nanofillers such as carbon nanotubes, graphene nanoplatelets, and nanosized carbon black. The mechanical and electrical properties, as well as thermal stability and thermal conductivity of the PET-G, improved along with the addition of the aforementioned nanofillers and hybrid system of them.

Keywords: polymer hybrid nanocomposites, carbon nanofillers, recycling, physical performance

Procedia PDF Downloads 136
25019 A Review of Travel Data Collection Methods

Authors: Muhammad Awais Shafique, Eiji Hato

Abstract:

Household trip data is of crucial importance for managing present transportation infrastructure as well as to plan and design future facilities. It also provides basis for new policies implemented under Transportation Demand Management. The methods used for household trip data collection have changed with passage of time, starting with the conventional face-to-face interviews or paper-and-pencil interviews and reaching to the recent approach of employing smartphones. This study summarizes the step-wise evolution in the travel data collection methods. It provides a comprehensive review of the topic, for readers interested to know the changing trends in the data collection field.

Keywords: computer, smartphone, telephone, travel survey

Procedia PDF Downloads 313
25018 The Significance of Picture Mining in the Fashion and Design as a New Research Method

Authors: Katsue Edo, Yu Hiroi

Abstract:

T Increasing attention has been paid to using pictures and photographs in research since the beginning of the 21th century in social sciences. Meanwhile we have been studying the usefulness of Picture mining, which is one of the new ways for a these picture using researches. Picture Mining is an explorative research analysis method that takes useful information from pictures, photographs and static or moving images. It is often compared with the methods of text mining. The Picture Mining concept includes observational research in the broad sense, because it also aims to analyze moving images (Ochihara and Edo 2013). In the recent literature, studies and reports using pictures are increasing due to the environmental changes. These are identified as technological and social changes (Edo et.al. 2013). Low price digital cameras and i-phones, high information transmission speed, low costs for information transferring and high performance and resolution of the cameras of mobile phones have changed the photographing behavior of people. Consequently, there is less resistance in taking and processing photographs for most of the people in the developing countries. In these studies, this method of collecting data from respondents is often called as ‘participant-generated photography’ or ‘respondent-generated visual imagery’, which focuses on the collection of data and its analysis (Pauwels 2011, Snyder 2012). But there are few systematical and conceptual studies that supports it significance of these methods. We have discussed in the recent years to conceptualize these picture using research methods and formalize theoretical findings (Edo et. al. 2014). We have identified the most efficient fields of Picture mining in the following areas inductively and in case studies; 1) Research in Consumer and Customer Lifestyles. 2) New Product Development. 3) Research in Fashion and Design. Though we have found that it will be useful in these fields and areas, we must verify these assumptions. In this study we will focus on the field of fashion and design, to determine whether picture mining methods are really reliable in this area. In order to do so we have conducted an empirical research of the respondents’ attitudes and behavior concerning pictures and photographs. We compared the attitudes and behavior of pictures toward fashion to meals, and found out that taking pictures of fashion is not as easy as taking meals and food. Respondents do not often take pictures of fashion and upload their pictures online, such as Facebook and Instagram, compared to meals and food because of the difficulty of taking them. We concluded that we should be more careful in analyzing pictures in the fashion area for there still might be some kind of bias existing even if the environment of pictures have drastically changed in these years.

Keywords: empirical research, fashion and design, Picture Mining, qualitative research

Procedia PDF Downloads 363
25017 A Business-to-Business Collaboration System That Promotes Data Utilization While Encrypting Information on the Blockchain

Authors: Hiroaki Nasu, Ryota Miyamoto, Yuta Kodera, Yasuyuki Nogami

Abstract:

To promote Industry 4.0 and Society 5.0 and so on, it is important to connect and share data so that every member can trust it. Blockchain (BC) technology is currently attracting attention as the most advanced tool and has been used in the financial field and so on. However, the data collaboration using BC has not progressed sufficiently among companies on the supply chain of manufacturing industry that handle sensitive data such as product quality, manufacturing conditions, etc. There are two main reasons why data utilization is not sufficiently advanced in the industrial supply chain. The first reason is that manufacturing information is top secret and a source for companies to generate profits. It is difficult to disclose data even between companies with transactions in the supply chain. In the blockchain mechanism such as Bitcoin using PKI (Public Key Infrastructure), in order to confirm the identity of the company that has sent the data, the plaintext must be shared between the companies. Another reason is that the merits (scenarios) of collaboration data between companies are not specifically specified in the industrial supply chain. For these problems this paper proposes a Business to Business (B2B) collaboration system using homomorphic encryption and BC technique. Using the proposed system, each company on the supply chain can exchange confidential information on encrypted data and utilize the data for their own business. In addition, this paper considers a scenario focusing on quality data, which was difficult to collaborate because it is a top secret. In this scenario, we show a implementation scheme and a benefit of concrete data collaboration by proposing a comparison protocol that can grasp the change in quality while hiding the numerical value of quality data.

Keywords: business to business data collaboration, industrial supply chain, blockchain, homomorphic encryption

Procedia PDF Downloads 136
25016 Application the Queuing Theory in the Warehouse Optimization

Authors: Jaroslav Masek, Juraj Camaj, Eva Nedeliakova

Abstract:

The aim of optimization of store management is not only designing the situation of store management itself including its equipment, technology and operation. In optimization of store management we need to consider also synchronizing of technological, transport, store and service operations throughout the whole process of logistic chain in such a way that a natural flow of material from provider to consumer will be achieved the shortest possible way, in the shortest possible time in requested quality and quantity and with minimum costs. The paper deals with the application of the queuing theory for optimization of warehouse processes. The first part refers to common information about the problematic of warehousing and using mathematical methods for logistics chains optimization. The second part refers to preparing a model of a warehouse within queuing theory. The conclusion of the paper includes two examples of using queuing theory in praxis.

Keywords: queuing theory, logistics system, mathematical methods, warehouse optimization

Procedia PDF Downloads 593
25015 Multivariate Assessment of Mathematics Test Scores of Students in Qatar

Authors: Ali Rashash Alzahrani, Elizabeth Stojanovski

Abstract:

Data on various aspects of education are collected at the institutional and government level regularly. In Australia, for example, students at various levels of schooling undertake examinations in numeracy and literacy as part of NAPLAN testing, enabling longitudinal assessment of such data as well as comparisons between schools and states within Australia. Another source of educational data collected internationally is via the PISA study which collects data from several countries when students are approximately 15 years of age and enables comparisons in the performance of science, mathematics and English between countries as well as ranking of countries based on performance in these standardised tests. As well as student and school outcomes based on the tests taken as part of the PISA study, there is a wealth of other data collected in the study including parental demographics data and data related to teaching strategies used by educators. Overall, an abundance of educational data is available which has the potential to be used to help improve educational attainment and teaching of content in order to improve learning outcomes. A multivariate assessment of such data enables multiple variables to be considered simultaneously and will be used in the present study to help develop profiles of students based on performance in mathematics using data obtained from the PISA study.

Keywords: cluster analysis, education, mathematics, profiles

Procedia PDF Downloads 126
25014 Amazon and Its AI Features

Authors: Leen Sulaimani, Maryam Hafiz, Naba Ali, Roba Alsharif

Abstract:

One of Amazon’s most crucial online systems is artificial intelligence. Amazon would not have a worldwide successful online store, an easy and secure way of payment, and other services if it weren’t for artificial intelligence and machine learning. Amazon uses AI to expand its operations and enhance them by upgrading the website daily; having a strong base of artificial intelligence in a worldwide successful business can improve marketing, decision-making, feedback, and more qualities. Aiming to have a rational AI system in one’s business should be the start of any process; that is why Amazon is fortunate that they keep taking care of the base of their business by using modern artificial intelligence, making sure that it is stable, reaching their organizational goals, and will continue to thrive more each and every day. Artificial intelligence is used daily in our current world and is still being amplified more each day to reach consumer satisfaction and company short and long-term goals.

Keywords: artificial intelligence, Amazon, business, customer, decision making

Procedia PDF Downloads 109
25013 End-of-Life Vehicle Framework in Bumper Development Process

Authors: Majid Davoodi Makinejad, Reza Ghaeli

Abstract:

Developing sustainable and environment-friendly products has become a major concern in the car manufacturing industry. New legislation ‘End of Life Vehicle’ increased design complexities of bumper system parameters e.g. design for disassembly, design for remanufacturing and recycling. ELV processing employs dismantling, shredding and landfill. The bumper is designed to prevent physical damage, reduce aerodynamic drag force as well as being aesthetically pleasing to the consumer. Design for dismantling is the first step in ELVs approach in the bumper system. This study focused on the analysis of ELV value in redesign solutions of the bumper system in comparison with the conventional concept. It provided a guideline to address the critical consideration in material, manufacturing and joining methods of bumper components to take advantages in easy dismounting, separation and recycling.

Keywords: sustainable development, environmental friendly, bumper system, end of life vehicle

Procedia PDF Downloads 385
25012 A Study on Consumer Awareness, Safety Perceptions and Practices About Food Preservatives and Flavouring Agents Used in Packed / Canned Foods from South India

Authors: Harsha Kumar H. N., Anshu Kumar Jha, Khushboo Kamal Taneja, Krishan Kabra, Mohamed Hafeez Sadiq

Abstract:

Introduction: The increasing use of preservatives and flavouring agents has the potential to cause health problem among the people. There are no published studies from India exploring the awareness, safety perception, & practices about Food Preservatives (FPs) and Flavouring Agents (FAs). So this study was conducted with the objectives of assessing the awareness, safety perceptions & practices about Food Preservatives (FPs), Flavouring Agents (FAs) in commonly bought / purchased packed food items. Materials & method: This cross-sectional study was conducted in January 2012. Sample size of 126 was computed using the formula for infinite population. People who bought packed food items in malls were approached and requested to fill a pre-tested semi-structured questionnaire. The questionnaire explored awareness, safety perception & practices of FPs & FAs. Data was then analyzed using SPSS version 10.0. Chi-square test was used to know if the observed differences were statistically significant. ‘p’ value <0.05 was considered significant. Results: Totally 123 people (males- 48.8% and females-51.2%) participated (response rate of 97.6%) in the study. Majority of the people were aware about presence of ‘FPs’ (91.7%) and ‘FAs’ (84.9%) though their knowledge was inadequate. Breakup of the study subjects according to level of awareness about FPs was as follows (%): Good (37.4), Satisfactory (40.6), Poor (22) & FAs (%): Good (49.6), Satisfactory (36) & Poor (14). Distribution according to type of practices for FPs was as follows (%): Favourable (14), Unfavourable (86) & FAs (%): Favourable (30.5), Unfavourable (69.5). There was a gap between knowledge and practices. Conclusion: Though there was awareness, the knowledge was inadequate. Unfavourable practices were observed. The gaps in the knowledge and unhealthy practices need to be addressed by public awareness campaign.

Keywords: food preservatives, flavouring agents, knowledge and practices, general population

Procedia PDF Downloads 532
25011 Dataset Quality Index:Development of Composite Indicator Based on Standard Data Quality Indicators

Authors: Sakda Loetpiparwanich, Preecha Vichitthamaros

Abstract:

Nowadays, poor data quality is considered one of the majority costs for a data project. The data project with data quality awareness almost as much time to data quality processes while data project without data quality awareness negatively impacts financial resources, efficiency, productivity, and credibility. One of the processes that take a long time is defining the expectations and measurements of data quality because the expectation is different up to the purpose of each data project. Especially, big data project that maybe involves with many datasets and stakeholders, that take a long time to discuss and define quality expectations and measurements. Therefore, this study aimed at developing meaningful indicators to describe overall data quality for each dataset to quick comparison and priority. The objectives of this study were to: (1) Develop a practical data quality indicators and measurements, (2) Develop data quality dimensions based on statistical characteristics and (3) Develop Composite Indicator that can describe overall data quality for each dataset. The sample consisted of more than 500 datasets from public sources obtained by random sampling. After datasets were collected, there are five steps to develop the Dataset Quality Index (SDQI). First, we define standard data quality expectations. Second, we find any indicators that can measure directly to data within datasets. Thirdly, each indicator aggregates to dimension using factor analysis. Next, the indicators and dimensions were weighted by an effort for data preparing process and usability. Finally, the dimensions aggregate to Composite Indicator. The results of these analyses showed that: (1) The developed useful indicators and measurements contained ten indicators. (2) the developed data quality dimension based on statistical characteristics, we found that ten indicators can be reduced to 4 dimensions. (3) The developed Composite Indicator, we found that the SDQI can describe overall datasets quality of each dataset and can separate into 3 Level as Good Quality, Acceptable Quality, and Poor Quality. The conclusion, the SDQI provide an overall description of data quality within datasets and meaningful composition. We can use SQDI to assess for all data in the data project, effort estimation, and priority. The SDQI also work well with Agile Method by using SDQI to assessment in the first sprint. After passing the initial evaluation, we can add more specific data quality indicators into the next sprint.

Keywords: data quality, dataset quality, data quality management, composite indicator, factor analysis, principal component analysis

Procedia PDF Downloads 139
25010 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm

Procedia PDF Downloads 142
25009 Canopy Temperature Acquired from Daytime and Nighttime Aerial Data as an Indicator of Trees’ Health Status

Authors: Agata Zakrzewska, Dominik Kopeć, Adrian Ochtyra

Abstract:

The growing number of new cameras, sensors, and research methods allow for a broader application of thermal data in remote sensing vegetation studies. The aim of this research was to check whether it is possible to use thermal infrared data with a spectral range (3.6-4.9 μm) obtained during the day and the night to assess the health condition of selected species of deciduous trees in an urban environment. For this purpose, research was carried out in the city center of Warsaw (Poland) in 2020. During the airborne data acquisition, thermal data, laser scanning, and orthophoto map images were collected. Synchronously with airborne data, ground reference data were obtained for 617 studied species (Acer platanoides, Acer pseudoplatanus, Aesculus hippocastanum, Tilia cordata, and Tilia × euchlora) in different health condition states. The results were as follows: (i) healthy trees are cooler than trees in poor condition and dying both in the daytime and nighttime data; (ii) the difference in the canopy temperatures between healthy and dying trees was 1.06oC of mean value on the nighttime data and 3.28oC of mean value on the daytime data; (iii) condition classes significantly differentiate on both daytime and nighttime thermal data, but only on daytime data all condition classes differed statistically significantly from each other. In conclusion, the aerial thermal data can be considered as an alternative to hyperspectral data, a method of assessing the health condition of trees in an urban environment. Especially data obtained during the day, which can differentiate condition classes better than data obtained at night. The method based on thermal infrared and laser scanning data fusion could be a quick and efficient solution for identifying trees in poor health that should be visually checked in the field.

Keywords: middle wave infrared, thermal imagery, tree discoloration, urban trees

Procedia PDF Downloads 115
25008 A Framework for Investigating Reverse Logistics Capability of E-Tailers

Authors: Wen-Shan Lin, Shu-Lu Hsu

Abstract:

Environmental concern and consumer rights have entailed e-tailers to adopt better strategies to facilitate product returns from customers. As the demand for reverse logistics (RL) continues to grow, little is known about what motivates e-tailers to enhance their RL capabilities and about the role RL capabilities plays in enabling e-tailers to achieve better customer satisfaction and economic performance. Based on resource-based theory and institutional theory, this article proposes that the following factors play a critical role in influencing the RL capability of e-tailers: (a) Financial resource commitment to RL, (b) managerial resource commitment to RL, and (c) institutional pressure to implement RL. Based on the role of these factors, the study provides a framework and propositions that serve to guide future research addressing the link among resources, institutional pressure, and RL capability.

Keywords: reverse logistics, e-tailing, resource-based theory, institutional theory

Procedia PDF Downloads 449
25007 Hierarchical Clustering Algorithms in Data Mining

Authors: Z. Abdullah, A. R. Hamdan

Abstract:

Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the areas in data mining and it can be classified into partition, hierarchical, density based, and grid-based. Therefore, in this paper, we do a survey and review for four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON, and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems, as well as deriving more robust and scalable algorithms for clustering.

Keywords: clustering, unsupervised learning, algorithms, hierarchical

Procedia PDF Downloads 885
25006 End to End Monitoring in Oracle Fusion Middleware for Data Verification

Authors: Syed Kashif Ali, Usman Javaid, Abdullah Chohan

Abstract:

In large enterprises multiple departments use different sort of information systems and databases according to their needs. These systems are independent and heterogeneous in nature and sharing information/data between these systems is not an easy task. The usage of middleware technologies have made data sharing between systems very easy. However, monitoring the exchange of data/information for verification purposes between target and source systems is often complex or impossible for maintenance department due to security/access privileges on target and source systems. In this paper, we are intended to present our experience of an end to end data monitoring approach at middle ware level implemented in Oracle BPEL for data verification without any help of monitoring tool.

Keywords: service level agreement, SOA, BPEL, oracle fusion middleware, web service monitoring

Procedia PDF Downloads 481
25005 Dissimilarity Measure for General Histogram Data and Its Application to Hierarchical Clustering

Authors: K. Umbleja, M. Ichino

Abstract:

Symbolic data mining has been developed to analyze data in very large datasets. It is also useful in cases when entry specific details should remain hidden. Symbolic data mining is quickly gaining popularity as datasets in need of analyzing are becoming ever larger. One type of such symbolic data is a histogram, which enables to save huge amounts of information into a single variable with high-level of granularity. Other types of symbolic data can also be described in histograms, therefore making histogram a very important and general symbolic data type - a method developed for histograms - can also be applied to other types of symbolic data. Due to its complex structure, analyzing histograms is complicated. This paper proposes a method, which allows to compare two histogram-valued variables and therefore find a dissimilarity between two histograms. Proposed method uses the Ichino-Yaguchi dissimilarity measure for mixed feature-type data analysis as a base and develops a dissimilarity measure specifically for histogram data, which allows to compare histograms with different number of bins and bin widths (so called general histogram). Proposed dissimilarity measure is then used as a measure for clustering. Furthermore, linkage method based on weighted averages is proposed with the concept of cluster compactness to measure the quality of clustering. The method is then validated with application on real datasets. As a result, the proposed dissimilarity measure is found producing adequate and comparable results with general histograms without the loss of detail or need to transform the data.

Keywords: dissimilarity measure, hierarchical clustering, histograms, symbolic data analysis

Procedia PDF Downloads 162
25004 Exploring the Physicochemical and Quality Attributes of Potato Cultivars during Subsequent Storage

Authors: Muhammad Atif Randhawa, Adnan Amjad, Muhammad Nadeem

Abstract:

Potato (Solanum tuberosum) popularly known as ‘the king of vegetables’, has emerged as fourth most important food crop after rice, wheat and maize. Potato contains carbohydrates, minerals, vitamins and antioxidants. The antioxidants of potatoes especially vitamin C helps in reducing cancer, cardiovascular diseases and high blood pressure by binding free radicals. Physical characteristics and some major chemical properties of potato tubers at fresh and stored stages were investigated. Two varieties of potatoes, Sante (V1) having white colour and Lal moti (V2) with red colour were stored for 3 months and analysis were performed after each month interval. Physical and chemical attributes including weight loss, sprouting, specific gravity, pH, total sugars (reducing and non-reducing sugars) and vitamin C were analyzed before and after storage. Value of weight loss at zero day was null but it increased to 6.45% after 90 days on average in both cultivars and sprouting increased gradually at the end of 90 days. Moreover total sugars were 3.10% at zero day but increased to 9.30% after 90 days. Ascorbic acid was decreased during storage from 17.49(mg/100g) to 3.79. Both varieties of potato were stored at 60C and 120C temperatures with 85% relative humidity in order to prolong their acceptability in the market. The storage conditions influence the potatoes quality and consequently their acceptability to consumer. The data was analyzed statistically and clarifies that total sugars, weight loss, sprouting and specific gravity increase during the storage period while ascorbic acid (Vit-C) and pH decreased. Among both varieties that were stored at 60C and 120C, Sante (V1) was better than Lal moti (V2) due to less physicochemical and quality changes at 60C as compared to store at 120C.

Keywords: physicochemical, potato, quality attributes, storage

Procedia PDF Downloads 442
25003 WiFi Data Offloading: Bundling Method in a Canvas Business Model

Authors: Majid Mokhtarnia, Alireza Amini

Abstract:

Mobile operators deal with increasing in the data traffic as a critical issue. As a result, a vital responsibility of the operators is to deal with such a trend in order to create added values. This paper addresses a bundling method in a Canvas business model in a WiFi Data Offloading (WDO) strategy by which some elements of the model may be affected. In the proposed method, it is supposed to sell a number of data packages for subscribers in which there are some packages with a free given volume of data-offloaded WiFi complimentary. The paper on hands analyses this method in the views of attractiveness and profitability. The results demonstrate that the quality of implementation of the WDO strongly affects the final result and helps the decision maker to make the best one.

Keywords: bundling, canvas business model, telecommunication, WiFi data offloading

Procedia PDF Downloads 200
25002 Distributed Perceptually Important Point Identification for Time Series Data Mining

Authors: Tak-Chung Fu, Ying-Kit Hung, Fu-Lai Chung

Abstract:

In the field of time series data mining, the concept of the Perceptually Important Point (PIP) identification process is first introduced in 2001. This process originally works for financial time series pattern matching and it is then found suitable for time series dimensionality reduction and representation. Its strength is on preserving the overall shape of the time series by identifying the salient points in it. With the rise of Big Data, time series data contributes a major proportion, especially on the data which generates by sensors in the Internet of Things (IoT) environment. According to the nature of PIP identification and the successful cases, it is worth to further explore the opportunity to apply PIP in time series ‘Big Data’. However, the performance of PIP identification is always considered as the limitation when dealing with ‘Big’ time series data. In this paper, two distributed versions of PIP identification based on the Specialized Binary (SB) Tree are proposed. The proposed approaches solve the bottleneck when running the PIP identification process in a standalone computer. Improvement in term of speed is obtained by the distributed versions.

Keywords: distributed computing, performance analysis, Perceptually Important Point identification, time series data mining

Procedia PDF Downloads 435
25001 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks

Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam

Abstract:

In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.

Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion

Procedia PDF Downloads 123
25000 Processing, Nutritional Assessment and Sensory Evaluation of Bakery Products Prepared from Orange Fleshed Sweet Potatoes (OFSP) and Wheat Composite Flours

Authors: Hategekimana Jean Paul, Irakoze Josiane, Ishimweyizerwe Valentin, Iradukunda Dieudonne, Uwanyirigira Jeannette

Abstract:

Orange fleshed sweet potatoes (OFSP) are highly grown and are available plenty in rural and urban local markets and its contribution in reduction of food insecurity in Rwanda is considerable. But the postharvest loss of this commodity is a critical challenge due to its high perishability. Several research activities have been conducted on how fresh food commodities can be transformed into extended shelf life food products for prevention of post-harvest losses. However, such activity was not yet well studied in Rwanda. The aim of the present study was the processing of backed products from (OFSP)combined with wheat composite flour and assess the nutritional content and consumer acceptability of new developed products. The perishability of OFSP and their related lack during off season can be eradicated by producing cake, doughnut and bread with OFSP puree or flour. The processing for doughnut and bread were made by making OFSP puree and other ingredients then a dough was made followed by frying and baking while for cake OFSP was dried through solar dryer to have a flour together with wheat flour and other ingredients to make dough cake and baking. For each product, one control and three experimental samples, (three products in three different ratios (30,40 and50%) of OFSP and the remaining percentage of wheat flour) were prepared. All samples including the control were analyzed for the consumer acceptability (sensory attributes). Most preferred samples (One sample for each product with its control sample and for each OFSP variety) were analyzed for nutritional composition along with control sample. The Cake from Terimbere variety and Bread from Gihingumukungu supplemented with 50% OFSP flour or Puree respectively were most acceptable except Doughnut from Vita variety which was highly accepted at 50% of OFSP supplementation. The moisture, ash, protein, fat, fiber, Total carbohydrate, Vitamin C, reducing sugar and minerals (Sodium, Potassium and Phosphorus.) content was different among products. Cake was rich in fibers (14.71%), protein (6.590%), and vitamin c(19.988mg/100g) compared to other samples while bread found to be rich in reducing sugar with 12.71mg/100g compared to cake and doughnut. Also doughnut was found to be rich in fat content with 6.89% compared to other samples. For sensory analysis, doughnut was highly accepted in ratio of 60:40 compared to other products while cake was least accepted at ratio of 50:50. The Proximate composition and minerals content of all the OFSP products were significantly higher as compared to the control samples.

Keywords: post-harvest loss, OFSP products, wheat flour, sensory evaluation, proximate composition

Procedia PDF Downloads 62
24999 Knowledge Discovery and Data Mining Techniques in Textile Industry

Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler

Abstract:

This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.

Keywords: data mining, textile production, decision trees, classification

Procedia PDF Downloads 349
24998 Antimicrobial Resistance Patterns of Salmonella spp. Isolate from Chickens at Slaughterhouses in Northeast of Thailand

Authors: Seree Klaengair, Sunpetch Angkititrakul, Dusadee Phongaran, Chaiyaporn Soikum

Abstract:

The objectives of this study is to determine the prevalence and antimicrobial resistance pattern of Salmonella spp. isolated from chickens at slaughterhouses in northeast of Thailand. During 2015-2016, all samples were isolated and identified by ISO 6579:2002. A total of 604 samples of rectal swab were collected and isolated for the presence of Salmonella. Salmonella was detected in 109 of 604 (18.05%) samples. The most prevalent serovars were Salmonella Kentucky (22.94%), Give (20.18%) and Typhimurium (7.34%). In this study, 66.97% of the isolates were resistant to at least one antimicrobial drug and 38.39% were multidrug resistant. The highest resistances were found in nalidixic acid (49.54%), ampicillin (30.28%), tetracycline (27.52%), amoxicillin (26.61%), ciprofloxacin (23.85) and norfloxacin (19.27%). The results showed high prevalence of Salmonella spp. in chickens and antimicrobial resistance patterns. Prevention and control of Salmonella contamination in chickens should be consumer healthy.

Keywords: antimicrobial resistance, Salmonella spp., chicken, slaughterhouse

Procedia PDF Downloads 169
24997 Level of Knowledge, Attitude, Perceived Behavior Control, Subjective Norm and Behavior of Household Solid Waste towards Zero Waste Management among Malaysian Consumer

Authors: M. J. Zuroni, O. Syuhaily, M. A. Afida Mastura, M. S. Roslina, A. K. Nurul Aini

Abstract:

The impact of country development has caused an increase of solid waste. The increase in population causes of excess usage thus effecting the sustainable environment. Zero waste management involves maximizing practices of recycling and minimizing residual waste. This paper seeks to analyze the relationship between knowledge, attitude, perceived behavior control, subjective norm and behavior of household solid waste towards household solid waste management among urban households in 8 states that have been implemented and enforced regulations under the Solid Waste Management and Public Cleansing Act 2007 (Act 672) in Malaysia. A total of respondents are 605 and we used a purposive sampling for location and simple sampling for sample size. Data collected by using self-administered questionnaire and were analyzed using SPSS software. The Pearson Correlation Test is to examine the relationship between four variables. Results show that knowledge scores are high because they have an awareness of the importance of managing solid waste. For attitude, perceived behavior control, subjective norm and behavioral scores at a moderate level in solid waste management activities. The findings show that there is a significant relationship between knowledge and behavior of household solid waste (r = 0.136 **, p = 0.001), there is a significant relationship between attitude and behavior (r = 0.238 **, p = 0.000), there is a significant relationship between perceived behavior control and behavior (r = 0.516 **, p = 0.000) and there is a significant relationship between subjective norm and behavior (r = 0.494 **, p = 0.000). The conclusion is that there is a relationship between knowledge, attitude, perceived behavior control and subjective norm toward the behavior of household solid waste management. Therefore, in the findings of the study, all parties including the government should work together to enhance the knowledge, attitude, perceived behavior control and behavior of household solid waste management in other states that have not implemented and enforced regulations under the Solid Waste and Public Cleansing Management Act 2007 (Act 672).

Keywords: solid waste management, knowledge, attitude, perceived behavior control, subjective norm, behavior

Procedia PDF Downloads 332