Search results for: interlaminar damage model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18308

Search results for: interlaminar damage model

9068 Mapping Iron Content in the Brain with Magnetic Resonance Imaging and Machine Learning

Authors: Gabrielle Robertson, Matthew Downs, Joseph Dagher

Abstract:

Iron deposition in the brain has been linked with a host of neurological disorders such as Alzheimer’s, Parkinson’s, and Multiple Sclerosis. While some treatment options exist, there are no objective measurement tools that allow for the monitoring of iron levels in the brain in vivo. An emerging Magnetic Resonance Imaging (MRI) method has been recently proposed to deduce iron concentration through quantitative measurement of magnetic susceptibility. This is a multi-step process that involves repeated modeling of physical processes via approximate numerical solutions. For example, the last two steps of this Quantitative Susceptibility Mapping (QSM) method involve I) mapping magnetic field into magnetic susceptibility and II) mapping magnetic susceptibility into iron concentration. Process I involves solving an ill-posed inverse problem by using regularization via injection of prior belief. The end result from Process II highly depends on the model used to describe the molecular content of each voxel (type of iron, water fraction, etc.) Due to these factors, the accuracy and repeatability of QSM have been an active area of research in the MRI and medical imaging community. This work aims to estimate iron concentration in the brain via a single step. A synthetic numerical model of the human head was created by automatically and manually segmenting the human head on a high-resolution grid (640x640x640, 0.4mm³) yielding detailed structures such as microvasculature and subcortical regions as well as bone, soft tissue, Cerebral Spinal Fluid, sinuses, arteries, and eyes. Each segmented region was then assigned tissue properties such as relaxation rates, proton density, electromagnetic tissue properties and iron concentration. These tissue property values were randomly selected from a Probability Distribution Function derived from a thorough literature review. In addition to having unique tissue property values, different synthetic head realizations also possess unique structural geometry created by morphing the boundary regions of different areas within normal physical constraints. This model of the human brain is then used to create synthetic MRI measurements. This is repeated thousands of times, for different head shapes, volume, tissue properties and noise realizations. Collectively, this constitutes a training-set that is similar to in vivo data, but larger than datasets available from clinical measurements. This 3D convolutional U-Net neural network architecture was used to train data-driven Deep Learning models to solve for iron concentrations from raw MRI measurements. The performance was then tested on both synthetic data not used in training as well as real in vivo data. Results showed that the model trained on synthetic MRI measurements is able to directly learn iron concentrations in areas of interest more effectively than other existing QSM reconstruction methods. For comparison, models trained on random geometric shapes (as proposed in the Deep QSM method) are less effective than models trained on realistic synthetic head models. Such an accurate method for the quantitative measurement of iron deposits in the brain would be of important value in clinical studies aiming to understand the role of iron in neurological disease.

Keywords: magnetic resonance imaging, MRI, iron deposition, machine learning, quantitative susceptibility mapping

Procedia PDF Downloads 118
9067 Investment and Economic Growth: An Empirical Analysis for Tanzania

Authors: Manamba Epaphra

Abstract:

This paper analyzes the causal effect between domestic private investment, public investment, foreign direct investment and economic growth in Tanzania during the 1970-2014 period. The modified neo-classical growth model that includes control variables such as trade liberalization, life expectancy and macroeconomic stability proxied by inflation is used to estimate the impact of investment on economic growth. Also, the economic growth models based on Phetsavong and Ichihashi (2012), and Le and Suruga (2005) are used to estimate the crowding out effect of public investment on private domestic investment on one hand and foreign direct investment on the other hand. A correlation test is applied to check the correlation among independent variables, and the results show that there is very low correlation suggesting that multicollinearity is not a serious problem. Moreover, the diagnostic tests including RESET regression errors specification test, Breusch-Godfrey serial correlation LM test, Jacque-Bera-normality test and white heteroskedasticity test reveal that the model has no signs of misspecification and that, the residuals are serially uncorrelated, normally distributed and homoskedastic. Generally, the empirical results show that the domestic private investment plays an important role in economic growth in Tanzania. FDI also tends to affect growth positively, while control variables such as high population growth and inflation appear to harm economic growth. Results also reveal that control variables such as trade openness and life expectancy improvement tend to increase real GDP growth. Moreover, a revealed negative, albeit weak, association between public and private investment suggests that the positive effect of domestic private investment on economic growth reduces when public investment-to-GDP ratio exceeds 8-10 percent. Thus, there is a great need for promoting domestic saving so as to encourage domestic investment for economic growth.

Keywords: FDI, public investment, domestic private investment, crowding out effect, economic growth

Procedia PDF Downloads 271
9066 Transient Simulation Using SPACE for ATLAS Facility to Investigate the Effect of Heat Loss on Major Parameters

Authors: Suhib A. Abu-Seini, Kyung-Doo Kim

Abstract:

A heat loss model for ATLAS facility was introduced using SPACE code predefined correlations and various dialing factors. As all previous simulations were carried out using a heat loss free input; the facility was considered to be completely insulated and the core power was reduced by the experimentally measured values of heat loss to compensate to the account for the loss of heat, this study will consider heat loss throughout the simulation. The new heat loss model will be affecting SPACE code simulation as heat being leaked out of the system throughout a transient will alter many parameters corresponding to temperature and temperature difference. For that, a Station Blackout followed by a multiple Steam Generator Tube Rupture accident will be simulated using both the insulated system approach and the newly introduced heat loss input of the steady state. Major parameters such as system temperatures, pressure values, and flow rates to be put into comparison and various analysis will be suggested upon it as the experimental values will not be the reference to validate the expected outcome. This study will not only show the significance of heat loss consideration in the processes of prevention and mitigation of various incidents, design basis and beyond accidents as it will give a detailed behavior of ATLAS facility during both processes of steady state and major transient, but will also present a verification of how credible the data acquired of ATLAS are; since heat loss values for steady state were already mismatched between SPACE simulation results and ATLAS data acquiring system. Acknowledgement- This work was supported by the Korean institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea.

Keywords: ATLAS, heat loss, simulation, SPACE, station blackout, steam generator tube rupture, verification

Procedia PDF Downloads 213
9065 Commercial Winding for Superconducting Cables and Magnets

Authors: Glenn Auld Knierim

Abstract:

Automated robotic winding of high-temperature superconductors (HTS) addresses precision, efficiency, and reliability critical to the commercialization of products. Today’s HTS materials are mature and commercially promising but require manufacturing attention. In particular to the exaggerated rectangular cross-section (very thin by very wide), winding precision is critical to address the stress that can crack the fragile ceramic superconductor (SC) layer and destroy the SC properties. Damage potential is highest during peak operations, where winding stress magnifies operational stress. Another challenge is operational parameters such as magnetic field alignment affecting design performance. Winding process performance, including precision, capability for geometric complexity, and efficient repeatability, are required for commercial production of current HTS. Due to winding limitations, current HTS magnets focus on simple pancake configurations. HTS motors, generators, MRI/NMR, fusion, and other projects are awaiting robotic wound solenoid, planar, and spherical magnet configurations. As with conventional power cables, full transposition winding is required for long length alternating current (AC) and pulsed power cables. Robotic production is required for transposition, periodic swapping of cable conductors, and placing into precise positions, which allows power utility required minimized reactance. A full transposition SC cable, in theory, has no transmission length limits for AC and variable transient operation due to no resistance (a problem with conventional cables), negligible reactance (a problem for helical wound HTS cables), and no long length manufacturing issues (a problem with both stamped and twisted stacked HTS cables). The Infinity Physics team is solving manufacturing problems by developing automated manufacturing to produce the first-ever reliable and utility-grade commercial SC cables and magnets. Robotic winding machines combine mechanical and process design, specialized sense and observer, and state-of-the-art optimization and control sequencing to carefully manipulate individual fragile SCs, especially HTS, to shape previously unattainable, complex geometries with electrical geometry equivalent to commercially available conventional conductor devices.

Keywords: automated winding manufacturing, high temperature superconductor, magnet, power cable

Procedia PDF Downloads 127
9064 Teaching Material, Books, Publications versus the Practice: Myths and Truths about Installation and Use of Downhole Safety Valve

Authors: Robson da Cunha Santos, Caio Cezar R. Bonifacio, Diego Mureb Quesada, Gerson Gomes Cunha

Abstract:

The paper is related to the safety of oil wells and environmental preservation on the planet, because they require great attention and commitment from oil companies and people who work with these equipments. This must occur from drilling the well until it is abandoned in order to safeguard the environment and prevent possible damage. The project had as main objective the constitution resulting from comparatives made among books, articles and publications with information gathered in technical visits to operational bases of Petrobras. After the visits, the information from methods of utilization and present managements, which were not available before, became available to the general audience. As a result, it is observed a huge flux of incorrect and out-of-date information that comprehends not only bibliographic archives, but also academic resources and materials. During the gathering of more in-depth information on the manufacturing, assembling, and use aspects of DHSVs, several issues that were previously known as correct, customary issues were discovered to be uncertain and outdated. Information of great importance resulted in affirmations about subjects as the depth of the valve installation that was before installed to 30 meters from the seabed (mud line). Despite this, the installation should vary in conformity to the ideal depth to escape from area with the biggest tendency to hydrates formation according to the temperature and pressure. Regarding to valves with nitrogen chamber, in accordance with books, they have their utilization linked to water line ≥ 700 meters, but in Brazilian exploratory fields, their use occurs from 600 meters of water line. The valves used in Brazilian fields are able to be inserted to the production column and self-equalizing, but the use of screwed valve in the column of production and equalizing is predominant. Although these valves are more expensive to acquire, they are more reliable, efficient, with a bigger shelf life and they do not cause restriction to the fluid flux. It follows that based on researches and theoretical information confronted to usual forms used in fields, the present project is important and relevant. This project will be used as source of actualization and information equalization that connects academic environment and real situations in exploratory situations and also taking into consideration the enrichment of precise and easy to understand information to future researches and academic upgrading.

Keywords: down hole safety valve, security devices, installation, oil-wells

Procedia PDF Downloads 249
9063 Building Information Management Advantages, Adaptation, and Challenges of Implementation in Kabul Metropolitan Area

Authors: Mohammad Rahim Rahimi, Yuji Hoshino

Abstract:

Building Information Management (BIM) at recent years has widespread consideration on the Architecture, Engineering and Construction (AEC). BIM has been bringing innovation in AEC industry and has the ability to improve the construction industry with high quality, reduction time and budget of project. Meanwhile, BIM support model and process in AEC industry, the process include the project time cycle, estimating, delivery and generally the way of management of project but not limited to those. This research carried the BIM advantages, adaptation and challenges of implementation in Kabul region. Capital Region Independence Development Authority (CRIDA) have responsibilities to implement the development projects in Kabul region. The method of study were considers on advantages and reasons of BIM performance in Afghanistan based on online survey and data. Besides that, five projects were studied, the reason of consideration were many times design revises and changes. Although, most of the projects had problems regard to designing and implementation stage, hence in canal project was discussed in detail with the main reason of problems. Which were many time changes and revises due to the lack of information, planning, and management. In addition, two projects based on BIM utilization in Japan were also discussed. The Shinsuizenji Station and Oita River dam projects. Those are implemented and implementing consequently according to the BIM requirements. The investigation focused on BIM usage, project implementation process. Eventually, the projects were the comparison with CRIDA and BIM utilization in Japan. The comparison will focus on the using of the model and the way of solving the problems based upon on the BIM. In conclusion, that BIM had the capacity to prevent many times design changes and revises. On behalf of achieving those objectives are required to focus on data management and sharing, BIM training and using new technology.

Keywords: construction information management, implementation and adaptation of BIM, project management, developing countries

Procedia PDF Downloads 111
9062 The Feasibility of Glycerol Steam Reforming in an Industrial Sized Fixed Bed Reactor Using Computational Fluid Dynamic (CFD) Simulations

Authors: Mahendra Singh, Narasimhareddy Ravuru

Abstract:

For the past decade, the production of biodiesel has significantly increased along with its by-product, glycerol. Biodiesel-derived glycerol massive entry into the glycerol market has caused its value to plummet. Newer ways to utilize the glycerol by-product must be implemented or the biodiesel industry will face serious economic problems. The biodiesel industry should consider steam reforming glycerol to produce hydrogen gas. Steam reforming is the most efficient way of producing hydrogen and there is a lot of demand for it in the petroleum and chemical industries. This study investigates the feasibility of glycerol steam reforming in an industrial sized fixed bed reactor. In this paper, using computational fluid dynamic (CFD) simulations, the extent of the transport resistances that would occur in an industrial sized reactor can be visualized. An important parameter in reactor design is the size of the catalyst particle. The size of the catalyst cannot be too large where transport resistances are too high, but also not too small where an extraordinary amount of pressure drop occurs. The goal of this paper is to find the best catalyst size under various flow rates that will result in the highest conversion. Computational fluid dynamics simulated the transport resistances and a pseudo-homogenous reactor model was used to evaluate the pressure drop and conversion. CFD simulations showed that glycerol steam reforming has strong internal diffusion resistances resulting in extremely low effectiveness factors. In the pseudo-homogenous reactor model, the highest conversion obtained with a Reynolds number of 100 (29.5 kg/h) was 9.14% using a 1/6 inch catalyst diameter. Due to the low effectiveness factors and high carbon deposition rates, a fluidized bed is recommended as the appropriate reactor to carry out glycerol steam reforming.

Keywords: computational fluid dynamic, fixed bed reactor, glycerol, steam reforming, biodiesel

Procedia PDF Downloads 292
9061 Human Beta Defensin 1 as Potential Antimycobacterial Agent against Active and Dormant Tubercle Bacilli

Authors: Richa Sharma, Uma Nahar, Sadhna Sharma, Indu Verma

Abstract:

Counteracting the deadly pathogen Mycobacterium tuberculosis (M. tb) effectively is still a global challenge. Scrutinizing alternative weapons like antimicrobial peptides to strengthen existing tuberculosis artillery is urgently required. Considering the antimycobacterial potential of Human Beta Defensin 1 (HBD-1) along with isoniazid, the present study was designed to explore the ability of HBD-1 to act against active and dormant M. tb. HBD-1 was screened in silico using antimicrobial peptide prediction servers to identify its short antimicrobial motif. The activity of both HBD-1 and its selected motif (Pep B) was determined at different concentrations against actively growing M. tb in vitro and ex vivo in monocyte derived macrophages (MDMs). Log phase M. tb was grown along with HBD-1 and Pep B for 7 days. M. tb infected MDMs were treated with HBD-1 and Pep B for 72 hours. Thereafter, colony forming unit (CFU) enumeration was performed to determine activity of both peptides against actively growing in vitro and intracellular M. tb. The dormant M. tb models were prepared by following two approaches and treated with different concentrations of HBD-1 and Pep B. Firstly, 20-22 days old M. tbH37Rv was grown in potassium deficient Sauton media for 35 days. The presence of dormant bacilli was confirmed by Nile red staining. Dormant bacilli were further treated with rifampicin, isoniazid, HBD-1 and its motif for 7 days. The effect of both peptides on latent bacilli was assessed by colony forming units (CFU) and most probable number (MPN) enumeration. Secondly, human PBMC granuloma model was prepared by infecting PBMCs seeded on collagen matrix with M. tb(MOI 0.1) for 10 days. Histopathology was done to confirm granuloma formation. The granuloma thus formed was incubated for 72 hours with rifampicin, HBD-1 and Pep B individually. Difference in bacillary load was determined by CFU enumeration. The minimum inhibitory concentrations of HBD-1 and Pep B restricting growth of mycobacteria in vitro were 2μg/ml and 20μg/ml respectively. The intracellular mycobacterial load was reduced significantly by HBD-1 and Pep B at 1μg/ml and 5μg/ml respectively. Nile red positive bacterial population, high MPN/ low CFU count and tolerance to isoniazid, confirmed the formation of potassium deficienybaseddormancy model. HBD-1 (8μg/ml) showed 96% and 99% killing and Pep B (40μg/ml) lowered dormant bacillary load by 68.89% and 92.49% based on CFU and MPN enumeration respectively. Further, H&E stained aggregates of macrophages and lymphocytes, acid fast bacilli surrounded by cellular aggregates and rifampicin resistance, indicated the formation of human granuloma dormancy model. HBD-1 (8μg/ml) led to 81.3% reduction in CFU whereas its motif Pep B (40μg/ml) showed only 54.66% decrease in bacterial load inside granuloma. Thus, the present study indicated that HBD-1 and its motif are effective antimicrobial players against both actively growing and dormant M. tb. They should be further explored to tap their potential to design a powerful weapon for combating tuberculosis.

Keywords: antimicrobial peptides, dormant, human beta defensin 1, tuberculosis

Procedia PDF Downloads 250
9060 Luteolin Exhibits Anti-Diabetic Effects by Increasing Oxidative Capacity and Regulating Anti-Oxidant Metabolism

Authors: Eun-Young Kwon, Myung-Sook Choi, Su-Jung Cho, Ji-Young Choi, So Young Kim, Youngji Han

Abstract:

Overweight and obesity have been linked to a low-grade chronic inflammatory response and an increased risk of developing metabolic syndrome including insulin resistance, type 2 diabetes mellitus and certain types of cancers. Luteolin is a dietary flavonoid with anti-inflammatory, anti-oxidant, anti-cancer and anti-diabetic properties. However, little is known about the detailed mechanism associated with the effect of luteolin on inflammation-related obesity and its complications. The aim of the present study was to reveal the anti-diabetic effect of luteolin in diet-induced obesity mice using “transcriptomics” tool. Thirty-nine male C57BL/6J mice (4-week-old) were randomly divided into 3 groups and were fed normal diet, high-fat diet (HFD, 20% fat) and HFD+0.005% (w/w) luteolin for 16 weeks. Luteolin improved insulin resistance, as measured by HOMA-IR and glucose tolerance, along with preservation action of pancreatic β-cells, compared to the HFD group. Luteoiln was significantly decreased the levels of leptin and ghrelin that play a pivotal role in energy balance, and the macrophage low-grade inflammation marker sCD163 (soluble Cd antigen 163) in plasma. Activities of hepatic anti-oxidant enzymes (catalase and glutathione peroxidase) were increased, while the levels of plasma transaminase (GOT and GPT) and oxidative damage markers (hepatic mitochondria H2O2 and TBARS) were markedly decreased by luteolin supplementation. In addition, luteolin increased oxidative capacity and fatty acid utilization by presenting decrease in enzyme activities of citrate synthase, cytochrome C oxidase and β-hydroxyacyl CoA dehydrogenase and UCP3 gene expression compared to high-fat diet. Moreover, our microarray results of muscle also revealed down-regulated gene expressions associated with TCA cycle by HFD were reversed to normal level by luteolin treatment. Taken together, our results indicate that luteolin is one of bioactive components for improving insulin resistance by increasing oxidative capacity, modulating anti-oxidant metabolism and suppressing inflammatory signaling cascades in diet-induced obese mice. These results provide possible therapeutic targets for prevention and treatment of diet-induced obesity and its complications.

Keywords: anti-oxidant metabolism, diabetes, luteolin, oxidative capacity

Procedia PDF Downloads 327
9059 Analysis of Two-Echelon Supply Chain with Perishable Items under Stochastic Demand

Authors: Saeed Poormoaied

Abstract:

Perishability and developing an intelligent control policy for perishable items are the major concerns of marketing managers in a supply chain. In this study, we address a two-echelon supply chain problem for perishable items with a single vendor and a single buyer. The buyer adopts an aged-based continuous review policy which works by taking both the stock level and the aging process of items into account. The vendor works under the warehouse framework, where its lot size is determined with respect to the batch size of the buyer. The model holds for a positive and fixed lead time for the buyer, and zero lead time for the vendor. The demand follows a Poisson process and any unmet demand is lost. We provide exact analytic expressions for the operational characteristics of the system by using the renewal reward theorem. Items have a fixed lifetime after which they become unusable and are disposed of from the buyer's system. The age of items starts when they are unpacked and ready for the consumption at the buyer. When items are held by the vendor, there is no aging process which results in no perishing at the vendor's site. The model is developed under the centralized framework, which takes the expected profit of both vendor and buyer into consideration. The goal is to determine the optimal policy parameters under the service level constraint at the retailer's site. A sensitivity analysis is performed to investigate the effect of the key input parameters on the expected profit and order quantity in the supply chain. The efficiency of the proposed age-based policy is also evaluated through a numerical study. Our results show that when the unit perishing cost is negligible, a significant cost saving is achieved.

Keywords: two-echelon supply chain, perishable items, age-based policy, renewal reward theorem

Procedia PDF Downloads 131
9058 A Study on the Correlation Analysis between the Pre-Sale Competition Rate and the Apartment Unit Plan Factor through Machine Learning

Authors: Seongjun Kim, Jinwooung Kim, Sung-Ah Kim

Abstract:

The development of information and communication technology also affects human cognition and thinking, especially in the field of design, new techniques are being tried. In architecture, new design methodologies such as machine learning or data-driven design are being applied. In particular, these methodologies are used in analyzing the factors related to the value of real estate or analyzing the feasibility in the early planning stage of the apartment housing. However, since the value of apartment buildings is often determined by external factors such as location and traffic conditions, rather than the interior elements of buildings, data is rarely used in the design process. Therefore, although the technical conditions are provided, the internal elements of the apartment are difficult to apply the data-driven design in the design process of the apartment. As a result, the designers of apartment housing were forced to rely on designer experience or modular design alternatives rather than data-driven design at the design stage, resulting in a uniform arrangement of space in the apartment house. The purpose of this study is to propose a methodology to support the designers to design the apartment unit plan with high consumer preference by deriving the correlation and importance of the floor plan elements of the apartment preferred by the consumers through the machine learning and reflecting this information from the early design process. The data on the pre-sale competition rate and the elements of the floor plan are collected as data, and the correlation between pre-sale competition rate and independent variables is analyzed through machine learning. This analytical model can be used to review the apartment unit plan produced by the designer and to assist the designer. Therefore, it is possible to make a floor plan of apartment housing with high preference because it is possible to feedback apartment unit plan by using trained model when it is used in floor plan design of apartment housing.

Keywords: apartment unit plan, data-driven design, design methodology, machine learning

Procedia PDF Downloads 249
9057 Modelling Flood Events in Botswana (Palapye) for Protecting Roads Structure against Floods

Authors: Thabo M. Bafitlhile, Adewole Oladele

Abstract:

Botswana has been affected by floods since long ago and is still experiencing this tragic event. Flooding occurs mostly in the North-West, North-East, and parts of Central district due to heavy rainfalls experienced in these areas. The torrential rains destroyed homes, roads, flooded dams, fields and destroyed livestock and livelihoods. Palapye is one area in the central district that has been experiencing floods ever since 1995 when its greatest flood on record occurred. Heavy storms result in floods and inundation; this has been exacerbated by poor and absence of drainage structures. Since floods are a part of nature, they have existed and will to continue to exist, hence more destruction. Furthermore floods and highway plays major role in erosion and destruction of roads structures. Already today, many culverts, trenches, and other drainage facilities lack the capacity to deal with current frequency for extreme flows. Future changes in the pattern of hydro climatic events will have implications for the design and maintenance costs of roads. Increase in rainfall and severe weather events can affect the demand for emergent responses. Therefore flood forecasting and warning is a prerequisite for successful mitigation of flood damage. In flood prone areas like Palapye, preventive measures should be taken to reduce possible adverse effects of floods on the environment including road structures. Therefore this paper attempts to estimate return periods associated with huge storms of different magnitude from recorded historical rainfall depth using statistical method. The method of annual maxima was used to select data sets for the rainfall analysis. In the statistical method, the Type 1 extreme value (Gumbel), Log Normal, Log Pearson 3 distributions were all applied to the annual maximum series for Palapye area to produce IDF curves. The Kolmogorov-Smirnov test and Chi Squared were used to confirm the appropriateness of fitted distributions for the location and the data do fit the distributions used to predict expected frequencies. This will be a beneficial tool for urgent flood forecasting and water resource administration as proper drainage design will be design based on the estimated flood events and will help to reclaim and protect the road structures from adverse impacts of flood.

Keywords: drainage, estimate, evaluation, floods, flood forecasting

Procedia PDF Downloads 355
9056 Evaluating the Capability of the Flux-Limiter Schemes in Capturing the Turbulence Structures in a Fully Developed Channel Flow

Authors: Mohamed Elghorab, Vendra C. Madhav Rao, Jennifer X. Wen

Abstract:

Turbulence modelling is still evolving, and efforts are on to improve and develop numerical methods to simulate the real turbulence structures by using the empirical and experimental information. The monotonically integrated large eddy simulation (MILES) is an attractive approach for modelling turbulence in high Re flows, which is based on the solving of the unfiltered flow equations with no explicit sub-grid scale (SGS) model. In the current work, this approach has been used, and the action of the SGS model has been included implicitly by intrinsic nonlinear high-frequency filters built into the convection discretization schemes. The MILES solver is developed using the opensource CFD OpenFOAM libraries. The role of flux limiters schemes namely, Gamma, superBee, van-Albada and van-Leer, is studied in predicting turbulent statistical quantities for a fully developed channel flow with a friction Reynolds number, ReT = 180, and compared the numerical predictions with the well-established Direct Numerical Simulation (DNS) results for studying the wall generated turbulence. It is inferred from the numerical predictions that Gamma, van-Leer and van-Albada limiters produced more diffusion and overpredicted the velocity profiles, while superBee scheme reproduced velocity profiles and turbulence statistical quantities in good agreement with the reference DNS data in the streamwise direction although it deviated slightly in the spanwise and normal to the wall directions. The simulation results are further discussed in terms of the turbulence intensities and Reynolds stresses averaged in time and space to draw conclusion on the flux limiter schemes performance in OpenFOAM context.

Keywords: flux limiters, implicit SGS, MILES, OpenFOAM, turbulence statistics

Procedia PDF Downloads 170
9055 Numerical Prediction of Width Crack of Concrete Dapped-End Beams

Authors: Jatziri Y. Moreno-Martinez, Arturo Galvan, Xavier Chavez Cardenas, Hiram Arroyo

Abstract:

Several methods have been utilized to study the prediction of cracking of concrete structural under loading. The finite element analysis is an alternative that shows good results. The aim of this work was the numerical study of the width crack in reinforced concrete beams with dapped ends, these are frequently found in bridge girders and precast concrete construction. Properly restricting cracking is an important aspect of the design in dapped ends, it has been observed that the cracks that exceed the allowable widths are unacceptable in an aggressive environment for reinforcing steel. For simulating the crack width, the discrete crack approach was considered by means of a Cohesive Zone (CZM) Model using a function to represent the crack opening. Two cases of dapped-end were constructed and tested in the laboratory of Structures and Materials of Engineering Institute of UNAM. The first case considers a reinforcement based on hangers as well as on vertical and horizontal ring, the second case considers 50% of the vertical stirrups in the dapped end to the main part of the beam were replaced by an equivalent area (vertically projected) of diagonal bars under. The loading protocol consisted on applying symmetrical loading to reach the service load. The models were performed using the software package ANSYS v. 16.2. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The reinforcement was introduced with smeared approach. Interface delamination was modeled by traditional fracture mechanics methods such as the nodal release technique adopting softening relationships between tractions and the separations, which in turn introduce a critical fracture energy that is also the energy required to break apart the interface surfaces. This technique is called CZM. The interface surfaces of the materials are represented by a contact elements Surface-to-Surface (CONTA173) with bonded (initial contact). The Mode I dominated bilinear CZM model assumes that the separation of the material interface is dominated by the displacement jump normal to the interface. Furthermore, the opening crack was taken into consideration according to the maximum normal contact stress, the contact gap at the completion of debonding, and the maximum equivalent tangential contact stress. The contact elements were placed in the crack re-entrant corner. To validate the proposed approach, the results obtained with the previous procedure are compared with experimental test. A good correlation between the experimental and numerical Load-Displacement curves was presented, the numerical models also allowed to obtain the load-crack width curves. In these two cases, the proposed model confirms the capability of predicting the maximum crack width, with an error of ± 30 %. Finally, the orientation of the crack is a fundamental for the prediction of crack width. The results regarding the crack width can be considered as good from the practical point view. Load-Displacement curve of the test and the location of the crack were able to obtain favorable results.

Keywords: cohesive zone model, dapped-end beams, discrete crack approach, finite element analysis

Procedia PDF Downloads 151
9054 How Message Framing and Temporal Distance Affect Word of Mouth

Authors: Camille Lacan, Pierre Desmet

Abstract:

In the crowdfunding model, a campaign succeeds by collecting the funds required over a predefined duration. The success of a CF campaign depends both on the capacity to attract members of the online communities concerned, and on the community members’ involvement in online word-of-mouth recommendations. To maximize the campaign's success probability, project creators (i.e., an organization appealing for financial resources) send messages to contributors to ask them to issue word of mouth. Internet users relay information about projects through Word of Mouth which is defined as “a critical tool for facilitating information diffusion throughout online communities”. The effectiveness of these messages depends on the message framing and the time at which they are sent to contributors (i.e., at the start of the campaign or close to the deadline). This article addresses the following question: What are the effect of message framing and temporal distance on the willingness to share word of mouth? Drawing on Perspectives Theory and Construal Level Theory, this study examines the interplay between message framing (Gains vs. Losses) and temporal distance (message while the deadline is coming vs. far) on intention to share word of mouth. A between-subject experimental design is conducted to test the research model. Results show significant differences between a loss-framed message (lack of benefits if the campaign fails) associated with a short deadline (ending tomorrow) compared to a gain-framed message (benefits if the campaign succeeds) associated with a distant deadline (ending in three months). However, this effect is moderated by the anticipated regret of a campaign failure and the temporal orientation. These moderating effects contribute to specifying the boundary condition of the framing effect. Handling the message framing and the temporal distance are thus the key decisions to influence the willingness to share word of mouth.

Keywords: construal levels, crowdfunding, message framing, word of mouth

Procedia PDF Downloads 237
9053 Phenomena-Based Approach for Automated Generation of Process Options and Process Models

Authors: Parminder Kaur Heer, Alexei Lapkin

Abstract:

Due to global challenges of increased competition and demand for more sustainable products/processes, there is a rising pressure on the industry to develop innovative processes. Through Process Intensification (PI) the existing and new processes may be able to attain higher efficiency. However, very few PI options are generally considered. This is because processes are typically analysed at a unit operation level, thus limiting the search space for potential process options. PI performed at more detailed levels of a process can increase the size of the search space. The different levels at which PI can be achieved is unit operations, functional and phenomena level. Physical/chemical phenomena form the lowest level of aggregation and thus, are expected to give the highest impact because all the intensification options can be described by their enhancement. The objective of the current work is thus, generation of numerous process alternatives based on phenomena, and development of their corresponding computer aided models. The methodology comprises: a) automated generation of process options, and b) automated generation of process models. The process under investigation is disintegrated into functions viz. reaction, separation etc., and these functions are further broken down into the phenomena required to perform them. E.g., separation may be performed via vapour-liquid or liquid-liquid equilibrium. A list of phenomena for the process is formed and new phenomena, which can overcome the difficulties/drawbacks of the current process or can enhance the effectiveness of the process, are added to the list. For instance, catalyst separation issue can be handled by using solid catalysts; the corresponding phenomena are identified and added. The phenomena are then combined to generate all possible combinations. However, not all combinations make sense and, hence, screening is carried out to discard the combinations that are meaningless. For example, phase change phenomena need the co-presence of the energy transfer phenomena. Feasible combinations of phenomena are then assigned to the functions they execute. A combination may accomplish a single or multiple functions, i.e. it might perform reaction or reaction with separation. The combinations are then allotted to the functions needed for the process. This creates a series of options for carrying out each function. Combination of these options for different functions in the process leads to the generation of superstructure of process options. These process options, which are formed by a list of phenomena for each function, are passed to the model generation algorithm in the form of binaries (1, 0). The algorithm gathers the active phenomena and couples them to generate the model. A series of models is generated for the functions, which are combined to get the process model. The most promising process options are then chosen subjected to a performance criterion, for example purity of product, or via a multi-objective Pareto optimisation. The methodology was applied to a two-step process and the best route was determined based on the higher product yield. The current methodology can identify, produce and evaluate process intensification options from which the optimal process can be determined. It can be applied to any chemical/biochemical process because of its generic nature.

Keywords: Phenomena, Process intensification, Process models , Process options

Procedia PDF Downloads 220
9052 Looking beyond Corporate Social Responsibility to Sustainable Development: Conceptualisation and Theoretical Exploration

Authors: Mercy E. Makpor

Abstract:

Traditional Corporate Social Responsibility (CSR) idea has gone beyond just ensuring safety environments, caring about global warming and ensuring good living standards and conditions for the society at large. The paradigm shift is towards a focus on strategic objectives and the long-term value creation for both businesses and the society at large for a realistic future. As an important approach to solving social and environment issues, CSR has been accepted globally. Yet the approach is expected to go beyond where it is currently. So much is expected from businesses and governments at every level globally and locally. This then leads to the original idea of the concept, that is, how it originated and how it has been perceived over the years. Little wonder there has been a lot of definitions surrounding the concept without a major globally acceptable definition of it. The definition of CSR given by the European Commission will be considered for the purpose of this paper. Sustainable Development (SD), on the other hand, has been viewed in recent years as an ethical concept explained in the UN-Report termed “Our Common Future,” which can also be referred to as the Brundtland report. The report summarises the need for SD to take place in the present without comprising the future. However, the recent 21st-century framework on sustainability known as the “Triple Bottom Line (TBL)” framework, has added its voice to the concepts of CSR and sustainable development. The TBL model is of the opinion that businesses should not only report on their financial performance but also on their social and environmental performances, highlighting that CSR has gone beyond just the “material-impact” approach towards a “Future-Oriented” approach (sustainability). In this paper, the concept of CSR is revisited by exploring the various theories therein. The discourse on the concepts of sustainable development and sustainable development frameworks will also be indicated, thereby inducing these into how CSR can benefit both businesses and their stakeholders as well as the entirety of the society, not just for the present but for the future. It does this by exploring the importance of both concepts (CSR and SD) and concludes by making recommendations for a more empirical research in the near future.

Keywords: corporate social responsibility, sustainable development, sustainability, triple bottom line model

Procedia PDF Downloads 234
9051 Evolution of Relations among Multiple Institutional Logics: A Case Study from a Higher Education Institution

Authors: Ye Jiang

Abstract:

To examine how the relationships among multiple institutional logics vary over time and the factors that may impact this process, we conducted a 15-year in-depth longitudinal case study of a Higher Education Institution to examine its exploration in college student management. By employing constructive grounded theory, we developed a four-stage process model comprising separation, formalization, selective bridging, and embeddedness that showed how two contradictory logics become complementary, and finally become a new hybridized logic. We argue that selective bridging is an important step in changing inter-logic relations. We also found that ambidextrous leadership and situational sensemaking are two key factors that drive this process. Our contribution to the literature is threefold. First, we enhance the literature on the changing relationships among multiple institutional logics and our findings advance the understanding of relationships between multiple logics through a dynamic view. While most studies have tended to assume that the relationship among logics is static and persistently in a contentious state, we contend that the relationships among multiple institutional logics can change over time. Competitive logics can become complementary, and a new hybridized logic can emerge therefrom. The four-stage logic hybridization process model offers insights on the logic hybridization process, which is underexplored in the literature. Second, our research reveals that selective bridging is important in making conflicting logics compatible, and thus constitutes a key step in creating new hybridized logic dynamics. Our findings suggest that the relations between multiple logics are manageable and can thus be manipulated for organizational innovation. Finally, the factors influencing the variations in inter-logic relations enrich the understanding of the antecedents of these dynamics.

Keywords: institutional theory, institutional logics, ambidextrous leadership, situational sensemaking

Procedia PDF Downloads 135
9050 Assessment of Bisphenol A and 17 α-Ethinyl Estradiol Bioavailability in Soils Treated with Biosolids

Authors: I. Ahumada, L. Ascar, C. Pedraza, J. Montecino

Abstract:

It has been found that the addition of biosolids to soil is beneficial to soil health, enriching soil with essential nutrient elements. Although this sludge has properties that allow for the improvement of the physical features and productivity of agricultural and forest soils and the recovery of degraded soils, they also contain trace elements, organic trace and pathogens that can cause damage to the environment. The application of these biosolids to land without the total reclamation and the treated wastewater can transfer these compounds into terrestrial and aquatic environments, giving rise to potential accumulation in plants. The general aim of this study was to evaluate the bioavailability of bisphenol A (BPA), and 17 α-ethynyl estradiol (EE2) in a soil-biosolid system using wheat (Triticum aestivum) plant assays and a predictive extraction method using a solution of hydroxypropyl-β-cyclodextrin (HPCD) to determine if it is a reliable surrogate for this bioassay. Two soils were obtained from the central region of Chile (Lo Prado and Chicauma). Biosolids were obtained from a regional wastewater treatment plant. The soils were amended with biosolids at 90 Mg ha-1. Soils treated with biosolids, spiked with 10 mgkg-1 of the EE2 and 15 mgkg-1 and 30 mgkg-1of BPA were also included. The BPA, and EE2 concentration were determined in biosolids, soils and plant samples through ultrasound assisted extraction, solid phase extraction (SPE) and gas chromatography coupled to mass spectrometry determination (GC/MS). The bioavailable fraction found of each one of soils cultivated with wheat plants was compared with results obtained through a cyclodextrin biosimulator method. The total concentration found in biosolid from a treatment plant was 0.150 ± 0.064 mgkg-1 and 12.8±2.9 mgkg-1 of EE2 and BPA respectively. BPA and EE2 bioavailability is affected by the organic matter content and the physical and chemical properties of the soil. The bioavailability response of both compounds in the two soils varied with the EE2 and BPA concentration. It was observed in the case of EE2, the bioavailability in wheat plant crops contained higher concentrations in the roots than in the shoots. The concentration of EE2 increased with increasing biosolids rate. On the other hand, for BPA, a higher concentration was found in the shoot than the roots of the plants. The predictive capability the HPCD extraction was assessed using a simple linear correlation test, for both compounds in wheat plants. The correlation coefficients for the EE2 obtained from the HPCD extraction with those obtained from the wheat plants were r= 0.99 and p-value ≤ 0.05. On the other hand, in the case of BPA a correlation was not found. Therefore, the methodology was validated with respect to wheat plants bioassays, only in the EE2 case. Acknowledgments: The authors thank FONDECYT 1150502.

Keywords: emerging compounds, bioavailability, biosolids, endocrine disruptors

Procedia PDF Downloads 130
9049 Differences in Vitamin D Status in Caucasian and Asian Women Following Ultraviolet Radiation (UVR) Exposure

Authors: O. Hakim, K. Hart, P. McCabe, J. Berry, L. E. Rhodes, N. Spyrou, A. Alfuraih, S. Lanham-New

Abstract:

It is known that skin pigmentation reduces the penetration of ultraviolet radiation (UVR) and thus photosynthesis of 25(OH)D. However, the ethnic differences in 25(OH)D production remain to be fully elucidated. This study aimed to investigate the differences in vitamin D production between Asian and Caucasian postmenopausal women, in response to a defined, controlled UVB exposure. Seventeen women; nine white Caucasian (skin phototype II and III), eight South Asian women (skin phototype IV and V) participated in the study, acting as their controls. Three blood samples were taken for measurement of 25(OH)D during the run-in period (nine days, no sunbed exposure) after which all subjects underwent an identical UVR exposure protocol irrespective of skin colour (nine days, three sunbed sessions: 6, 8 and 8 minutes respectively with approximately 80% of body surface exposed). Skin tone was measured four times during the study. Both groups showed a gradual increase in 25(OH)D with final levels significantly higher than baseline (p<0.01). 25(OH)D concentration mean from a baseline of 43.58±19.65 to 57.80±17.11 nmol/l among Caucasian and from 27.03±23.92 to 44.73±17.74 nmol/l among Asian women. The baseline status of vitamin D was classified as deficient among the Asian women and insufficient among the Caucasian women. The percentage increase in vitamin D3 among Caucasians was 39.86% (21.02) and 207.78% (286.02) in Asian subjects respectively. This greater response to UVR exposure reflects the lower baseline levels of the Asian subjects. The mixed linear model analysis identified a significant effect of duration of UVR exposure on the production of 25(OH)D. However, the model shows no significant effect of ethnicity and skin tone on the production of 25(OH)D. These novel findings indicate that people of Asian ethnicity have the full capability to produce a similar amount of vitamin D compared to the Caucasian group; initial vitamin D concentration influences the amount of UVB needed to reach equal serum concentrations.

Keywords: ethnicity, Caucasian, South Asian, vitamin D, ultraviolet radiation, UVR

Procedia PDF Downloads 521
9048 A Novel Harmonic Compensation Algorithm for High Speed Drives

Authors: Lakdar Sadi-Haddad

Abstract:

The past few years study of very high speed electrical drives have seen a resurgence of interest. An inventory of the number of scientific papers and patents dealing with the subject makes it relevant. In fact democratization of magnetic bearing technology is at the origin of recent developments in high speed applications. These machines have as main advantage a much higher power density than the state of the art. Nevertheless particular attention should be paid to the design of the inverter as well as control and command. Surface mounted permanent magnet synchronous machine is the most appropriate technology to address high speed issues. However, it has the drawback of using a carbon sleeve to contain magnets that could tear because of the centrifugal forces generated in rotor periphery. Carbon fiber is well known for its mechanical properties but it has poor heat conduction. It results in a very bad evacuation of eddy current losses induce in the magnets by time and space stator harmonics. The three-phase inverter is the main harmonic source causing eddy currents in the magnets. In high speed applications such harmonics are harmful because on the one hand the characteristic impedance is very low and on the other hand the ratio between the switching frequency and that of the fundamental is much lower than that of the state of the art. To minimize the impact of these harmonics a first lever is to use strategy of modulation producing low harmonic distortion while the second is to introduce a sinus filter between the inverter and the machine to smooth voltage and current waveforms applied to the machine. Nevertheless, in very high speed machine the interaction of the processes mentioned above may introduce particular harmonics that can irreversibly damage the system: harmonics at the resonant frequency, harmonics at the shaft mode frequency, subharmonics etc. Some studies address these issues but treat these phenomena with separate solutions (specific strategy of modulation, active damping methods ...). The purpose of this paper is to present a complete new active harmonic compensation algorithm based on an improvement of the standard vector control as a global solution to all these issues. This presentation will be based on a complete theoretical analysis of the processes leading to the generation of such undesired harmonics. Then a state of the art of available solutions will be provided before developing the content of a new active harmonic compensation algorithm. The study will be completed by a validation study using simulations and practical case on a high speed machine.

Keywords: active harmonic compensation, eddy current losses, high speed machine

Procedia PDF Downloads 382
9047 Bioavailability of Zinc to Wheat Grown in the Calcareous Soils of Iraqi Kurdistan

Authors: Muhammed Saeed Rasheed

Abstract:

Knowledge of the zinc and phytic acid (PA) concentrations of staple cereal crops are essential when evaluating the nutritional health of national and regional populations. In the present study, a total of 120 farmers’ fields in Iraqi Kurdistan were surveyed for zinc status in soil and wheat grain samples; wheat is the staple carbohydrate source in the region. Soils were analysed for total concentrations of phosphorus (PT) and zinc (ZnT), available P (POlsen) and Zn (ZnDTPA) and for pH. Average values (mg kg-1) ranged between 403-3740 (PT), 42.0-203 (ZnT), 2.13-28.1 (POlsen) and 0.14-5.23 (ZnDTPA); pH was in the range 7.46-8.67. The concentrations of Zn, PA/Zn molar ratio and estimated Zn bioavailability were also determined in wheat grain. The ranges of Zn and PA concentrations (mg kg⁻¹) were 12.3-63.2 and 5400 – 9300, respectively, giving a PA/Zn molar ratio of 15.7-30.6. A trivariate model was used to estimate intake of bioaccessible Zn, employing the following parameter values: (i) maximum Zn absorption = 0.09 (AMAX), (ii) equilibrium dissociation constant of zinc-receptor binding reaction = 0.680 (KP), and (iii) equilibrium dissociation constant of Zn-PA binding reaction = 0.033 (KR). In the model, total daily absorbed Zn (TAZ) (mg d⁻¹) as a function of total daily nutritional PA (mmole d⁻¹) and total daily nutritional Zn (mmole Zn d⁻¹) was estimated assuming an average wheat flour consumption of 300 g day⁻¹ in the region. Consideration of the PA and Zn intake suggest only 21.5±2.9% of grain Zn is bioavailable so that the effective Zn intake from wheat is only 1.84-2.63 mg d-1 for the local population. Overall results suggest available dietary Zn is below recommended levels (11 mg d⁻¹), partly due to low uptake by wheat but also due to the presence of large concentrations of PA in wheat grains. A crop breeding program combined with enhanced agronomic management methods is needed to enhance both Zn uptake and bioavailability in grains of cultivated wheat types.

Keywords: phosphorus, zinc, phytic acid, phytic acid to zinc molar ratio, zinc bioavailability

Procedia PDF Downloads 114
9046 A Rational Strategy to Maximize the Value-Added Products by Selectively Converting Components of Inferior Heavy Oil

Authors: Kashan Bashir, Salah Naji Ahmed Sufyan, Mirza Umar Baig

Abstract:

In this study, n-dodecane, tetralin, decalin, and tetramethybenzene (TMBE) were used as model compounds of alkanes, naphthenic-aromatic, cycloalkanes and alkyl-benzenes presented in hydro-diesel. The catalytic cracking properties of four model compounds over Y zeolite catalyst (Y-Cat.) and ZSM-5 zeolite catalysts (ZSM-5-Cat.) were probed. The experiment results revealed that high conversion of macromolecular paraffin and naphthenic aromatics were achieved over Y-Cat, whereas its low cracking activity of intermediate products micromolecules paraffin and olefin and high activity of hydride transfer reaction goes against the production of value-added products (light olefin and gasoline). In contrast, despite the fact that the hydride transfer reaction was greatly inhabited over ZSM-5-Cat, the low conversion of macromolecules was observed attributed to diffusion limitations. Interestingly, the mixed catalyst compensates for the shortcomings of the two catalysts, and a “relay reaction” between Y-Cat and ZSM-5-Cat was proposed. Specifically, the added Y-Cat acts as a “pre-cracking booster site” and promotes macromolecules conversion. The addition of ZSM-5-Cat not only significantly suppresses the hydride transfer reaction but also contributes to the cracking of immediate products paraffin and olefin into ethylene and propylene, resulting in a high yield of alkyl-benzene (gasoline), ethylene, and propylene with a low yield of naphthalene (LCO) and coke. The catalytic cracking evaluation experiments of mixed hydro-LCO were also performed to further clarify the “relay reaction” above, showing the highest yield of LPG and gasoline over mixed catalyst. The results indicate that the Y-cat and ZSM-5-cat have a synergistic effect on the conversion of hydro-diesel and corresponding value-added product yield and selective coke yield.

Keywords: synergistic effect, hydro-diesel cracking, FCC, zeolite catalyst, ethylene and propylene

Procedia PDF Downloads 52
9045 Laboratory and Numerical Hydraulic Modelling of Annular Pipe Electrocoagulation Reactors

Authors: Alejandra Martin-Dominguez, Javier Canto-Rios, Velitchko Tzatchkov

Abstract:

Electrocoagulation is a water treatment technology that consists of generating coagulant species in situ by electrolytic oxidation of sacrificial anode materials triggered by electric current. It removes suspended solids, heavy metals, emulsified oils, bacteria, colloidal solids and particles, soluble inorganic pollutants and other contaminants from water, offering an alternative to the use of metal salts or polymers and polyelectrolyte addition for breaking stable emulsions and suspensions. The method essentially consists of passing the water being treated through pairs of consumable conductive metal plates in parallel, which act as monopolar electrodes, commonly known as ‘sacrificial electrodes’. Physicochemical, electrochemical and hydraulic processes are involved in the efficiency of this type of treatment. While the physicochemical and electrochemical aspects of the technology have been extensively studied, little is known about the influence of the hydraulics. However, the hydraulic process is fundamental for the reactions that take place at the electrode boundary layers and for the coagulant mixing. Electrocoagulation reactors can be open (with free water surface) and closed (pressurized). Independently of the type of rector, hydraulic head loss is an important factor for its design. The present work focuses on the study of the total hydraulic head loss and flow velocity and pressure distribution in electrocoagulation reactors with single or multiple concentric annular cross sections. An analysis of the head loss produced by hydraulic wall shear friction and accessories (minor head losses) is presented, and compared to the head loss measured on a semi-pilot scale laboratory model for different flow rates through the reactor. The tests included laminar, transitional and turbulent flow. The observed head loss was compared also to the head loss predicted by several known conceptual theoretical and empirical equations, specific for flow in concentric annular pipes. Four single concentric annular cross section and one multiple concentric annular cross section reactor configuration were studied. The theoretical head loss resulted higher than the observed in the laboratory model in some of the tests, and lower in others of them, depending also on the assumed value for the wall roughness. Most of the theoretical models assume that the fluid elements in all annular sections have the same velocity, and that flow is steady, uniform and one-dimensional, with the same pressure and velocity profiles in all reactor sections. To check the validity of such assumptions, a computational fluid dynamics (CFD) model of the concentric annular pipe reactor was implemented using the ANSYS Fluent software, demonstrating that pressure and flow velocity distribution inside the reactor actually is not uniform. Based on the analysis, the equations that predict better the head loss in single and multiple annular sections were obtained. Other factors that may impact the head loss, such as the generation of coagulants and gases during the electrochemical reaction, the accumulation of hydroxides inside the reactor, and the change of the electrode material with time, are also discussed. The results can be used as tools for design and scale-up of electrocoagulation reactors, to be integrated into new or existing water treatment plants.

Keywords: electrocoagulation reactors, hydraulic head loss, concentric annular pipes, computational fluid dynamics model

Procedia PDF Downloads 210
9044 Future Design and Innovative Economic Models for Futuristic Markets in Developing Countries

Authors: Nessreen Y. Ibrahim

Abstract:

Designing the future according to realistic analytical study for the futuristic market needs can be a milestone strategy to make a huge improvement in developing countries economics. In developing countries, access to high technology and latest science approaches is very limited. The financial problems in low and medium income countries have negative effects on the kind and quality of imported new technologies and application for their markets. Thus, there is a strong need for shifting paradigm thinking in the design process to improve and evolve their development strategy. This paper discusses future possibilities in developing countries, and how they can design their own future according to specific future models FDM (Future Design Models), which established to solve certain economical problems, as well as political and cultural conflicts. FDM is strategic thinking framework provides an improvement in both content and process. The content includes; beliefs, values, mission, purpose, conceptual frameworks, research, and practice, while the process includes; design methodology, design systems, and design managements tools. In this paper the main objective was building an innovative economic model to design a chosen possible futuristic scenario; by understanding the market future needs, analyze real world setting, solve the model questions by future driven design, and finally interpret the results, to discuss to what extent the results can be transferred to the real world. The paper discusses Egypt as a potential case study. Since, Egypt has highly complex economical problems, extra-dynamic political factors, and very rich cultural aspects; we considered Egypt is a very challenging example for applying FDM. The paper results recommended using FDM numerical modeling as a starting point to design the future.

Keywords: developing countries, economic models, future design, possible futures

Procedia PDF Downloads 255
9043 Neuro-Epigenetic Changes on Diabetes Induced-Synaptic Fidelity in Brain

Authors: Valencia Fernandes, Dharmendra Kumar Khatri, Shashi Bala Singh

Abstract:

Background and Aim: Epigenetics are the inaudible signatures of several pathological processes in the brain. This study understands the influence of DNA methylation, a major epigenetic modification, in the prefrontal cortex and hippocampus of the diabetic brain and its notable effect on the cellular chaperones and synaptic proteins. Method: Chronic high fat diet and STZ-induced diabetic mice were studied for cognitive dysfunction, and global DNA methylation, as well as DNA methyltransferase (DNMT) activity, were assessed. Further, the cellular chaperones and synaptic proteins were examined using DNMT inhibitor, 5-aza-2′-deoxycytidine (5-aza-dC)-via intracerebroventricular injection. Moreover, % methylation of these synaptic proteins were also studied so as to correlate its epigenetic involvement. Computationally, its interaction with the DNMT enzyme were also studied using bioinformatic tools. Histological studies for morphological alterations and neuronal degeneration were also studied. Neurogenesis, a characteristic marker for new learning and memory formation, was also assessed via the BrdU staining. Finally, the most important behavioral studies, including the Morris water maze, Y maze, passive avoidance, and Novel object recognition test, were performed to study its cognitive functions. Results: Altered global DNA methylation and increased levels of DNMTs within the nucleus were confirmed in the cortex and hippocampus of the diseased mice, suggesting hypermethylation at a genetic level. Treatment with AzadC, a global DNA demethylating agent, ameliorated the protein and gene expression of the cellular chaperones and synaptic fidelity. Furthermore, the methylation analysis profile showed hypermethylation of the hsf1 protein, a master regulator for chaperones and thus, confirmed the epigenetic involvement in the diseased brain. Morphological improvements and decreased neurodegeneration, along with enhanced neurogenesis in the treatment group, suggest that epigenetic modulations do participate in learning and memory. This is supported by the improved behavioral test battery seen in the treatment group. Conclusion: DNA methylation could possibly accord in dysregulating the memory-associated proteins at chronic stages in type 2 diabetes. This could suggest a substantial contribution to the underlying pathophysiology of several metabolic syndromes like insulin resistance, obesity and also participate in transitioning this damage centrally, such as cognitive dysfunction.

Keywords: epigenetics, cognition, chaperones, DNA methylation

Procedia PDF Downloads 191
9042 Evaluation of a Method for the Virtual Design of a Software-based Approach for Electronic Fuse Protection in Automotive Applications

Authors: Dominic Huschke, Rudolf Keil

Abstract:

New driving functionalities like highly automated driving have a major impact on the electrics/electronics architecture of future vehicles and inevitably lead to higher safety requirements. Partly due to these increased requirements, the vehicle industry is increasingly looking at semiconductor switches as an alternative to conventional melting fuses. The protective functionality of semiconductor switches can be implemented in hardware as well as in software. A current approach discussed in science and industry is the implementation of a model of the protected low voltage power cable on a microcontroller to calculate its temperature. Here, the information regarding the current is provided by the continuous current measurement of the semiconductor switch. The signal to open the semiconductor switch is provided by the microcontroller when a previously defined limit for the temperature of the low voltage power cable is exceeded. A setup for the testing of the described principle for electronic fuse protection of a low voltage power cable is built and successfullyvalidated with experiments afterwards. Here, the evaluation criterion is the deviation of the measured temperature of the low voltage power cable from the specified limit temperature when the semiconductor switch is opened. The analysis is carried out with an assumed ambient temperature as well as with a measured ambient temperature. Subsequently, the experimentally performed investigations are simulated in a virtual environment. The explicit focus is on the simulation of the behavior of the microcontroller with an implemented model of a low voltage power cable in a real-time environment. Subsequently, the generated results are compared with those of the experiments. Based on this, the completely virtual design of the described approach is assumed to be valid.

Keywords: automotive wire harness, electronic fuse protection, low voltage power cable, semiconductor-based fuses, software-based validation

Procedia PDF Downloads 92
9041 Assessment of Biochemical Marker Profiles and Their Impact on Morbidity and Mortality of COVID-19 Patients in Tigray, Ethiopia

Authors: Teklay Gebrecherkos, Mahmud Abdulkadir

Abstract:

Abstract: The emergence and subsequent rapid worldwide spread of the COVID-19 pandemic have posed a global crisis, with a tremendously increasing burden of infection, morbidity, and mortality risks. Recent studies have suggested that severe cases of COVID-19 are characterized by massive biochemical, hematological, and inflammatory alterations whose synergistic effect is estimated to progress to multiple organ damage and failure. In this regard, biochemical monitoring of COVID-19 patients, based on comprehensive laboratory assessments and findings, is expected to play a crucial role in effective clinical management and improving the survival rates of patients. However, biochemical markers that can be informative of COVID-19 patient risk stratification and predictor of clinical outcomes are currently scarcely available. The study aims to investigate the profiles of common biochemical markers and their influence on the severity of the COVID-19 infection in Tigray, Ethiopia. Methods: A laboratory-based cross-sectional study was conducted from July to August 2020 at Quiha College of Engineering, Mekelle University COVID-19 isolation and treatment center. Sociodemographic and clinical data were collected using a structured questionnaire. Whole blood was collected from each study participant, and serum samples were separated after being delivered to the laboratory. Hematological biomarkers were analyzed using FACS count, while organ tests and serum electrolytes were analyzed using ion-selective electrode methods using a Cobas-6000 series machine. Data was analyzed using SPSS Vs 20. Results: A total of 120 SARS-CoV-2 patients were enrolled during the study. The participants ranged between 18 and 91 years, with a mean age of 52 (±108.8). The majority (40%) of participants were between the ages of 60 and above. Patients with multiple comorbidities developed severe COVID-19, though not statistically significant (p=0.34). Mann-Whitney U test analysis showed that biochemical tests such as neuropile count (p=0.003), AST levels (p=0.050), serum creatinine (p=0.000), and serum sodium (p=0.015) were significantly correlated with severe COVID-19 disease as compared to non-severe disease. Conclusion: The severity of COVID-19 was associated with higher age, organ tests AST and creatinine, serum Na+, and elevated total neutrophile count. Thus, further study needs to be conducted to evaluate the alterations of biochemical biomarkers and their impact on COVID-19.

Keywords: COVID-19, biomarkers, mortality, Tigray, Ethiopia

Procedia PDF Downloads 14
9040 Revisiting Ryan v Lennon to Make the Case against Judicial Supremacy

Authors: Tom Hickey

Abstract:

It is difficult to conceive of a case that might more starkly bring the arguments concerning judicial review to the fore than State (Ryan) v Lennon. Small wonder that it has attracted so much scholarly attention, although the fact that almost all of it has been in an Irish setting is perhaps surprising, given the illustrative value of the case in respect of a philosophical quandary that continues to command attention in all developed constitutional democracies. Should judges have power to invalidate legislation? This article revisits Ryan v Lennon with an eye on the importance of the idea of “democracy” in the case. It assesses the meaning of democracy: what its purpose might be and what practical implications might follow, specifically in respect of judicial review. Based on this assessment, it argues for a particular institutional model for the vindication of constitutional rights. In the context of calls for the drafting of a new constitution for Ireland, however forlorn these calls might be for the moment, it makes a broad and general case for the abandonment of judicial supremacy and for the taking up of a model in which judges have a constrained rights reviewing role that informs a more robust role that legislators would play, thereby enhancing the quality of the control that citizens have over their own laws. The article is in three parts. Part I assesses the exercise of judicial power over legislation in Ireland, with the primary emphasis on Ryan v Lennon. It considers the role played by the idea of democracy in that case and relates it to certain apparently intractable dilemmas that emerged in later Irish constitutional jurisprudence. Part II considers the concept of democracy more generally, with an eye on overall implications for judicial power. It argues for an account of democracy based on the idea of equally shared popular control over government. Part III assesses how this understanding might inform a new constitutional arrangement in the Irish setting for the vindication of fundamental rights.

Keywords: constitutional rights, democracy as popular control, Ireland, judicial power, republican theory, Ryan v Lennon

Procedia PDF Downloads 527
9039 Determining the Threshold for Protective Effects of Aerobic Exercise on Aortic Structure in a Mouse Model of Marfan Syndrome Associated Aortic Aneurysm

Authors: Christine P. Gibson, Ramona Alex, Michael Farney, Johana Vallejo-Elias, Mitra Esfandiarei

Abstract:

Aortic aneurysm is the leading cause of death in Marfan syndrome (MFS), a connective tissue disorder caused by mutations in fibrillin-1 gene (FBN1). MFS aneurysm is characterized by weakening of the aortic wall due to elastin fibers fragmentation and disorganization. The above-average height and distinct physical features make young adults with MFS desirable candidates for competitive sports; but little is known about the exercise limit at which they will be at risk for aortic rupture. On the other hand, aerobic cardiovascular exercise has been shown to have protective effects on the heart and aorta. We have previously reported that mild aerobic exercise can delay the formation of aortic aneurysm in a mouse model of MFS. In this study, we aimed to investigate the effects of various levels of exercise intensity on the progression of aortic aneurysm in the mouse model. Starting at 4 weeks of age, we subjected control and MFS mice to different levels of exercise intensity (8m/min, 10m/min, 15m/min, and 20m/min, corresponding to 55%, 65%, 75%, and 85% of VO2 max, respectively) on a treadmill for 30 minutes per day, five days a week for the duration of the study. At 24 weeks of age, aortic tissue were isolated and subjected to structural and functional studies using histology and wire myography in order to evaluate the effects of different exercise routines on elastin fragmentation and organization and aortic wall elasticity/stiffness. Our data shows that exercise training at the intensity levels between 55%-75% significantly reduces elastin fragmentation and disorganization, with less recovery observed in 85% MFS group. The reversibility of elasticity was also significantly restored in MFS mice subjected to 55%-75% intensity; however, the recovery was less pronounced in MFS mice subjected to 85% intensity. Furthermore, our data shows that smooth muscle cells (SMCs) contractilion in response to vasoconstrictor agent phenylephrine (100nM) is significantly reduced in MFS aorta (54.84 ± 1.63 mN/mm2) as compared to control (95.85 ± 3.04 mN/mm2). At 55% of intensity, exercise did not rescue SMCs contraction (63.45 ± 1.70 mN/mm2), while at higher intensity levels, SMCs contraction in response to phenylephrine was restored to levels similar to control aorta [65% (81.88 ± 4.57 mN/mm2), 75% (86.22 ± 3.84 mN/mm2), and 85% (83.91 ± 5.42 mN/mm2)]. This study provides the first time evidence that high intensity exercise (e.g. 85%) may not provide the most beneficial effects on aortic function (vasoconstriction) and structure (elastin fragmentation, aortic wall elasticity) during the progression of aortic aneurysm in MFS mice. On the other hand, based on our observations, medium intensity exercise (e.g. 65%) seems to provide the utmost protective effects on aortic structure and function in MFS mice. These findings provide new insights into the potential capacity, in which MFS patients could participate in various aerobic exercise routines, especially in young adults affected by cardiovascular complications particularly aortic aneurysm. This work was funded by Midwestern University Research Fund.

Keywords: aerobic exercise, aortic aneurysm, aortic wall elasticity, elastin fragmentation, Marfan syndrome

Procedia PDF Downloads 368