Search results for: artificial communication
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6154

Search results for: artificial communication

5254 NFC Communications with Mutual Authentication Based on Limited-Use Session Keys

Authors: Chalee Thammarat

Abstract:

Mobile phones are equipped with increased short-range communication functionality called Near Field Communication (or NFC for short). NFC needs no pairing between devices but suitable for little amounts of data in a very restricted area. A number of researchers presented authentication techniques for NFC communications, however, they still lack necessary authentication, particularly mutual authentication and security qualifications. This paper suggests a new authentication protocol for NFC communication that gives mutual authentication between devices. The mutual authentication is a one of property, of security that protects replay and man-in-the-middle (MitM) attack. The proposed protocols deploy a limited-use offline session key generation and use of distribution technique to increase security and make our protocol lightweight. There are four sub-protocols: NFCAuthv1 is suitable for identification and access control and NFCAuthv2 is suitable for the NFC-enhanced phone by a POS terminal for digital and physical goods and services.

Keywords: cryptographic protocols, NFC, near field communications, security protocols, mutual authentication, network security

Procedia PDF Downloads 431
5253 Health Communication and the Diabetes Narratives of Key Social Media Influencers in the UK

Authors: Z. Sun

Abstract:

Health communication is essential in promoting healthy lifestyles, managing disease conditions, and eventually reducing health disparities. The key elements of successful health communication always include the development of communication strategies to engage people in thinking about their health, inform them about healthy choices, persuade them to adopt safe and healthy behaviours, and eventually achieve public health objectives. The use of 'Narrative' is recognised as a kind of health communication strategy to enhance personal and public health due to its potential persuasive effect in motivating and supporting individuals change their beliefs and behaviours by inviting them into a narrative world, breaking down their cognitive and emotional resistance and enhance their acceptance of the ideas portrayed in narratives. Meanwhile, the popularity of social media has provided a novel means of communication for both healthcare stakeholders, and a special group of active social media users (influencers) have started playing a pivotal role in providing health ‘solutions’. Such individuals are often referred to as ‘influencers’ because of their central position in the online communication system and the persuasive effect their actions may have on audiences. They may have established a positive rapport with their audience, earned trust and credibility in a specific area, and thus, their audience considers the information they delivered to be authentic and influential. To our best knowledge, to date, there is no published research that examines the effect of diabetes narratives presented by social media influencers and their impacts on health-related outcomes. The primary aim of this study is to investigate the diabetes narratives presented by social media influencers in the UK because of the new dimension they bring to health communication and the potential impact they may have on audiences' health outcomes. This study is situated within the interpretivist and narrative paradigms. A mixed methodology combining both quantitative and qualitative approaches has been adopted. Qualitative data has been derived to provide a better understanding of influencers’ personal experiences and how they construct meanings and make sense of their world, while quantitative data has been accumulated to identify key social media influencers in the UK and measure the impact of diabetes narratives on audiences. Twitter has been chosen as the social media platform to initially identify key influencers. Two groups of participants are the top 10 key social media influencers in the UK and 100 audiences of each influencer, which means a total of 1000 audiences have been invited. This paper is going to discuss, first of all, the background of the research under the context of health communication; Secondly, the necessity and contribution of this research; then, the major research questions being explored; and finally, the methods to be used.

Keywords: diabetes, health communication, narratives, social media influencers

Procedia PDF Downloads 106
5252 Teachers’ Incorporation of Emerging Communication Technologies in Higher Education in Kuwait

Authors: Bashaiar Alsanaa

Abstract:

Never has a revolution influenced all aspects of humanity as the communication revolution during the past two decades. This revolution, with all its advances and utilities, swept the world thus becoming an integral part of our lives, hence giving way to emerging applications at the social, economic, political, and educational levels. More specifically, such applications have changed the delivery system through which learning is acquired by students. Interaction with educators, accessibility to content, and creative delivery options are but a few facets of the new learning experience now being offered through the use of technology in the educational field. With different success rates, third world countries have tried to pace themselves with use of educational technology in advanced parts of the world. One such country is the small rich-oil state of Kuwait which has tried to adopt the e-educational model, however, an evaluation of such trial is yet to be done. This study aims to fill the void of research conducted around that topic. The study explores teachers’ acceptance of incorporating communication technologies in higher education in Kuwait. Teachers’ responses to survey questions present an overview of the e-learning experience in this country, and draw a framework through which implications and suggestions for future research can be discussed to better serve the advancement of e-education in developing countries.

Keywords: communication technologies, E-learning, Kuwait, social media

Procedia PDF Downloads 282
5251 Teachers Tolerance of Using Emerging Communication Technologies in Higher Education in Kuwait

Authors: Bashaiar Alsana

Abstract:

Never has a revolution influenced all aspects of humanity as the communication revolution during the past two decades. This revolution, with all its advances and utilities, swept the world thus becoming an integral part of our lives, hence giving way to emerging applications at the social, economic, political, and educational levels. More specifically, such applications have changed the delivery system through which learning is acquired by students. Interaction with educators, accessibility to content, and creative delivery options are but a few facets of the new learning experience now being offered through the use of technology in the educational field. With different success rates, third world countries have tried to pace themselves with use of educational technology in advanced parts of the world. One such country is the small rich-oil state of Kuwait which has tried to adopt the e-educational model, however, an evaluation of such trial is yet to be done. This study aims to fill the void of research conducted around that topic. The study explores teachers’ acceptance of incorporating communication technologies in higher education in Kuwait. Teachers’ responses to survey questions present an overview of the e-learning experience in this country, and draw a framework through which implications and suggestions for future research can be discussed to better serve the advancement of e-education in developing countries.

Keywords: communication technologies, e-learning, Kuwait, social media

Procedia PDF Downloads 261
5250 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches

Authors: Vahid Nourani, Atefeh Ashrafi

Abstract:

Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.

Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant

Procedia PDF Downloads 130
5249 [Keynote Speech]: Determination of Naturally Occurring and Artificial Radionuclide Activity Concentrations in Marine Sediments in Western Marmara, Turkey

Authors: Erol Kam, Z. U. Yümün

Abstract:

Natural and artificial radionuclides cause radioactive contamination in environments, just as the other non-biodegradable pollutants (heavy metals, etc.) sink to the sea floor and accumulate in sediments. Especially the habitat of benthic foraminifera living on the surface of sediments or in sediments at the seafloor are affected by radioactive pollution in the marine environment. Thus, it is important for pollution analysis to determine the radionuclides. Radioactive pollution accumulates in the lowest level of the food chain and reaches humans at the highest level. The more the accumulation, the more the environment is endangered. This study used gamma spectrometry to investigate the natural and artificial radionuclide distribution of sediment samples taken from living benthic foraminifera habitats in the Western Marmara Sea. The radionuclides, K-40, Cs-137, Ra-226, Mn 54, Zr-95+ and Th-232, were identified in the sediment samples. For this purpose, 18 core samples were taken from depths of about 25-30 meters in the Marmara Sea in 2016. The locations of the core samples were specifically selected exclusively from discharge points for domestic and industrial areas, port locations, and so forth to represent pollution in the study area. Gamma spectrometric analysis was used to determine the radioactive properties of sediments. The radionuclide concentration activity values in the sediment samples obtained were Cs-137=0.9-9.4 Bq/kg, Th-232=18.9-86 Bq/kg, Ra-226=10-50 Bq/kg, K-40=24.4–670 Bq/kg, Mn 54=0.71–0.9 Bq/kg and Zr-95+=0.18–0.19 Bq/kg. These values were compared with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) data, and an environmental analysis was carried out. The Ra-226 series, the Th-232 series, and the K-40 radionuclides accumulate naturally and are increasing every day due to anthropogenic pollution. Although the Ra-226 values obtained in the study areas remained within normal limits according to the UNSCEAR values, the K-40, and Th-232 series values were found to be high in almost all the locations.

Keywords: Ra-226, Th-232, K-40, Cs-137, Mn 54, Zr-95+, radionuclides, Western Marmara Sea

Procedia PDF Downloads 421
5248 Impact of Information and Communication Technology on Achievement of Technical Students and Perspective Teachers: A Study of Haryana State

Authors: Anu Malhotra, Rahul Malhotra

Abstract:

This review paper is focused on achievement ability analysis of perspective teachers and students of technical education of Haryana. It is well known that women have higher verbal achievement, while men have higher achievement in non-verbal and scientific achievement. Chi-square analyses were performed to evaluate the effect of information and communication technology tools on the scientific, verbal and non-verbal achievement of the controlled and uncontrolled group of 204 students of Haryana. The computed value of expected count, which is more than 5, shows that there is a significant improvement in achievement ability of students of the controlled group when compared to the uncontrolled group. The research analyzes that the Information and communication technology tools play an important role in enhancing student’s achievement.

Keywords: achievement, ICT, perspective teacher, verbal achievement

Procedia PDF Downloads 177
5247 Application of Artificial Neural Network for Prediction of Retention Times of Some Secoestrane Derivatives

Authors: Nataša Kalajdžija, Strahinja Kovačević, Davor Lončar, Sanja Podunavac Kuzmanović, Lidija Jevrić

Abstract:

In order to investigate the relationship between retention and structure, a quantitative Structure Retention Relationships (QSRRs) study was applied for the prediction of retention times of a set of 23 secoestrane derivatives in a reversed-phase thin-layer chromatography. After the calculation of molecular descriptors, a suitable set of molecular descriptors was selected by using step-wise multiple linear regressions. Artificial Neural Network (ANN) method was employed to model the nonlinear structure-activity relationships. The ANN technique resulted in 5-6-1 ANN model with the correlation coefficient of 0.98. We found that the following descriptors: Critical pressure, total energy, protease inhibition, distribution coefficient (LogD) and parameter of lipophilicity (miLogP) have a significant effect on the retention times. The prediction results are in very good agreement with the experimental ones. This approach provided a new and effective method for predicting the chromatographic retention index for the secoestrane derivatives investigated.

Keywords: lipophilicity, QSRR, RP TLC retention, secoestranes

Procedia PDF Downloads 460
5246 Tommy: Communication in Education about Disability

Authors: Karen V. Lee

Abstract:

The background and significance of this study involve communication in education by a faculty advisor exploring story and music that informs others about a disabled teacher. Social issues draw deep reflection about the emotional turmoil. As a musician becoming a teacher is a passionate yet complex endeavor, the faculty advisor shares a poetic but painful story about a disabled teacher being inducted into the teaching profession. The qualitative research method as theoretical framework draws on autoethnography of music and story where the faculty advisor approaches a professor for advice. His musicianship shifts her forward, backward, and sideways through feelings that evoke and provoke curriculum to remove communication barriers in education. They discover they do not transfer knowledge from educational method classes. Instead, the autoethnography embeds musical language as a metaphorical conduit for removing communication barriers in teacher education. Sub-themes involve communication barriers and educational technologies to ensure teachers receive social, emotional, physical, spiritual, and intervention disability resources that evoke visceral, emotional responses from the audience. Major findings of the study discover how autoethnography of music and story bring the authors to understand wider political issues of the practicum internship for teachers with disabilities. An epiphany reveals the irony of living in a culture of both uniformity and diversity. They explore the constructs of secrecy, ideology, abnormality, and marginalization by evoking visceral and emotional responses from the audience. As the voices harmonize plot, climax, characterization, and denouement, they dramatize meaning that is episodic yet incomplete to highlight the circumstances surrounding the disabled protagonist’s life. In conclusion, the qualitative research method argues for embracing storied experiences that depict communication in education. Scholarly significance embraces personal thoughts and feelings as a way of understanding social phenomena while highlighting the importance of removing communication barriers in education. The circumstance about a teacher with a disability is not uncommon in society. Thus, the authors resolve to removing barriers in education by using stories to transform the personal and cultural influences that provoke new ways of thinking about the curriculum for a disabled teacher.

Keywords: communication in education, communication barriers, autoethnography, teaching

Procedia PDF Downloads 241
5245 Evaluation of the Conditions of Managed Aquifer Recharge in the West African Basement Area

Authors: Palingba Aimé Marie Doilkom, Mahamadou Koïta, Jean-michel Vouillamoz, Angelbert Biaou

Abstract:

Most African populations rely on groundwater in rural areas for their consumption. Indeed, in the face of climate change and strong demographic growth, groundwater, particularly in the basement, is increasingly in demand. The question of the sustainability of water resources in this type of environment is therefore becoming a major issue. Groundwater recharge can be natural or artificial. Unlike natural recharge, which often results from the natural infiltration of surface water (e.g. a share of rainfall), artificial recharge consists of causing water infiltration through appropriate developments to artificially replenish the water stock of an aquifer. Artificial recharge is, therefore, one of the measures that can be implemented to secure water supply, combat the effects of climate change, and, more generally, contribute to improving the quantitative status of groundwater bodies. It is in this context that the present research is conducted with the aim of developing artificial recharge in order to contribute to the sustainability of basement aquifers in a context of climatic variability and constantly increasing water needs of populations. In order to achieve the expected results, it is therefore important to determine the characteristics of the infiltration basins and to identify the areas suitable for their implementation. The geometry of the aquifer was reproduced, and the hydraulic properties of the aquifer were collected and characterized, including boundary conditions, hydraulic conductivity, effective porosity, recharge, Van Genuchten parameters, and saturation indices. The aquifer of the Sanon experimental site is made up of three layers, namely the saprolite, the fissured horizon, and the healthy basement. Indeed, the saprolite and the fissured medium were considered for the simulations. The first results with FEFLOW model show that the water table reacts continuously for the first 100 days before stabilizing. The hydraulic charge increases by an average of 1 m. The further away from the basin, the less the water table reacts. However, if a variable hydraulic head is imposed on the basins, it can be seen that the response of the water table is not uniform over time. The lower the basin hydraulic head, the less it affects the water table. These simulations must be continued by improving the characteristics of the basins in order to obtain the appropriate characteristics for a good recharge.

Keywords: basement area, FEFLOW, infiltration basin, MAR

Procedia PDF Downloads 76
5244 Communication in a Heterogeneous Ad Hoc Network

Authors: C. Benjbara, A. Habbani

Abstract:

Wireless networks are getting more and more used in every new technology or feature, especially those without infrastructure (Ad hoc mode) which provide a low cost alternative to the infrastructure mode wireless networks and a great flexibility for application domains such as environmental monitoring, smart cities, precision agriculture, and so on. These application domains present a common characteristic which is the need of coexistence and intercommunication between modules belonging to different types of ad hoc networks like wireless sensor networks, mesh networks, mobile ad hoc networks, vehicular ad hoc networks, etc. This vision to bring to life such heterogeneous networks will make humanity duties easier but its development path is full of challenges. One of these challenges is the communication complexity between its components due to the lack of common or compatible protocols standard. This article proposes a new patented routing protocol based on the OLSR standard in order to resolve the heterogeneous ad hoc networks communication issue. This new protocol is applied on a specific network architecture composed of MANET, VANET, and FANET.

Keywords: Ad hoc, heterogeneous, ID-Node, OLSR

Procedia PDF Downloads 217
5243 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques

Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas

Abstract:

The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.

Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining

Procedia PDF Downloads 122
5242 The AI Arena: A Framework for Distributed Multi-Agent Reinforcement Learning

Authors: Edward W. Staley, Corban G. Rivera, Ashley J. Llorens

Abstract:

Advances in reinforcement learning (RL) have resulted in recent breakthroughs in the application of artificial intelligence (AI) across many different domains. An emerging landscape of development environments is making powerful RL techniques more accessible for a growing community of researchers. However, most existing frameworks do not directly address the problem of learning in complex operating environments, such as dense urban settings or defense-related scenarios, that incorporate distributed, heterogeneous teams of agents. To help enable AI research for this important class of applications, we introduce the AI Arena: a scalable framework with flexible abstractions for distributed multi-agent reinforcement learning. The AI Arena extends the OpenAI Gym interface to allow greater flexibility in learning control policies across multiple agents with heterogeneous learning strategies and localized views of the environment. To illustrate the utility of our framework, we present experimental results that demonstrate performance gains due to a distributed multi-agent learning approach over commonly-used RL techniques in several different learning environments.

Keywords: reinforcement learning, multi-agent, deep learning, artificial intelligence

Procedia PDF Downloads 160
5241 The Impact of Artificial Intelligence on Legislations and Laws

Authors: Keroles Akram Saed Ghatas

Abstract:

The near future will bring significant changes in modern organizations and management due to the growing role of intangible assets and knowledge workers. The area of copyright, intellectual property, digital (intangible) assets and media redistribution appears to be one of the greatest challenges facing business and society in general and management sciences and organizations in particular. The proposed article examines the views and perceptions of fairness in digital media sharing among Harvard Law School's LL.M.s. Students, based on 50 qualitative interviews and 100 surveys. The researcher took an ethnographic approach to her research and entered the Harvard LL.M. in 2016. at, a Face book group that allows people to connect naturally and attend in-person and private events more easily. After listening to numerous students, the researcher conducted a quantitative survey among 100 respondents to assess respondents' perceptions of fairness in digital file sharing in various contexts (based on media price, its availability, regional licenses, copyright holder status, etc.). to understand better . .). Based on the survey results, the researcher conducted long-term, open-ended and loosely structured ethnographic interviews (50 interviews) to further deepen the understanding of the results. The most important finding of the study is that Harvard lawyers generally support digital piracy in certain contexts, despite having the best possible legal and professional knowledge. Interestingly, they are also more accepting of working for the government than the private sector. The results of this study provide a better understanding of how “fairness” is perceived by the younger generation of lawyers and pave the way for a more rational application of licensing laws.

Keywords: cognitive impairments, communication disorders, death penalty, executive function communication disorders, cognitive disorders, capital murder, executive function death penalty, egyptian law absence, justice, political cases piracy, digital sharing, perception of fairness, legal profession

Procedia PDF Downloads 66
5240 The Role of Short-Term Study Abroad Experience on Intercultural Communication Competence

Authors: Zeynep Aksoy

Abstract:

Since global mobility of capital, information and people increase more and more, intercultural communication and management become a growing study field of investigating various aspects of the interaction between people from different cultural backgrounds. Human mobility, caused by several intentions from tourism to forced migration, often put people in facing communication barriers, issues or sometimes conflicts. This reality naturally enforces education institutions to develop international policies and programs for students in order to improve their intercultural experiences along with the educative objectives. Study-abroad programs, particularly the student exchanges in higher education provide an environment for participants to encounter with cultural differences. Therefore, international exchange programs (i.e. Erasmus Student Mobility, Global Exchange Program) are accepted to bring opportunities for intergroup contact, which may lead students to obtain new perspectives about the host culture, either in positive or negative ways, and new intercultural communication skills. This study aims to explore the role of short-term study abroad experience on intercultural communication competence with a qualitative approach. It attempts to reveal a comparative analysis, which is derived from two field studies conducted in Izmir (Turkey) and in Amsterdam (the Netherlands) in 2015 and 2016. They were both organized in two phases as pre-and-posttest to gain an insight into the changes (if any) in students’ attitudes and knowledge regarding the host culture, and their further motivations towards cross-cultural interactions. With this aim, focus group sessions and in-depth interviews have been taken place with participants at the beginning of their stay and at the end of the semester. The sample covers students mainly from Erasmus program (20 students in Izmir and 14 students in Amsterdam), and few from Global Exchange Program (5 students in Amsterdam). Data obtained from both studies were thematically analyzed and essential themes were identified within the framework of intercultural communication competence.

Keywords: Erasmus student mobility, intercultural communication competence, student exchange, short-term study abroad

Procedia PDF Downloads 263
5239 Training AI to Be Empathetic and Determining the Psychotype of a Person During a Conversation with a Chatbot

Authors: Aliya Grig, Konstantin Sokolov, Igor Shatalin

Abstract:

The report describes the methodology for collecting data and building an ML model for determining the personality psychotype using profiling and personality traits methods based on several short messages of a user communicating on an arbitrary topic with a chitchat bot. In the course of the experiments, the minimum amount of text was revealed to confidently determine aspects of personality. Model accuracy - 85%. Users' language of communication is English. AI for a personalized communication with a user based on his mood, personality, and current emotional state. Features investigated during the research: personalized communication; providing empathy; adaptation to a user; predictive analytics. In the report, we describe the processes that captures both structured and unstructured data pertaining to a user in large quantities and diverse forms. This data is then effectively processed through ML tools to construct a knowledge graph and draw inferences regarding users of text messages in a comprehensive manner. Specifically, the system analyzes users' behavioral patterns and predicts future scenarios based on this analysis. As a result of the experiments, we provide for further research on training AI models to be empathetic, creating personalized communication for a user

Keywords: AI, empathetic, chatbot, AI models

Procedia PDF Downloads 94
5238 A Kierkegaardian Reading of Iqbal's Poetry as a Communicative Act

Authors: Sevcan Ozturk

Abstract:

The overall aim of this paper is to present a Kierkegaardian approach to Iqbal’s use of literature as a form of communication. Despite belonging to different historical, cultural, and religious backgrounds, the philosophical approaches of Soren Kierkegaard, ‘the father of existentialism,' and Muhammad Iqbal ‘the spiritual father of Pakistan’ present certain parallels. Both Kierkegaard and Iqbal take human existence as the starting point for their reflections, emphasise the subject of becoming genuine religious personalities, and develop a notion of the self. While doing these they both adopt parallel methods, employ literary techniques and poetical forms, and use their literary works as a form of communication. The problem is that Iqbal does not provide a clear account of his method as Kierkegaard does in his works. As a result, Iqbal’s literary approach appears to be a collection of contradictions. This is mainly because despite he writes most of his works in the poetical form, he condemns all kinds of art including poetry. Moreover, while attacking on Islamic mysticism, he, at the same time, uses classical literary forms, and a number of traditional mystical, poetic symbols. This paper will argue that the contradictions found in Iqbal’s approach are actually a significant part of Iqbal’s way of communicating his reader. It is the contention of this paper that with the help of the parallels between the literary and philosophical theories of Kierkegaard and Iqbal, the application of Kierkegaard’s method to Iqbal’s use of poetry as a communicative act will make it possible to dispel the seeming ambiguities in Iqbal’s literary approach. The application of Kierkegaard’s theory to Iqbal’s literary method will include an analysis of the main principles of Kierkegaard’s own literary technique of ‘indirect communication,' which is a crucial term of his existentialist philosophy. Second, the clash between what Iqbal’s says about art and poetry and what he does will be highlighted in the light of Kierkegaardian theory of indirect communication. It will be argued that Iqbal’s literary technique can be considered as a form of ‘indirect communication,' and that reading his technique in this way helps on dispelling the contradictions in his approach. It is hoped that this paper will cultivate a dialogue between those who work in the fields of comparative philosophy Kierkegaard studies, existentialism, contemporary Islamic thought, Iqbal studies, and literary criticism.

Keywords: comparative philosophy, existentialism, indirect communication, intercultural philosophy, literary communication, Muhammad Iqbal, Soren Kierkegaard

Procedia PDF Downloads 337
5237 Consensus Problem of High-Order Multi-Agent Systems under Predictor-Based Algorithm

Authors: Cheng-Lin Liu, Fei Liu

Abstract:

For the multi-agent systems with agent's dynamics described by high-order integrator, and usual consensus algorithm composed of the state coordination control parts is proposed. Under communication delay, consensus algorithm in asynchronously-coupled form just can make the agents achieve a stationary consensus, and sufficient consensus condition is obtained based on frequency-domain analysis. To recover the original consensus state of the high-order agents without communication delay, besides, a predictor-based consensus algorithm is constructed via multiplying the delayed neighboring agents' states by a delay-related compensation part, and sufficient consensus condition is also obtained. Simulation illustrates the correctness of the results.

Keywords: high-order dynamic agents, communication delay, consensus, predictor-based algorithm

Procedia PDF Downloads 571
5236 Addressing Scheme for IOT Network Using IPV6

Authors: H. Zormati, J. Chebil, J. Bel Hadj Taher

Abstract:

The goal of this paper is to present an addressing scheme that allows for assigning a unique IPv6 address to each node in the Internet of Things (IoT) network. This scheme guarantees uniqueness by extracting the clock skew of each communication device and converting it into an IPv6 address. Simulation analysis confirms that the presented scheme provides reductions in terms of energy consumption, communication overhead and response time as compared to four studied addressing schemes Strong DAD, LEADS, SIPA and CLOSA.

Keywords: addressing, IoT, IPv6, network, nodes

Procedia PDF Downloads 295
5235 Prediction of Compressive Strength Using Artificial Neural Network

Authors: Vijay Pal Singh, Yogesh Chandra Kotiyal

Abstract:

Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-Destructive Techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques.

Keywords: rebound, ultra-sonic pulse, penetration, ANN, NDT, regression

Procedia PDF Downloads 428
5234 The Internet and Transformation of Epistemic Communities: An Exploratory Review of Communication Research between 2002 and 2022

Authors: Dayei Oh, Feeza Vasudeva, Narges Azizi Fard

Abstract:

Drawing on the Foucauldian conception of episteme, epistemic communities refer to a community in which members share common frames of epistemic reference, delineating the proper construction of social realities for their members. One of the most cited definitions of epistemic communities is a group of professionals possessing acknowledged expertise and proficiency in a specific field, influencing policymaking and governance. More recently, the advancement of the Internet has changed the way society produces, disseminates, and consumes knowledge. Against this backdrop, this literature review explores the ways in which online epistemic communities are studied in communication scholarship between 2002 and 2022. Examining 92 peer-reviewed journal articles from the Web of Science database, three research objectives have been addressed: (1) geographical contexts, platforms, and methods that are studied in communication research, (2) different types of epistemic communities, and (3) prevailing themes and concepts that are related to the research of the chosen epistemic communities. This research demonstrates increasing scholarly attention towards the lay public as prominent online epistemic communities along with more conventional epistemic communities such as academia and journalists, hinting at how the Internet provides epistemic capacities for negotiating the boundaries of epistemic authority and competencies between experts and lay people. Through qualitative reading of these papers, the findings show that communication research tends to approach epistemic communities of the political left and right asymmetrically: The right-wing epistemic communities are studied in connection with mis/disinformation, conspiracy theories, populist rejection of authoritative epistemologies, whereas the left-wing communities are studied as emancipatory epistemic struggles and activism against Western, colonial, white, and male-centric knowledge systems. This points to a grave need for communication and multidisciplinary scholarship to investigate such uncharted characters of right- and left-wing epistemic communities.

Keywords: communication research, internet, knowledge, online epistemic communities

Procedia PDF Downloads 54
5233 Thermalytix: An Advanced Artificial Intelligence Based Solution for Non-Contact Breast Screening

Authors: S. Sudhakar, Geetha Manjunath, Siva Teja Kakileti, Himanshu Madhu

Abstract:

Diagnosis of breast cancer at early stages has seen better clinical and survival outcomes. Survival rates in developing countries like India are very low due to accessibility and affordability issues of screening tests such as Mammography. In addition, Mammography is not much effective in younger women with dense breasts. This leaves a gap in current screening methods. Thermalytix is a new technique for detecting breast abnormality in a non-contact, non-invasive way. It is an AI-enabled computer-aided diagnosis solution that automates interpretation of high resolution thermal images and identifies potential malignant lesions. The solution is low cost, easy to use, portable and is effective in all age groups. This paper presents the results of a retrospective comparative analysis of Thermalytix over Mammography and Clinical Breast Examination for breast cancer screening. Thermalytix was found to have better sensitivity than both the tests, with good specificity as well. In addition, Thermalytix identified all malignant patients without palpable lumps.

Keywords: breast cancer screening, radiology, thermalytix, artificial intelligence, thermography

Procedia PDF Downloads 293
5232 The Role of ChatGPT in Enhancing ENT Surgical Training

Authors: Laura Brennan, Ram Balakumar

Abstract:

ChatGPT has been developed by Open AI (Nov 2022) as a powerful artificial intelligence (AI) language model which has been designed to produce human-like text from user written prompts. To gain the most from the system, user written prompts must give context specific information. This article aims to give guidance on how to optimise the ChatGPT system in the context of education for otolaryngology. Otolaryngology is a specialist field which sees little time dedicated to providing education to both medical students and doctors. Additionally, otolaryngology trainees have seen a reduction in learning opportunities since the COVID-19 pandemic. In this article we look at these various barriers to medical education in Otolaryngology training and suggest ways that ChatGPT can overcome them and assist in simulation-based training. Examples provide how this can be achieved using the Authors’ experience to further highlight the practicalities. What this article has found is that while ChatGPT cannot replace traditional mentorship and practical surgical experience, it can serve as an invaluable supplementary resource to simulation based medical education in Otolaryngology.

Keywords: artificial intelligence, otolaryngology, surgical training, medical education

Procedia PDF Downloads 160
5231 Motivations, Communication Dimensions, and Perceived Outcomes in the Multi-Sectoral Collaboration of the Visitor Management Program of Mount Makiling Forest Reserve in Los Banos, Laguna, Philippines

Authors: Charmaine B. Distor

Abstract:

Collaboration has long been recognized in different fields, but there’s been little research on operationalizing it especially on a multi-sectoral setting as per the author’s best knowledge. Also, communication is one of the factors that is usually overlooked when studying it. Specifically, this study aimed to describe the organizational profile and tasks of collaborators in the visitor management program of Make It Makiling (MIM). It also identified the factors that motivated collaborators to collaborate in MIM while determining the communication dimensions in the collaborative process. It also determined the communication channels used by collaborators in MIM while identifying the outcomes of collaboration in MIM. This study also found out if a relationship exists between collaborators’ motivations for collaboration and their perceived outcomes of collaboration, and collaborators' communication dimensions and their perceived outcomes of collaboration. Lastly, it also provided recommendations to improve the communication in MIM. Data were gathered using a self-administered survey that was patterned after Mattessich and Monsey’s (1992) collaboration experience questionnaire. Interviews and secondary sources mainly provided by the Makiling Center for Mountain Ecosystems (MCME) were also used. From the seven MIM collaborating organizations that were selected through purposive sampling, 86 respondents were chosen. Then, data were analyzed through frequency counts, percentages, measures of central tendencies, and Pearson’s and Spearman rho correlations. Collaborators’ length of collaboration ranged from seven to twenty years. Furthermore, six out of seven of the collaborators were involved in the task of 'emergency, rescue, and communication'. For the other aspect of the antecedents, the history of previous collaboration efforts ranked as the highest rated motivation for collaboration. In line with this, the top communication dimension is the governance while perceived effectiveness garnered the highest overall average among the perceived outcomes of collaboration. Results also showed that the collaborators highly rely on formal communication channels. Meetings and memos were the most commonly used communication channels throughout all tasks under the four phases of MIM. Additionally, although collaborators have a high view towards their co-collaborators, they still rely on MCME to act as their manager in coordinating with one another indirectly. Based on the correlation analysis, antecedent (motivations)-outcome relationship generally had positive relationships. However, for the process (communication dimensions)-outcome relationship, both positive and negative relationships were observed. In conclusion, this study exhibited the same trend with existing literature which also used the same framework. For the antecedent-outcome relationship, it can be deduced that MCME, as the main organizer of MIM, can focus on these variables to achieve their desired outcomes because of the positive relationships. For the process-outcome relationship, MCME should also take note that there were negative relationships where an increase in the said communication dimension may result in a decrease in the desired outcome. Recommendations for further study include a methodology that contains: complete enumeration or any parametric sampling, a researcher-administered survey, and direct observations. These might require additional funding, but all may yield to richer data.

Keywords: antecedent-outcome relationship, carrying capacity, organizational communication, process-outcome relationship

Procedia PDF Downloads 124
5230 Investigating the Effect of Artificial Intelligence on the Improvement of Green Supply Chain in Industry

Authors: Sepinoud Hamedi

Abstract:

Over the past few decades, companies have appeared developing concerns in connection to the natural affect of their fabricating exercises. Green supply chain administration has been considered by the producers as a attainable choice to decrease the natural affect of operations whereas at the same time moving forward their operational execution. Contemporaneously the coming of digitalization and globalization within the supply chain space has driven to a developing acknowledgment of the importance of data preparing methodologies, such as enormous information analytics and fake insights innovations, in improving and optimizing supply chain execution. Also, supply chain collaboration in part intervenes the relationship between manufactured innovation and supply chain execution Ponders appear that the use of BDA-AI advances includes a significant impact on natural handle integration and green supply chain collaboration conjointly underlines that both natural handle integration and green supply chain collaboration have a critical affect on natural execution. Correspondingly savvy supply chain contributes to green execution through overseeing green connections and setting up green operations.

Keywords: green supply chain, artificial intelligence, manufacturers, technology, environmental

Procedia PDF Downloads 74
5229 Smart Meter Incorporating UWB Technology

Authors: T. A. Khan, A. B. Khan, M. Babar, T. A. Taj, Imran Ijaz Imran

Abstract:

Smart Meter is a key element in the evolving concept of Smart Grid, which plays an important role in interaction between the consumer and the supplier. In general, the smart meter is an intelligent digital energy meter that measures the consumption of electrical energy and provides other additional services as compared to the conventional energy meters. One of the important element that makes a meter smart and different is its communication module. Smart meters usually have two way and real-time communication between the consumer and the supplier through which its transfer data and information. In this paper, Ultra Wide Band (UWB) is recommended as communication platform because of its high data-rate and presents the physical layer, which could be easily incorporated in existing Smart Meters. The physical layer is simulated in MATLAB Simulink and the results are provided.

Keywords: Ultra Wide Band (UWB), Smart Meter, MATLAB, transfer data

Procedia PDF Downloads 518
5228 Machine Learning Techniques in Bank Credit Analysis

Authors: Fernanda M. Assef, Maria Teresinha A. Steiner

Abstract:

The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.

Keywords: artificial neural networks (ANNs), classifier algorithms, credit risk assessment, logistic regression, machine Learning, support vector machines

Procedia PDF Downloads 104
5227 Dogmatic Analysis of Legal Risks of Using Artificial Intelligence: The European Union and Polish Perspective

Authors: Marianna Iaroslavska

Abstract:

ChatGPT is becoming commonplace. However, only a few people think about the legal risks of using Large Language Model in their daily work. The main dilemmas concern the following areas: who owns the copyright to what somebody creates through ChatGPT; what can OpenAI do with the prompt you enter; can you accidentally infringe on another creator's rights through ChatGPT; what about the protection of the data somebody enters into the chat. This paper will present these and other legal risks of using large language models at work using dogmatic methods and case studies. The paper will present a legal analysis of AI risks against the background of European Union law and Polish law. This analysis will answer questions about how to protect data, how to make sure you do not violate copyright, and what is at stake with the AI Act, which recently came into force in the EU. If your work is related to the EU area, and you use AI in your work, this paper will be a real goldmine for you. The copyright law in force in Poland does not protect your rights to a work that is created with the help of AI. So if you start selling such a work, you may face two main problems. First, someone may steal your work, and you will not be entitled to any protection because work created with AI does not have any legal protection. Second, the AI may have created the work by infringing on another person's copyright, so they will be able to claim damages from you. In addition, the EU's current AI Act imposes a number of additional obligations related to the use of large language models. The AI Act divides artificial intelligence into four risk levels and imposes different requirements depending on the level of risk. The EU regulation is aimed primarily at those developing and marketing artificial intelligence systems in the EU market. In addition to the above obstacles, personal data protection comes into play, which is very strictly regulated in the EU. If you violate personal data by entering information into ChatGPT, you will be liable for violations. When using AI within the EU or in cooperation with entities located in the EU, you have to take into account a lot of risks. This paper will highlight such risks and explain how they can be avoided.

Keywords: EU, AI act, copyright, polish law, LLM

Procedia PDF Downloads 23
5226 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics

Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo

Abstract:

Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.

Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model

Procedia PDF Downloads 157
5225 Digital Forensic Exploration Framework for Email and Instant Messaging Applications

Authors: T. Manesh, Abdalla A. Alameen, M. Mohemmed Sha, A. Mohamed Mustaq Ahmed

Abstract:

Email and instant messaging applications are foremost and extensively used electronic communication methods in this era of information explosion. These applications are generally used for exchange of information using several frontend applications from various service providers by its users. Almost all such communications are now secured using SSL or TLS security over HTTP communication. At the same time, it is also noted that cyber criminals and terrorists have started exchanging information using these methods. Since communication is encrypted end-to-end, tracing significant forensic details and actual content of messages are found to be unattended and severe challenges by available forensic tools. These challenges seriously affect in procuring substantial evidences against such criminals from their working environments. This paper presents a vibrant forensic exploration and architectural framework which not only decrypts any communication or network session but also reconstructs actual message contents of email as well as instant messaging applications. The framework can be effectively used in proxy servers and individual computers and it aims to perform forensic reconstruction followed by analysis of webmail and ICQ messaging applications. This forensic framework exhibits a versatile nature as it is equipped with high speed packet capturing hardware, a well-designed packet manipulating algorithm. It regenerates message contents over regular as well as SSL encrypted SMTP, POP3 and IMAP protocols and catalyzes forensic presentation procedure for prosecution of cyber criminals by producing solid evidences of their actual communication as per court of law of specific countries.

Keywords: forensics, network sessions, packet reconstruction, packet reordering

Procedia PDF Downloads 344