Search results for: California red scale
5235 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 1275234 Decoupling PM₂.₅ Emissions and Economic Growth in China over 1998-2016: A Regional Investment Perspective
Abstract:
It is crucial to decouple economic growth from environmental pollution in China. This study aims to evaluate the decoupling degree between PM₂.₅ emissions and economic growth in China from a regional investment perspective. Using the panel data of 30 Chinese provinces for the period of 1998-2016, this study combines decomposition analysis with decoupling analysis to identify the roles of conventional factors and three novel investment factors in the mitigation and decoupling of PM₂.₅ emissions in China and its four sub-regions. The results show that China’s PM₂.₅ emissions were weakly decoupled to economic growth during the period of 1998-2016, as well as in China’s four sub-regions. At the national level, investment scale played the dominant role while investment structure had a marginal effect. In contrast, emission intensity was the largest driver in promoting the decoupling effect, followed by investment efficiency and energy intensity. The investment scale effect in the western region far exceeded those in other three sub-regions. At the provincial level, the investment structure of Inner Mongolia and investment scales of Xinjiang and Inner Mongolia had the greatest impacts on PM₂.₅ emission growth. Finally, several policy recommendations are raised for China to mitigate its PM₂.₅ emissions.Keywords: decoupling, economic growth, investment, PM₂.₅ emissions
Procedia PDF Downloads 1195233 Simulation of Turbulent Flow in Channel Using Generalized Hydrodynamic Equations
Authors: Alex Fedoseyev
Abstract:
This study explores Generalized Hydrodynamic Equations (GHE) for the simulation of turbulent flows. The GHE was derived from the Generalized Boltzmann Equation (GBE) by Alexeev (1994). GBE was obtained by first principles from the chain of Bogolubov kinetic equations and considered particles of finite dimensions, Alexeev (1994). The GHE has new terms, temporal and spatial fluctuations compared to the Navier-Stokes equations (NSE). These new terms have a timescale multiplier τ, and the GHE becomes the NSE when τ is zero. The nondimensional τ is a product of the Reynolds number and the squared length scale ratio, τ=Re*(l/L)², where l is the apparent Kolmogorov length scale, and L is a hydrodynamic length scale. The turbulence phenomenon is not well understood and is not described by NSE. An additional one or two equations are required for the turbulence model, which may have to be tuned for specific problems. We show that, in the case of the GHE, no additional turbulence model is needed, and the turbulent velocity profile is obtained from the GHE. The 2D turbulent channel and circular pipe flows were investigated using a numerical solution of the GHE for several cases. The solutions are compared with the experimental data in the circular pipes and 2D channels by Nicuradse (1932, Prandtl Lab), Hussain and Reynolds (1975), Wei and Willmarth (1989), Van Doorne (2007), theory by Wosnik, Castillo and George (2000), and the relevant experiments on Superpipe setup at Princeton, data by Zagarola (1996) and Zagarola and Smits (1998), the Reynolds number is from Re=7200 to Re=960000. The numerical solution data compared well with the experimental data, as well as with the approximate analytical solution for turbulent flow in channel Fedoseyev (2023). The obtained results confirm that the Alexeev generalized hydrodynamic theory (GHE) is in good agreement with the experiments for turbulent flows. The proposed approach is limited to 2D and 3D axisymmetric channel geometries. Further work will extend this approach by including channels with square and rectangular cross-sections.Keywords: comparison with experimental data. generalized hydrodynamic equations, numerical solution, turbulent boundary layer, turbulent flow in channel
Procedia PDF Downloads 655232 The Relationship between Body Esteem and Self-Esteem with Sport-Confidence Students
Authors: Saeid Motevalli, Siti Fatimah Azzahrah Binti Abd Mutalib, Mohd Sahandri Ghani Hamzah, Hazalizah Hamzah
Abstract:
The main purpose of the present study was to investigate the relationship between body esteem and self-esteem with sport-confidence among university students. This study was conducted by using the descriptive and correlational study design. Meanwhile, the method involved in this study was the online survey method. The population of the sample are mainly Universiti Pendidikan Sultan Idris (UPSI) students only which 120 participants were selected by cluster sampling method from two faculties named Fakulti Pembangunan Manusia (FPM) and Fakulti Sains Sukan dan Kejurulatihan (FSSKJ). The instrument used in this study was The Body-Esteem Scale (BES) by Franzoi and Shields (1984), Rosenberg Self-Esteem Scale (RSES) by Rosenberg (1965) and the Vealey’s Trait Sport-Confidence Inventory (TSCI) by (Vealey, 1986). The results of the Pearson product-moment correlation coefficient showed that there was a positive and moderate correlation between students’ body-esteem and sport-confidence and a negative and low correlation between students’ self-esteem and sport-confidence. Likewise, based on the entry method used all two predictor variables were significant in explaining sport confidence among UPSI students. In conclusion, it can be said that students’ sport-confidence affected by students’ self-esteem and body-esteem.Keywords: body esteem, self-esteem, sport-confidence, students
Procedia PDF Downloads 1495231 Development and Automation of Medium-Scale NFT Hydroponic Systems: Design Methodology and State of the Art Review
Authors: Oscar Armando González-Marin, Jhon F. Rodríguez-León, Oscar Mota-Pérez, Jorge Pineda-Piñón, Roberto S. Velázquez-González., Julio C. Sosa-Savedra
Abstract:
Over the past six years, the World Meteorological Organization (WMO) has recorded the warmest years since 1880, primarily attributed to climate change. In addition, the overexploitation of agricultural lands, combined with food and water scarcity, has highlighted the urgent need for sustainable cultivation methods. Hydroponics has emerged as a sustainable farming technique that enables plant cultivation using nutrient solutions without the requirement for traditional soil. Among hydroponic methods, the Nutrient Film Technique (NFT) facilitates plant growth by circulating a nutrient solution continuously. This approach allows the monitoring and precise control of nutritional parameters, with potential for automation and technological integration. This study aims to present the state of the art of automated NFT hydroponic systems, discussing their design methodologies and considerations for implementation. Moreover, a medium-scale NFT system developed at CICATA-QRO is introduced, detailing its current manual management and progress toward automation.Keywords: automation, hydroponics, nutrient film technique, sustainability
Procedia PDF Downloads 395230 Protein-Enrichment of Oilseed Meals by Triboelectrostatic Separation
Authors: Javier Perez-Vaquero, Katryn Junker, Volker Lammers, Petra Foerst
Abstract:
There is increasing importance to accelerate the transition to sustainable food systems by including environmentally friendly technologies. Our work focuses on protein enrichment and fractionation of agricultural side streams by dry triboelectrostatic separation technology. Materials are fed in particulate form into a system dispersed in a highly turbulent gas stream, whereby the high collision rate of particles against surfaces and other particles greatly enhances the electrostatic charge build-up over the particle surface. A subsequent step takes the charged particles to a delimited zone in the system where there is a highly uniform, intense electric field applied. Because the charge polarity acquired by a particle is influenced by its chemical composition, morphology, and structure, the protein-rich and fiber-rich particles of the starting material get opposite charge polarities, thus following different paths as they move through the region where the electric field is present. The output is two material fractions, which differ in their respective protein content. One is a fiber-rich, low-protein fraction, while the other is a high-protein, low-fiber composition. Prior to testing, materials undergo a milling process, and some samples are stored under controlled humidity conditions. In this way, the influence of both particle size and humidity content was established. We used two oilseed meals: lupine and rapeseed. In addition to a lab-scale separator to perform the experiments, the triboelectric separation process could be successfully scaled up to a mid-scale belt separator, increasing the mass feed from g/sec to kg/hour. The triboelectrostatic separation technology opens a huge potential for the exploitation of so far underutilized alternative protein sources. Agricultural side-streams from cereal and oil production, which are generated in high volumes by the industries, can further be valorized by this process.Keywords: bench-scale processing, dry separation, protein-enrichment, triboelectrostatic separation
Procedia PDF Downloads 1905229 Efficacy and Safety of Computerized Cognitive Training Combined with SSRIs for Treating Cognitive Impairment Among Patients with Late-Life Depression: A 12-Week, Randomized Controlled Study
Authors: Xiao Wang, Qinge Zhang
Abstract:
Background: This randomized, open-label study examined the therapeutic effects of computerized cognitive training (CCT) combined with selective serotonin reuptake inhibitors (SSRIs) on cognitive impairment among patients with late-life depression (LLD). Method: Study data were collected from May 5, 2021, to April 21, 2023. Outpatients who met diagnostic criteria for major depressive disorder according to the fifth revision of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria (i.e., a total score on the 17-item Hamilton Depression Rating Scale (HAMD-17) ≥ 18 and a total score on the Montreal Cognitive Assessment scale (MOCA) <26) were randomly assigned to receive up to 12 weeks of CCT and SSRIs treatment (n=57) or SSRIs and Control treatment (n=61). The primary outcome was the change in Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) scores from baseline to week 12 between the two groups. The secondary outcomes included changes in the HAMD-17 score, Hamilton Anxiety Scale (HAMA) score and Neuropsychiatric Inventory (NPI) score. Mixed model repeated measures (MMRM) analysis was performed on modified intention-to-treat (mITT) and completer populations. Results: The full analysis set (FAS) included 118 patients (CCT and SSRIs group, n=57; SSRIs and Control group, n =61). Over the 12-week study period, the reduction in the ADAS-cog total score was significant (P < 0.001) in both groups, while MMRM analysis revealed a significantly greater reduction in cognitive function (ADAS-cog total scores) from baseline to posttreatment in the CCT and SSRIs group than in the SSRI and Control group [(F (1,115) =13.65, least-squares mean difference [95% CI]: −2.77 [−3.73, −1.81], p<0.001)]. There were significantly greater improvements in depression symptoms (measured by the HAMD-17) in the CCT and SSRIs group than in the control group [MMRM, estimated mean difference (SE) between groups −3.59 [−5.02, −2.15], p < 0.001]. The least-squares mean changes in the HAMA scores and NPI scores between baseline and week 8 were greater in the CCT and SSRIs group than in the control group (all P < 0.05). There was no significant difference between groups on response rates and remission rates by using the last-observation-carried-forward (LOCF) method (all P > 0.05). The most frequent adverse events (AEs) in both groups were dry mouth, somnolence, and constipation. There was no significant difference in the incidence of adverse events between the two groups. Conclusions: CCT combined with SSRIs was efficacious and well tolerated in LLD patients with cognitive impairment.Keywords: late-life depression, cognitive function, computerized cognitive training, SSRIs
Procedia PDF Downloads 535228 A Multi-Scale Approach to Space Use: Habitat Disturbance Alters Behavior, Movement and Energy Budgets in Sloths (Bradypus variegatus)
Authors: Heather E. Ewart, Keith Jensen, Rebecca N. Cliffe
Abstract:
Fragmentation and changes in the structural composition of tropical forests – as a result of intensifying anthropogenic disturbance – are increasing pressures on local biodiversity. Species with low dispersal abilities have some of the highest extinction risks in response to environmental change, as even small-scale environmental variation can substantially impact their space use and energetic balance. Understanding the implications of forest disturbance is therefore essential, ultimately allowing for more effective and targeted conservation initiatives. Here, the impact of different levels of forest disturbance on the space use, energetics, movement and behavior of 18 brown-throated sloths (Bradypus variegatus) were assessed in the South Caribbean of Costa Rica. A multi-scale framework was used to measure forest disturbance, including large-scale (landscape-level classifications) and fine-scale (within and surrounding individual home ranges) forest composition. Three landscape-level classifications were identified: primary forests (undisturbed), secondary forests (some disturbance, regenerating) and urban forests (high levels of disturbance and fragmentation). Finer-scale forest composition was determined using measurements of habitat structure and quality within and surrounding individual home ranges for each sloth (home range estimates were calculated using autocorrelated kernel density estimation [AKDE]). Measurements of forest quality included tree connectivity, density, diameter and height, species richness, and percentage of canopy cover. To determine space use, energetics, movement and behavior, six sloths in urban forests, seven sloths in secondary forests and five sloths in primary forests were tracked using a combination of Very High Frequency (VHF) radio transmitters and Global Positioning System (GPS) technology over an average period of 120 days. All sloths were also fitted with micro data-loggers (containing tri-axial accelerometers and pressure loggers) for an average of 30 days to allow for behavior-specific movement analyses (data analysis ongoing for data-loggers and primary forest sloths). Data-loggers included determination of activity budgets, circadian rhythms of activity and energy expenditure (using the vector of the dynamic body acceleration [VeDBA] as a proxy). Analyses to date indicate that home range size significantly increased with the level of forest disturbance. Female sloths inhabiting secondary forests averaged 0.67-hectare home ranges, while female sloths inhabiting urban forests averaged 1.93-hectare home ranges (estimates are represented by median values to account for the individual variation in home range size in sloths). Likewise, home range estimates for male sloths were 2.35 hectares in secondary forests and 4.83 in urban forests. Sloths in urban forests also used nearly double (median = 22.5) the number of trees as sloths in the secondary forest (median = 12). These preliminary data indicate that forest disturbance likely heightens the energetic requirements of sloths, a species already critically limited by low dispersal ability and rates of energy acquisition. Energetic and behavioral analyses from the data-loggers will be considered in the context of fine-scale forest composition measurements (i.e., habitat quality and structure) and are expected to reflect the observed home range and movement constraints. The implications of these results are far-reaching, presenting an opportunity to define a critical index of habitat connectivity for low dispersal species such as sloths.Keywords: biodiversity conservation, forest disturbance, movement ecology, sloths
Procedia PDF Downloads 1135227 Tokenization of Blue Bonds to Scale Blue Carbon Projects
Authors: Rodrigo Buaiz Boabaid
Abstract:
Tokenization of Blue Bonds is an emerging Green Finance tool that has the potential to scale Blue Carbon Projects to fight climate change. This innovative solution has a huge potential to democratize the green finance market and catalyze innovations in the climate change finance sector. Switzerland has emerged as a leader in the Green Finance space and is well-positioned to drive the adoption of Tokenization of Blue & Green Bonds. This unique approach has the potential to unlock new sources of capital and enable global investors to participate in the financing of sustainable blue carbon projects. By leveraging the power of blockchain technology, Tokenization of Blue Bonds can provide greater transparency, efficiency, and security in the investment process while also reducing transaction costs. Investments are in line with the highest regulations and designed according to the stringent legal framework and compliance standards set by Switzerland. The potential benefits of Tokenization of Blue Bonds are significant and could transform the way that sustainable projects are financed. By unlocking new sources of capital, this approach has the potential to accelerate the deployment of Blue Carbon projects and create new opportunities for investors to participate in the fight against climate change.Keywords: blue bonds, blue carbon, tokenization, green finance
Procedia PDF Downloads 875226 Social Media Use and Social Connectedness
Authors: Jessica Torres, James W. Sturges
Abstract:
This correlational study explored the potential relationship between social media use and social connectedness. College students (n = 190) were surveyed using the revised Social Connectedness Scale (SCS-R) and were asked about the number of hours they used social media platforms such as Instagram, TikTok, Twitter, Snapchat, and Facebook. We also developed and administered a 14-item Social Media Use Scale (SMUS) to measure potentially maladaptive social media use, such as use that likely interfered with other activities. The SMUS was found to have good inter-item consistency (Cronbach’s alpha = .92) and was significantly correlated with hours of use, r(182) = .622, p < .001. As expected, we found that the SCS-R scores were inversely related to total hours of social media use, r(182) = -.188 (p < .005). This suggested that lots of time allocated to online interactions is negatively associated with social connectedness in general. Interestingly, however, higher social connectedness scores were associated specifically with Snapchat use, r(28) = .210, p = .004. This may have to do with the specific nature of the Snapchat experience and perhaps its original use for one-to-one communication. The use of other social media platforms (Tiktok, Instagram, Twitter) was not related to better social connectedness scores. Although we failed to find that scores on our measure of problem use (the SMUS) were correlated with social connectedness, we are hopeful that the SMUS will be of use in identifying patterns of maladaptive social media use that may have an impact on other important outcome measures of adaptive functioning and well-being.Keywords: adaptive functioning, college students, social connectedness, social media use
Procedia PDF Downloads 955225 Triggering Supersonic Boundary-Layer Instability by Small-Scale Vortex Shedding
Authors: Guohua Tu, Zhi Fu, Zhiwei Hu, Neil D Sandham, Jianqiang Chen
Abstract:
Tripping of boundary-layers from laminar to turbulent flow, which may be necessary in specific practical applications, requires high amplitude disturbances to be introduced into the boundary layers without large drag penalties. As a possible improvement on fixed trip devices, a technique based on vortex shedding for enhancing supersonic flow transition is demonstrated in the present paper for a Mach 1.5 boundary layer. The compressible Navier-Stokes equations are solved directly using a high-order (fifth-order in space and third-order in time) finite difference method for small-scale cylinders suspended transversely near the wall. For cylinders with proper diameter and mount location, asymmetry vortices shed within the boundary layer are capable of tripping laminar-turbulent transition. Full three-dimensional simulations showed that transition was enhanced. A parametric study of the size and mounting location of the cylinder is carried out to identify the most effective setup. It is also found that the vortex shedding can be suppressed by some factors such as wall effect.Keywords: boundary layer instability, boundary layer transition, vortex shedding, supersonic flows, flow control
Procedia PDF Downloads 3655224 Comparing Quality of School Work Life between Turkish and Pakistani Public School Teachers
Authors: Muhammad Akram, Abdurrahman Ilgan, Oyku Ozu-Cengiz
Abstract:
The quality of Work life is the general state of wellbeing of employees in the workplace. The quality of work life focuses on changing climate at work so that employees can lead improved work life. This study was designed to compare the quality of work life between Turkish and Pakistani public school teachers based on their location, gender, and marital status. A 30 items scale named The Quality of School Work Life (QSWL) was used for this study. 995 teachers from 8 Turkish provinces and 716 from four Pakistani districts were conveniently selected. The overall reliability coefficient of the scale was measured as .81. Exploratory and confirmatory factor analysis yielded five subscales of the construct. The Study revealed that Turkish and Pakistani teachers significantly differed, separately, on all the five subscales of Quality of School Work Life. However, no significant differences were found between Turkish and Pakistani teachers perspectives on the composite score of the QSWL. Further, Male, married, and Single teachers did not significantly differ on their perceptions of QSWL in both countries. However, Pakistani female teachers significantly perceived better QSWL than female teachers in Turkey. The study provided initial validity and reliability evidence of the QSWL.Keywords: developmental opportunities, fair wages, quality of work life, Pakistan
Procedia PDF Downloads 2965223 Prevelance of Green Peach Aphid (Myzus persicae) in District Jacobabad, Sindh, Pakistran
Authors: Kamal Khan Abro, Nasreen Memon, Attaullah Ansari, Mahpara Pirzada, Saima Pathan
Abstract:
Jacobabad district has a hot desert climate with very hot summers and insignificant winters. The highest recorded temperature is 53.8 °C (127.0 °F), and the lowest recorded temperature is −4.9 °C (25.0 °F). Rainfall is short and mostly occurs in the monsoon season (July–September). Agriculture point of view Jacobabad district is very important district of Sindh Pakistan in which many types of crop and vegetables are cultivated annually such as Wheat, Rice, and Brassica, Cabbage, Spinach, Chili etc. which are badly attacked by many crops pest. Insects are very tiny, sensitive and most attractive mortal and most important collection of animal wildlife they play important role in biological control agent, biodiversity & agroecosystem. The brassica crop extremely infested by many different types of pest such as Aphids, Whitefly, Jassids, Thrips, Mealybug, scale insect pink worm, bollworm and borers Mealy bug, scale insect etc. These pests destroy many crops. The present study was carried out from Jacobabad district from January 2017 to April 2017.Keywords: prevelance, green peach aphid, Jacobabad, Sindh Pakistan
Procedia PDF Downloads 2915222 Fear of Covid-19 a Major Contributing Factor to Insomnia in General Iranian Population
Authors: Amin Nakhostin-Ansari, Samaneh Akbarour, Khosro Sadeghniiat Haghighi, Zahra Banafsheh Alemohammad, Farnaz Etesam, Arezu Najafi, Mahnaz Khalafehnilsaz
Abstract:
Introduction: The outbreak of coronavirus disease has considerably burdened the healthcare system in Iran. This study aimed to evaluate the characteristics of insomnia experienced by the general Iranian population during the COVID-19 pandemic. Method: A scale(FCV-19) was used for Fear of COVID-19, Insomnia Severity Index (ISI), Patient Health Questionnaire-2 (PHQ-2), and Generalized Anxiety Disorder Scale-2 (GAD-2) for detailed characterization of insomnia and its patterns Results: In total, 675 people with insomnia with the mean age of 40.28 years (SD=11.15) participated in this study. Prevalence of difficulty initiating sleep (DIS), difficulty maintaining sleep (DMS), and early morning awakening (EMA) were 91.4%, 86.7%, and 77%, respectively. DIS, DMS, and EMA were more common in people with depression and anxiety. FCV-19 score was higher in those with more severe types of DIS, DMS, and EMA (P<0.001). FCV-19 was a risk factor for all patterns of insomnia (OR=1.19, 1.12, 1.02 for DIS, DMS, and EMA, respectively). Conclusion: fear of COVID-19 is a major factor to insomnia patterns. Investigation of COVID-19 fear in people with insomnia and the addition of attributed relieving or management strategies to conventional management of insomnia are reasonable approaches to improve the sleep condition of people in the pandemic.Keywords: insomnia, difficulty maintaining sleep, COVID-19, Coronavirus
Procedia PDF Downloads 1805221 Assessment of Educational Service Quality at Master's Level in an Iranian University Using Based on HEdPERF Model
Authors: Faranak Omidian
Abstract:
The aim of this research was to examine the quality of education service at master's level in the Islamic Azad University of Dezful. In terms of objective, this is an applied research and in regard to methodology, it is a descriptive analytical research. The statistical population included all students of master's degree in the Islamic Azad University of Dezful. The sample size was determined using stratified random sampling method in different fields of study. The research questionnaire is the translated version of standardized Abdullah's HEdPERF 41-item scale which is based on a 5-point Likert scale. In order to determine the validity, the translated questionnaire was given to the professors of educational sciences. The correlation among all questions has been regarded at a value of 0.644. The results showed that the quality of educational service at master's level in this university, based on chi-square goodness of fit test, was equal to 73.36 and its degree of freedom was 2 at a significant level of 0.001, indicating the low desirability of the services. According to Friedman test, academic responsiveness has been reported to be in a higher status than other dimensions with an average rank of 3.94 while accessibility, with an average rank of 2.15, has been in the lowest status from master's students' viewpoint.Keywords: educational service quality, master's level, Iranian university
Procedia PDF Downloads 2805220 Application of Chemical Tests for the Inhibition of Scaling From Hamma Hard Waters
Authors: Samira Ghizellaoui, Manel Boumagoura
Abstract:
Calcium carbonate precipitation is a widespread problem, especially in hard water systems. The main water supply that supplies the city of Constantine with drinking water is underground water called Hamma water. This water has a very high hardness of around 590 mg/L CaCO₃. This leads to the formation of scale, consisting mainly of calcium carbonate, which can be responsible for the clogging of valves and the deterioration of equipment (water heaters, washing machines and encrustations in the pipes). Plant extracts used as scale inhibitors have attracted the attention of several researchers. In recent years, green inhibitors have attracted great interest because they are biodegradable, non-toxic and do not affect the environment. The aim of our work is to evaluate the effectiveness of a chemical antiscale treatment in the presence of three green inhibitors: gallicacid; quercetin; alginate, and three mixtures: (gallic acid-quercetin); (quercetin-alginate); (gallic acid-alginate). The results show that the inhibitory effect is manifested from an addition of 1mg/L of gallic acid, 10 mg/L of quercetin, 0.2 mg/L of alginate, 0.4mg/L of (gallic acid-quercetin), 2mg/L of (quercetin-alginate) and 0.4 mg/L of (gallic acid-alginate). On the other hand, 100 mg/L (Drinking water standard) of Ca2+is reached for partial softening at 4 mg/L of gallic acid, 40 mg/L of quercetin, 0.6mg/L of alginate, 4mg/L of (gallic acid-quercetin), 10mg/L of (quercetin-alginate) and 1.6 mg/L of (gallic acid-alginate).Keywords: water, scaling, calcium carbonate, green inhibitor
Procedia PDF Downloads 685219 Large-Scale Photovoltaic Generation System Connected to HVDC Grid with Centralized High Voltage and High Power DC/DC Converter
Authors: Xinke Huang, Huan Wang, Lidong Guo, Changbin Ju, Runbiao Liu, Shanshan Meng, Yibo Wang, Honghua Xu
Abstract:
Large-scale photovoltaic (PV) generation system connected to HVDC grid has many advantages compared to its counterpart of AC grid. DC connection can solve many problems that AC connection faces, such as the grid-connection and power transmission, and DC connection is the tendency. DC/DC converter as the most important device in the system has become one of the hot spots recently. The paper proposes a centralized DC/DC converter which uses Boost Full Bridge Isolated DC/DC Converter(BFBIC) topology and combination through input parallel output series(IPOS) method to improve power capacity and output voltage to match with the HVDC grid voltage. Meanwhile, it adopts input current sharing control strategy to realize input current and output voltage balance. A ±30kV/1MW system is modeled in MATLAB/SIMULINK, and a downscaled ±10kV/200kW DC/DC converter platform is built to verify the proposed topology and control strategy.Keywords: photovoltaic generation, cascaded dc/dc converter, galvanic isolation, high-voltage, direct current (HVDC)
Procedia PDF Downloads 4425218 Biofiltration Odour Removal at Wastewater Treatment Plant Using Natural Materials: Pilot Scale Studies
Authors: D. Lopes, I. I. R. Baptista, R. F. Vieira, J. Vaz, H. Varela, O. M. Freitas, V. F. Domingues, R. Jorge, C. Delerue-Matos, S. A. Figueiredo
Abstract:
Deodorization is nowadays a need in wastewater treatment plants. Nitrogen and sulphur compounds, volatile fatty acids, aldehydes and ketones are responsible for the unpleasant odours, being ammonia, hydrogen sulphide and mercaptans the most common pollutants. Although chemical treatments of the air extracted are efficient, these are more expensive than biological treatments, namely due the use of chemical reagents (commonly sulphuric acid, sodium hypochlorite and sodium hydroxide). Biofiltration offers the advantage of avoiding the use of reagents (only in some cases, nutrients are added in order to increase the treatment efficiency) and can be considered a sustainable process when the packing medium used is of natural origin. In this work the application of some natural materials locally available was studied both at laboratory and pilot scale, in a real wastewater treatment plant. The materials selected for this study were indigenous Portuguese forest materials derived from eucalyptus and pinewood, such as woodchips and bark, and coconut fiber was also used for comparison purposes. Their physico-chemical characterization was performed: density, moisture, pH, buffer and water retention capacity. Laboratory studies involved batch adsorption studies for ammonia and hydrogen sulphide removal and evaluation of microbiological activity. Four pilot-scale biofilters (1 cubic meter volume) were installed at a local wastewater treatment plant treating odours from the effluent receiving chamber. Each biofilter contained a different packing material consisting of mixtures of eucalyptus bark, pine woodchips and coconut fiber, with added buffering agents and nutrients. The odour treatment efficiency was monitored over time, as well as other operating parameters. The operation at pilot scale suggested that between the processes involved in biofiltration - adsorption, absorption and biodegradation - the first dominates at the beginning, while the biofilm is developing. When the biofilm is completely established, and the adsorption capacity of the material is reached, biodegradation becomes the most relevant odour removal mechanism. High odour and hydrogen sulphide removal efficiencies were achieved throughout the testing period (over 6 months), confirming the suitability of the materials selected, and mixtures thereof prepared, for biofiltration applications.Keywords: ammonia hydrogen sulphide and removal, biofiltration, natural materials, odour control in wastewater treatment plants
Procedia PDF Downloads 3025217 Challenge of Baseline Hydrology Estimation at Large-Scale Watersheds
Authors: Can Liu, Graham Markowitz, John Balay, Ben Pratt
Abstract:
Baseline or natural hydrology is commonly employed for hydrologic modeling and quantification of hydrologic alteration due to manmade activities. It can inform planning and policy related efforts for various state and federal water resource agencies to restore natural streamflow flow regimes. A common challenge faced by hydrologists is how to replicate unaltered streamflow conditions, particularly in large watershed settings prone to development and regulation. Three different methods were employed to estimate baseline streamflow conditions for 6 major subbasins the Susquehanna River Basin; those being: 1) incorporation of consumptive water use and reservoir operations back into regulated gaged records; 2) using a map correlation method and flow duration (exceedance probability) regression equations; 3) extending the pre-regulation streamflow records based on the relationship between concurrent streamflows at unregulated and regulated gage locations. Parallel analyses were perform among the three methods and limitations associated with each are presented. Results from these analyses indicate that generating baseline streamflow records at large-scale watersheds remain challenging, even with long-term continuous stream gage records available.Keywords: baseline hydrology, streamflow gage, subbasin, regression
Procedia PDF Downloads 3245216 City versus Suburb: The Effects of Neighborhood on Place Attachment and Residential Satisfaction
Authors: Elif Aksel, Çagrı Imamoglu
Abstract:
This ongoing study aims to investigate the effects of neighborhood location on place attachment and residential satisfaction. Place attachment will be examined by comparing place of residence in different areas of the city. Furthermore, the relationship between neighborhood and residential satisfaction will be investigated in terms of physical and social aspects of the places influencing residential satisfaction. This study will be carried out in two different districts of Ankara which are Çankaya, located in the city center, and Sincan, a suburb. Two-hundred adult respondents will participate in this research; 100 men and 100 women aged between 18-65 years with different socio-economic status using snowball sampling. A place attachment scale and a questionnaire related with residential satisfaction, including open-ended questions and 7-point Likert type scale, will be used as instruments. Apart from these, demographic information of the participants such as gender, age, education, the length of residence will be collected. The findings of the study are expected to demonstrate that neighborhood is seen to be influential on place attachment by affecting the intensity of attachment. The level of place attachment is expected to be greater in areas far from the city compared to areas in the center of the city. Apart from this, the neighborhood is also effective in residential satisfaction. The residents living in these neighborhoods having strong physical and social opportunities will be expected to have higher residential satisfaction.Keywords: neighborhood, neighborhood satisfaction, place attachment, residential satisfaction
Procedia PDF Downloads 3175215 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network
Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang
Abstract:
As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.Keywords: GUI, deep learning, GAN, data augmentation
Procedia PDF Downloads 1845214 The Impact of Solution-Focused Brief Therapy on the Improvement of the Psychological Wellbeing of Family Supervisor Women
Authors: Kaveh Qaderi Bagajan, Osman Khanahmadi, Ziba Mamaghani Chaharborj, Majid Chenaparchi
Abstract:
The purpose of this study is to investigate the efficacy of the solution-focused brief therapy on improving the psychological wellbeing of family supervisor woman. This study has been carried out by semi-experimental method and in the form of pre-test, post-test performance on two groups (experimental and control), so that one sample group of 30 individuals was randomly achieved and were randomly divided in two groups of experimental (n=15) and control (n=15). To collect data, Ryff scale psychological wellbeing was used. After conducting pre-test (RSPWB) for two experimental and control groups, Solution-focused brief therapy interference was conducted on the experimental group during five two-hour sessions. Finally, Ryff scale psychological wellbeing was reused for the two groups as post-test and achieved outcomes that were analyzed using covariance. The results indicated that the significant increase of average marks of the experimental group in psychological wellbeing had better function than that of the control group. Finally, solution-focused brief therapy for improving psychological well-being of family supervisor women has a suitable capability and could be used in this way.Keywords: solution-focused brief therapy, short-term therapy, family supervisor women, psychological well-being
Procedia PDF Downloads 3105213 Randomized Controlled Trial for the Management of Pain and Anxiety Using Virtual Reality During the Care of Older Hospitalized Patients
Authors: Corbel Camille, Le Cerf Flora, Capriz Françoise, Vaillant-Ciszewicz Anne-Julie, Breaud Jean, Guerin Olivier, Corveleyn Xavier
Abstract:
Background: The medical environment can generate stressful and anxiety-provoking situations for patients, particularly during painful care procedures for the older population. These stressful environments have deleterious effects on the quality of care and can even put the patient at risk and set the care team up for failure. The search for a solution is, therefore, imperative. The development of new technologies, such as virtual reality (VR), seems to be an answer to this problem. Objectives: The objective of this study is to compare the effects of virtual reality on pain and anxiety when caring for older hospitalized people with the effects of usual care. More precisely, different individual factors (age, cognitive level, individual preferences, etc.) and different virtual reality universes (personalized or non-personalized) are studied to understand the role of these factors in reducing pain and anxiety during care procedures. The aim of this study is to improve the quality of life of patients and caregivers in their work environment. Method: This mono-centered, randomized, controlled study was conducted from September 2023 to September 2024 on 120 participants recruited from the geriatric departments of the Cimiez Hospital, Nice, France. Participants are randomized into three groups: a control group, a personalized VR group and a non-personalized VR group. Each participant is followed during a painful care session. Data are collected before, during and after the care, using measures of pain (Algoplus and numerical scale) and anxiety (Hospital anxiety scale and numerical scale). Physiological assessments with an oximeter are also performed to collect both heart and respiratory rate measurements. The implementation of the care will be assessed among healthcare providers to evaluate its effects on the difficulty and fatigue associated with the care. Additionally, a questionnaire (System Usability Scale) will be administered at the conclusion of the study to determine the willingness of healthcare providers to integrate VR into their daily care practices. Result: The preliminary results indicate significant effects on anxiety (p=.001) and pain (p=<.001) following the VR intervention during care, as compared to the control group. Conclusion: The preliminary results suggest that VRI appears to be a suitable and effective method for reducing anxiety and pain among older hospitalized individuals compared with standard care. Finally, the experiences of healthcare professionals involved will also be considered to assess the impact of these interventions on working conditions and patient support.Keywords: anxiety, care, pain, older adults, virtual reality
Procedia PDF Downloads 735212 A Review of Gas Hydrate Rock Physics Models
Authors: Hemin Yuan, Yun Wang, Xiangchun Wang
Abstract:
Gas hydrate is drawing attention due to the fact that it has an enormous amount all over the world, which is almost twice the conventional hydrocarbon reserves, making it a potential alternative source of energy. It is widely distributed in permafrost and continental ocean shelves, and many countries have launched national programs for investigating the gas hydrate. Gas hydrate is mainly explored through seismic methods, which include bottom simulating reflectors (BSR), amplitude blanking, and polarity reverse. These seismic methods are effective at finding the gas hydrate formations but usually contain large uncertainties when applying to invert the micro-scale petrophysical properties of the formations due to lack of constraints. Rock physics modeling links the micro-scale structures of the rocks to the macro-scale elastic properties and can work as effective constraints for the seismic methods. A number of rock physics models have been proposed for gas hydrate modeling, which addresses different mechanisms and applications. However, these models are generally not well classified, and it is confusing to determine the appropriate model for a specific study. Moreover, since the modeling usually involves multiple models and steps, it is difficult to determine the source of uncertainties. To solve these problems, we summarize the developed models/methods and make four classifications of the models according to the hydrate micro-scale morphology in sediments, the purpose of reservoir characterization, the stage of gas hydrate generation, and the lithology type of hosting sediments. Some sub-categories may overlap each other, but they have different priorities. Besides, we also analyze the priorities of different models, bring up the shortcomings, and explain the appropriate application scenarios. Moreover, by comparing the models, we summarize a general workflow of the modeling procedure, which includes rock matrix forming, dry rock frame generating, pore fluids mixing, and final fluid substitution in the rock frame. These procedures have been widely used in various gas hydrate modeling and have been confirmed to be effective. We also analyze the potential sources of uncertainties in each modeling step, which enables us to clearly recognize the potential uncertainties in the modeling. In the end, we explicate the general problems of the current models, including the influences of pressure and temperature, pore geometry, hydrate morphology, and rock structure change during gas hydrate dissociation and re-generation. We also point out that attenuation is also severely affected by gas hydrate in sediments and may work as an indicator to map gas hydrate concentration. Our work classifies rock physics models of gas hydrate into different categories, generalizes the modeling workflow, analyzes the modeling uncertainties and potential problems, which can facilitate the rock physics characterization of gas hydrate bearding sediments and provide hints for future studies.Keywords: gas hydrate, rock physics model, modeling classification, hydrate morphology
Procedia PDF Downloads 1585211 Effective Coaching for Teachers of English Language Learners: A Gap Analysis Framework
Authors: Armando T. Zúñiga
Abstract:
As the number of English Language Learners (ELLs) in public schools continues to grow, so does the achievement gap between ELLs and other student populations. In an effort to support classroom teachers with effective instructional strategies for this student population, many districts have created instructional coaching positions specifically to support classroom teachers of ELLs—ELL Teachers on Special Assignment (ELL TOSAs). This study employed a gap analysis framework to the ELL TOSA professional support program in one California school district to examine knowledge, motivation, and organizational influences (KMO) on the ELL TOSAs’ goal of supporting classroom teachers of ELLs. Three themes emerged as a result of data analysis. First, there was evidence to illustrate the interaction between knowledge and the organization. Data from ELL TOSAs indicated an understanding of the role that collaboration plays in coaching and how to operationalize it in their support of teachers. Further, all of the ELL TOSAs indicated they have received professional development on effective strategies for instructional coaching. Additionally, a large percentage of the ELL TOSAs indicated a knowledge of modeling as an effective coaching practice. Accordingly, all of the ELL TOSAs indicated that they had knowledge of feedback as an effective coaching strategy. However, there was not sufficient evidence to support that they learned the latter two strategies through professional development. A second theme surfaced as there was evidence to illustrate an interaction between motivation and the organization. Some ELL TOSAs indicated that their sense of self-efficacy was affected by conflicting roles and expectations for the job. Most of the ELL TOSAs indicated that their sense of self-efficacy was affected by an increased workload brought about by fiscal decision making. Finally, there was evidence illustrating the interaction between the organization and motivation. The majority of the of ELL TOSAs indicated that there is confusion about how their roles are perceived, leaving the ELL TOSAs to feel that their actions did not contribute to instructional change. In conclusion, five research-based recommendations to support ELL TOSA goal attainment and considerations for future research on instructional coaches for classroom teachers of ELLs are provided.Keywords: English language development, English language acquisition, language and leadership, language coaching, English language learners, second language acquisition
Procedia PDF Downloads 1015210 A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm
Authors: Daliyah S. Aljutaili, Redna A. Almutlaq, Suha A. Alharbi, Dina M. Ibrahim
Abstract:
All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture’s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms.Keywords: currency recognition, feature detection and description, SIFT algorithm, SURF algorithm, speeded up and robust features
Procedia PDF Downloads 2355209 A Non-Parametric Analysis of District Disaster Management Authorities in Punjab, Pakistan
Authors: Zahid Hussain
Abstract:
Provincial Disaster Management Authority (PDMA) Punjab was established under NDM Act 2010 and now working under Senior Member Board of Revenue, deals with the whole spectrum of disasters including preparedness, mitigation, early warning, response, relief, rescue, recovery and rehabilitation. The District Disaster Management Authorities (DDMA) are acting as implementing arms of PDMA in the districts to respond any disaster. DDMAs' role is very important in disaster mitigation, response and recovery as they are the first responder and closest tier to the community. Keeping in view the significant role of DDMAs, technical and human resource capacity are need to be checked. For calculating the technical efficiencies of District Disaster Management Authority (DDMA) in Punjab, three inputs like number of labour, the number of transportation and number of equipment, two outputs like relief assistance and the number of rescue and 25 districts as decision making unit have been selected. For this purpose, 8 years secondary data from 2005 to 2012 has been used. Data Envelopment Analysis technique has been applied. DEA estimates the relative efficiency of peer entities or entities performing the similar tasks. The findings show that all decision making unit (DMU) (districts) are inefficient on techonological and scale efficiency scale while technically efficient on pure and total factor productivity efficiency scale. All DMU are found technically inefficient only in the year 2006. Labour and equipment were not efficiently used in the year 2005, 2007, 2008, 2009 and 2012. Furthermore, only three years 2006, 2010 and 2011 show that districts could not efficiently use transportation in a disaster situation. This study suggests that all districts should curtail labour, transportation and equipment to be efficient. Similarly, overall all districts are not required to achieve number of rescue and relief assistant, these should be reduced.Keywords: DEA, DMU, PDMA, DDMA
Procedia PDF Downloads 2465208 Promising Anti-Displacement Practices for High Cost Cities
Authors: Leslie M. Mullins
Abstract:
In the face of dramatically shifting demographic trends and macroeconomic pressures on affordable housing in high-cost cities, municipalities and developers have been forced to develop new models of sustainable development that integrates elements of substantial rehabilitation and new construction while controlling for relocation and mass displacement. Community development partners in the San Francisco Bay Area of Northern California are starting to prioritize anti-displacement strategies when rehabilitating severely neglected public housing developments. This study explored the community-driven efforts to transform four dilapidated public housing sites (N=2,600 households) into thriving mixed-income housing communities. Eight interviews were conducted with frontline workers (property managers and service providers), who directly worked with residents throughout critical stages of the relocation and leasing process. Interviews were audio-recorded, transcribed, and analyzed by a systematic procedure for qualitative analysis to identify key themes on the topics of interest. Also, an extensive literature analysis was conducted to determine promising practices throughout the industry. This study highlighted that resident’s emotional attachment to their homes (regardless of the deteriorating conditions of their unit) could both a) impede the relocation process and substantially impact the budget and timeline, while b) simultaneously providing a basis for an enhanced sense of belonging and community cohesion. This phenomenon often includes the welcoming of new residents and cultures. Resident centered workshops, healing centered rituals, and extensive 'hands-on' guidance was highlighted as promising practices that resulted in residential retention rates that were two to three times the national average and positively impacted the overall project’s budget and timeline.Keywords: anti-displacement strategies, community based practices, community cohesion, cultural preservation, healing-centered, public housing, relocation, trauma-informed
Procedia PDF Downloads 1365207 Neighborhood-Scape as a Methodology for Enhancing Gulf Region Cities' Quality of Life: Case of Doha, Qatar
Authors: Eman AbdelSabour
Abstract:
Sustainability is increasingly being considered as a critical aspect in shaping the urban environment. It works as an invention development basis for global urban growth. Currently, different models and structures impact the means of interpreting the criteria that would be included in defining a sustainable city. There is a collective need to improve the growth path to an extremely durable path by presenting different suggestions regarding multi-scale initiatives. The global rise in urbanization has led to increased demand and pressure for better urban planning choice and scenarios for a better sustainable urban alternative. The need for an assessment tool at the urban scale was prompted due to the trend of developing increasingly sustainable urban development (SUD). The neighborhood scale is being managed by a growing research committee since it seems to be a pertinent scale through which economic, environmental, and social impacts could be addressed. Although neighborhood design is a comparatively old practice, it is in the initial years of the 21st century when environmentalists and planners started developing sustainable assessment at the neighborhood level. Through this, urban reality can be considered at a larger scale whereby themes which are beyond the size of a single building can be addressed, while it still stays small enough that concrete measures could be analyzed. The neighborhood assessment tool has a crucial role in helping neighborhood sustainability to perform approach and fulfill objectives through a set of themes and criteria. These devices are also known as neighborhood assessment tool, district assessment tool, and sustainable community rating tool. The primary focus of research has been on sustainability from the economic and environmental aspect, whereas the social, cultural issue is rarely focused. Therefore, this research is based on Doha, Qatar, the current urban conditions of the neighborhoods is discussed in this study. The research problem focuses on the spatial features in relation to the socio-cultural aspects. This study is outlined in three parts; the first section comprises of review of the latest use of wellbeing assessment methods to enhance decision process of retrofitting physical features of the neighborhood. The second section discusses the urban settlement development, regulations and the process of decision-making rule. An analysis of urban development policy with reference to neighborhood development is also discussed in this section. Moreover, it includes a historical review of the urban growth of the neighborhoods as an atom of the city system present in Doha. Last part involves developing quantified indicators regarding subjective well-being through a participatory approach. Additionally, applying GIS will be utilized as a visualizing tool for the apparent Quality of Life (QoL) that need to develop in the neighborhood area as an assessment approach. Envisaging the present QoL situation in Doha neighborhoods is a process to improve current condition neighborhood function involves many days to day activities of the residents, due to which areas are considered dynamic.Keywords: neighborhood, subjective wellbeing, decision support tools, Doha, retrofiring
Procedia PDF Downloads 1385206 Proxisch: An Optimization Approach of Large-Scale Unstable Proxy Servers Scheduling
Authors: Xiaoming Jiang, Jinqiao Shi, Qingfeng Tan, Wentao Zhang, Xuebin Wang, Muqian Chen
Abstract:
Nowadays, big companies such as Google, Microsoft, which have adequate proxy servers, have perfectly implemented their web crawlers for a certain website in parallel. But due to lack of expensive proxy servers, it is still a puzzle for researchers to crawl large amounts of information from a single website in parallel. In this case, it is a good choice for researchers to use free public proxy servers which are crawled from the Internet. In order to improve efficiency of web crawler, the following two issues should be considered primarily: (1) Tasks may fail owing to the instability of free proxy servers; (2) A proxy server will be blocked if it visits a single website frequently. In this paper, we propose Proxisch, an optimization approach of large-scale unstable proxy servers scheduling, which allow anyone with extremely low cost to run a web crawler efficiently. Proxisch is designed to work efficiently by making maximum use of reliable proxy servers. To solve second problem, it establishes a frequency control mechanism which can ensure the visiting frequency of any chosen proxy server below the website’s limit. The results show that our approach performs better than the other scheduling algorithms.Keywords: proxy server, priority queue, optimization algorithm, distributed web crawling
Procedia PDF Downloads 211