Search results for: dynamic panel models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10671

Search results for: dynamic panel models

1641 Clothing as Cure: Dress as Moral Treatment in Psychiatry

Authors: Dorothy Chyung

Abstract:

In the psychiatric interview, the mental status exam begins with an assessment of the patient's appearance, noting aspects such as grooming and hygiene. However, it is not well established whether further examination of a patient's attire can provide further useful information. The popular assumption is that those who are mentally unwell will manifest this in unusual clothing. In the moral treatment of the 19th century, proper clothing was also seen as a pivotal therapeutic concern. This project examines assumptions about clothing, both as a reflection of and treatment for psychopathology. The methodology considers the opinions expressed in 19th century art and journals, as well as asylum rules, in comparison to contemporary psychiatric practice and research evidence. Per moral treatment in the 19th century, self-discipline and a proper environment would cure insanity. Madness was evident in the opposite of these ideals—such as ragged or ‘improper’ clothing—and rules about attire delineated the most correct (i.e. sane) ways to dress. These rules applied not only for the patients but also for staff. Despite these ideals, accusations were made that asylums, in fact, dressed patients to look more mentally unwell and further removed patients’ agency. Current practice in psychiatric hospitals retains remnants of moral treatment. Patients are expected to dress ‘appropriately’ while retaining some choice to build self-esteem, with arguments about safety being used to justify the removal of choice. Meanwhile, staff is expected to dress professionally and as role models, based on the assumption that conservative dress is least pathological. Research on this subject is limited, and there is little evidence that discrete psychiatric diagnoses manifest in the particular dress, nor that conservative dress would result in a reduction in pathology. Dressing unusually has become a privilege granted only to those without association with mental illness.

Keywords: fashion, history of psychiatry, medical humanities, mental health treatment

Procedia PDF Downloads 209
1640 Flexible, Hydrophobic and Mechanical Strong Poly(Vinylidene Fluoride): Carbon Nanotube Composite Films for Strain-Sensing Applications

Authors: Sudheer Kumar Gundati, Umasankar Patro

Abstract:

Carbon nanotube (CNT) – polymer composites have been extensively studied due to their exceptional electrical and mechanical properties. In the present study, poly(vinylidene fluoride) (PVDF) – multi-walled CNT composites were prepared by melt-blending technique using pristine (ufCNT) and a modified dilute nitric acid-treated CNTs (fCNT). Due to this dilute acid-treatment, the fCNTs were found to show significantly improved dispersion and retained their electrical property. The fCNT showed an electrical percolation threshold (PT) of 0.15 wt% in the PVDF matrix as against 0.35 wt% for ufCNT. The composites were made into films of thickness ~0.3 mm by compression-molding and the resulting composite films were subjected to various property evaluations. It was found that the water contact angle (WCA) of the films increased with CNT weight content in composites and the composite film surface became hydrophobic (e.g., WCA ~104° for 4 wt% ufCNT and 111.5° for 0.5 wt% fCNT composites) in nature; while the neat PVDF film showed hydrophilic behavior (WCA ~68°). Significant enhancements in the mechanical properties were observed upon CNT incorporation and there is a progressive increase in the tensile strength and modulus with increase in CNT weight fraction in composites. The composite films were tested for strain-sensing applications. For this, a simple and non-destructive method was developed to demonstrate the strain-sensing properties of the composites films. In this method, the change in electrical resistance was measured using a digital multimeter by applying bending strain by oscillation. It was found that by applying dynamic bending strain, there is a systematic change in resistance and the films showed piezo-resistive behavior. Due to the high flexibility of these composite films, the change in resistance was reversible and found to be marginally affected, when large number of tests were performed using a single specimen. It is interesting to note that the composites with CNT content notwithstanding their type near the percolation threshold (PT) showed better strain-sensing properties as compared to the composites with CNT contents well-above the PT. On account of the excellent combination of the various properties, the composite films offer a great promise as strain-sensors for structural health-monitoring.

Keywords: carbon nanotubes, electrical percolation threshold, mechanical properties, poly(vinylidene fluoride), strain-sensor, water contact angle

Procedia PDF Downloads 237
1639 The Impact of the Variation of Sky View Factor on Landscape Degree of Enclosure of Urban Blue and Green Belt

Authors: Yi-Chun Huang, Kuan-Yun Chen, Chuang-Hung Lin

Abstract:

Urban Green Belt and Blue is a part of the city landscape, it is an important constituent element of the urban environment and appearance. The Hsinchu East Gate Moat is situated in the center of the city, which not only has a wealth of historical and cultural resources, but also combines the Green Belt and the Blue Belt qualities at the same time. The Moat runs more than a thousand meters through the vital Green Belt and the Blue Belt in downtown, and each section is presented in different qualities of moat from south to north. The water area and the green belt of surroundings are presented linear and banded spread. The water body and the rich diverse river banks form an urban green belt of rich layers. The watercourse with green belt design lets users have connections with blue belts in different ways; therefore, the integration of Hsinchu East Gate and moat have become one of the unique urban landscapes in Taiwan. The study is based on the fact-finding case of Hsinchu East Gate Moat where situated in northern Taiwan, to research the impact between the SVF variation of the city and spatial sequence of Urban Green Belt and Blue landscape and visual analysis by constituent cross-section, and then comparing the influence of different leaf area index – the variable ecological factors to the degree of enclosure. We proceed to survey the landscape design of open space, to measure existing structural features of the plant canopy which contain the height of plants and branches, the crown diameter, breast-height diameter through access to diagram of Geographic Information Systems (GIS) and on-the-spot actual measurement. The north and south districts of blue green belt areas are divided 20 meters into a unit from East Gate Roundabout as the epicenter, and to set up a survey points to measure the SVF above the survey points; then we proceed to quantitative analysis from the data to calculate open landscape degree of enclosure. The results can be reference for the composition of future river landscape and the practical operation for dynamic space planning of blue and green belt landscape.

Keywords: sky view factor, degree of enclosure, spatial sequence, leaf area indices

Procedia PDF Downloads 553
1638 Antibacterial Activity of Copper Nanoparticles on Vancomycin Resistant Staphylococcus Aureus in Vitro and Animal Models

Authors: Sina Gharevali

Abstract:

Staphylococcus aureus is one of the most important factors for nosocomial infections and infections acquired in a hospital setting role as is. Drug-resistant bacteria methicillin, which in 1961 was reported in many parts of the world, Made the role as the last drug, vancomycin, in the treatment of infections caused by the Staphylococcus aureus chain be taken into consideration. The aim of this study was to evaluate the antimicrobial effects of copper nanoparticles and compared it with antibiotics on Staphylococcus aureus resistant to vancomycin in vitro and animal model. In this study, this test was performed, and the most effective antibiotic for vancomycin-resistant Staphylococcus aureus was determined by disk diffusion method. After various concentrations of copper nanoparticles and antibiotics were prepared and vancomycin resistant Staphylococcus aureus bacteria with serial dilution method for determining antibiotic ciprofloxacin. Minimum Inhibitory Concentration and Minimum Bactericidal Concentrationcopper nanoparticles was performed. The agar dilution method for bacterial growth in different concentrations of copper nanoparticles and antibiotics ciprofloxacin was performed. The agar dilution method for bacterial growth in different concentrations of copper nanoparticles and antibiotics ciprofloxacin was performed. Then the broth dilution method for the antibiotic ciprofloxacin, nano-particles, and nano-particles of copper and copper-established antibiotic synergy MIC and MBC were obtained. MBC was obtained from the experimental animal model test method, and the results were compared. The results showed that copper nanoparticles compared with the antibiotic ciprofloxacin in vitro and animal model more effective in inhibiting the growth of Staphylococcus aureus resistant to vancomycin and ciprofloxacin and extent of the impact of the Synthetic effect of lower copper nanoparticles. Which can then be used to treat clinical research as a candidate.

Keywords: nanoparticles, copper, staphylococcus, aureus

Procedia PDF Downloads 93
1637 Influence of High Hydrostatic Pressure Application (HHP) and Osmotic Dehydration (DO) as a Pretreatment to Hot –Air Drying of Abalone (Haliotis Rufescens) Cubes

Authors: Teresa Roco, Mario Perez Won, Roberto Lemus-Mondaca, Sebastian Pizarro

Abstract:

This research presents the simultaneous application of high hydrostatic pressure application (HHP) and osmotic dehydration (DO) as a pretreatment to hot –air drying of abalone cubes. The drying time was reduced to 6 hours at 60ºC as compared to the abalone drying by only a 15% NaCl osmotic pretreatment and at an atmospheric pressure that took 10 hours to dry at the same temperature. This was due to the salt and HHP saturation since osmotic pressure increases as water loss increases, thus needing a more reduced time in a convective drying, so water effective diffusion in drying plays an important role in this research. Different working conditions as pressure (350-550 MPa), pressure time ( 5-10 min), salt concentration, NaCl 15% and drying temperature (40-60ºC) will be optimized according to kinetic parameters of each mathematical model (Table 1). The models used for drying experimental curves were those corresponding to Weibull, Logarithmic and Midilli-Kucuk, but the latest one was the best fitted to the experimental data (Figure 1). The values for water effective diffusivity varied from 4.54 – to 9.95x10-9 m2/s for the 8 curves (DO+HHP) whereas the control samples (neither DO nor HHP) varied among 4.35 and 5.60x10-9 m2/s, for 40 and 60°C, respectively and as to drying by osmotic pretreatment at 15% NaCl from 3.804 to 4.36x10-9 m2/s at the same temperatures. Finally as to energy and efficiency consumption values for drying process (control and pretreated samples) it was found that they would be within a range of 777-1815 KJ/Kg and 8.22–19.20% respectively. Therefore, a knowledge concerning the drying kinetic as well as the consumption energy, in addition to knowledge about the quality of abalones subjected to an osmotic pretreatment (DO) and a high hydrostatic pressure (HHP) are extremely important to an industrial level so that the drying process can be successful at different pretreatment conditions and/or variable processes.

Keywords: abalone, convective drying, high pressure hydrostatic, pretreatments, diffusion coefficient

Procedia PDF Downloads 662
1636 Kenaf MDF Panels with Soy Based Adhesive. The Influence of Preparation Parameters on Physciomechanical Properties

Authors: Imtiaz Ali, Krishnan Jayaraman, Debes Bhattacharyya

Abstract:

Soybean concentrate is abundant material and renewable product that is recently been explored as an alternative to conventional formaldehyde based resins in wood based products. The main goal of this study is to evaluate the technical feasibility of manufacturing environment friendly MDF panels from renewable resources. The panels are made by using kenaf bast fibers (KB) as wood substitute and soy based adhesive as bonding material. Second order response surface regression models are used to understand the effects and interactions of resin content (RC) and pressing time (PT) on the mechanical and water soaking properties of kenaf panels. The mechanical and water soaking properties are significantly improved as the RC increased and reached at the highest level at maximum resin loading (12%). The effect of pressing time is significant in the first phase when the pressing time increased from 4 to 6 min; however the effect was not as significant when pressing time further increased to 8 min. The second order regression equations further confirm that the variation in process parameters has strong relationship with the physciomechanical properties. The MDF panels the minimum requirements of internal bond strength, modulus of rupture and modulus of elasticity as recommended by US wood MDF standard specifications for G110, G120, G130 and G140 grade MDF panels. However, the thickness swelling results are considerably poorer than the recommended values of general purpose standard requirements. This deficiency can be counterbalanced by the advantage of being formaldehyde free panels made from renewable sources and by making them suitable alternative for less humid environment applications.

Keywords: kenaf, Medium density fibreboard, soy adhesive, mechanical properties, water soaking properties

Procedia PDF Downloads 369
1635 Intergenerational Class Mobility in Greece: A Cross-Cohort Analysis with Evidence from European Union-Statistics on Income and Living Conditions

Authors: G. Stamatopoulou, M. Symeonaki, C. Michalopoulou

Abstract:

In this work, we study the intergenerational social mobility in Greece, in order to provide up-to-date evidence on the changes in the mobility patterns throughout the years. An analysis for both men and women aged between 25-64 years old is carried out. Three main research objectives are addressed. First, we aim to examine the relationship between the socio-economic status of parents and their children. Secondly, we investigate the evolution of the mobility patterns between different birth cohorts. Finally, the role of education is explored in shaping the mobility patterns. For the analysis, we draw data on both parental and individuals' social outcomes from different national databases. The social class of origins and destination is measured according to the European Socio-Economic Classification (ESeC), while the respondents' educational attainment is coded into categories based on the International Standard Classification of Education (ISCED). Applying the Markov transition probability theory, and a range of measures and models, this work focuses on the magnitude and the direction of the movements that take place in the Greek labour market, as well as the level of social fluidity. Three-way mobility tables are presented, where the transition probabilities between the classes of destination and origins are calculated for different cohorts. Additionally, a range of absolute and relative mobility rates, as well as distance measures, are presented. The study covers a large time span beginning in 1940 until 1995, shedding light on the effects of the national institutional processes on the social movements of individuals. Given the evidence on the mobility patterns of the most recent birth cohorts, we also investigate the possible effects of the 2008 economic crisis.

Keywords: cohort analysis, education, Greece, intergenerational mobility, social class

Procedia PDF Downloads 125
1634 Green Wave Control Strategy for Optimal Energy Consumption by Model Predictive Control in Electric Vehicles

Authors: Furkan Ozkan, M. Selcuk Arslan, Hatice Mercan

Abstract:

Electric vehicles are becoming increasingly popular asa sustainable alternative to traditional combustion engine vehicles. However, to fully realize the potential of EVs in reducing environmental impact and energy consumption, efficient control strategies are essential. This study explores the application of green wave control using model predictive control for electric vehicles, coupled with energy consumption modeling using neural networks. The use of MPC allows for real-time optimization of the vehicles’ energy consumption while considering dynamic traffic conditions. By leveraging neural networks for energy consumption modeling, the EV's performance can be further enhanced through accurate predictions and adaptive control. The integration of these advanced control and modeling techniques aims to maximize energy efficiency and range while navigating urban traffic scenarios. The findings of this research offer valuable insights into the potential of green wave control for electric vehicles and demonstrate the significance of integrating MPC and neural network modeling for optimizing energy consumption. This work contributes to the advancement of sustainable transportation systems and the widespread adoption of electric vehicles. To evaluate the effectiveness of the green wave control strategy in real-world urban environments, extensive simulations were conducted using a high-fidelity vehicle model and realistic traffic scenarios. The results indicate that the integration of model predictive control and energy consumption modeling with neural networks had a significant impact on the energy efficiency and range of electric vehicles. Through the use of MPC, the electric vehicle was able to adapt its speed and acceleration profile in realtime to optimize energy consumption while maintaining travel time objectives. The neural network-based energy consumption modeling provided accurate predictions, enabling the vehicle to anticipate and respond to variations in traffic flow, further enhancing energy efficiency and range. Furthermore, the study revealed that the green wave control strategy not only reduced energy consumption but also improved the overall driving experience by minimizing abrupt acceleration and deceleration, leading to a smoother and more comfortable ride for passengers. These results demonstrate the potential for green wave control to revolutionize urban transportation by enhancing the performance of electric vehicles and contributing to a more sustainable and efficient mobility ecosystem.

Keywords: electric vehicles, energy efficiency, green wave control, model predictive control, neural networks

Procedia PDF Downloads 49
1633 Modeling of Gas Migration in High-Pressure–High-Temperature Fields

Authors: Deane Roehl, Roberto Quevedo

Abstract:

Gas migration from pressurized formations is a problem reported in the oil and gas industry. This means increased risks for drilling, production, well integrity, and hydrocarbon escape. Different processes can contribute to the development of pressurized formations, particularly in High-Pressure–High-Temperature (HPHT) gas fields. Over geological time-scales, the different formations of those fields have maintained and/or developed abnormal pressures owing to low permeability and the presence of an impermeable seal. However, if this seal is broken, large volumes of gas could migrate into other less pressurized formations. Three main mechanisms for gas migration have been identified in the literature –molecular diffusion, continuous-phase flow, and continuous-phase flow coupled with mechanical effects. In relation to the latter, gas migration can occur as a consequence of the mechanical effects triggered by reservoir depletion. The compaction of the reservoir can redistribute the in-situ stresses sufficiently to induce deformations that may increase the permeability of rocks and lead to fracture processes or reactivate nearby faults. The understanding of gas flow through discontinuities is still under development. However, some models based on porosity changes and fracture aperture have been developed in order to obtain enhanced permeabilities in numerical simulations. In this work, a simple relationship to integrate fluid flow through rock matrix and discontinuities has been implemented in a fully thermo-hydro-mechanical simulator developed in-house. Numerical simulations of hydrocarbon production in an HPHT field were carried out. Results suggest that rock permeability can be considerably affected by the deformation of the field, creating preferential flow paths for the transport of large volumes of gas.

Keywords: gas migration, pressurized formations, fractured rocks, numerical modeling

Procedia PDF Downloads 142
1632 Biomechanical Modeling, Simulation, and Comparison of Human Arm Motion to Mitigate Astronaut Task during Extra Vehicular Activity

Authors: B. Vadiraj, S. N. Omkar, B. Kapil Bharadwaj, Yash Vardhan Gupta

Abstract:

During manned exploration of space, missions will require astronaut crewmembers to perform Extra Vehicular Activities (EVAs) for a variety of tasks. These EVAs take place after long periods of operations in space, and in and around unique vehicles, space structures and systems. Considering the remoteness and time spans in which these vehicles will operate, EVA system operations should utilize common worksites, tools and procedures as much as possible to increase the efficiency of training and proficiency in operations. All of the preparations need to be carried out based on studies of astronaut motions. Until now, development and training activities associated with the planned EVAs in Russian and U.S. space programs have relied almost exclusively on physical simulators. These experimental tests are expensive and time consuming. During the past few years a strong increase has been observed in the use of computer simulations due to the fast developments in computer hardware and simulation software. Based on this idea, an effort to develop a computational simulation system to model human dynamic motion for EVA is initiated. This study focuses on the simulation of an astronaut moving the orbital replaceable units into the worksites or removing them from the worksites. Our physics-based methodology helps fill the gap in quantitative analysis of astronaut EVA by providing a multisegment human arm model. Simulation work described in the study improves on the realism of previous efforts, incorporating joint stops to account for the physiological limits of range of motion. To demonstrate the utility of this approach human arm model is simulated virtually using ADAMS/LifeMOD® software. Kinematic mechanism for the astronaut’s task is studied from joint angles and torques. Simulation results obtained is validated with numerical simulation based on the principles of Newton-Euler method. Torques determined using mathematical model are compared among the subjects to know the grace and consistency of the task performed. We conclude that due to uncertain nature of exploration-class EVA, a virtual model developed using multibody dynamics approach offers significant advantages over traditional human modeling approaches.

Keywords: extra vehicular activity, biomechanics, inverse kinematics, human body modeling

Procedia PDF Downloads 338
1631 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, Hemantkumar B. Mehta

Abstract:

Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.

Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant

Procedia PDF Downloads 285
1630 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis

Authors: Syed Asif Hassan, Syed Atif Hassan

Abstract:

Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.

Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction

Procedia PDF Downloads 386
1629 Combination of Work and Family Demands Correlated with the Severity of Wrist Musculoskeletal Disorders among Nurses

Authors: Hsien Hwa Kuo, Lin Wen Chun, Lin Wen Chun, Hsien Wen Kuo

Abstract:

Objective: Nurses represent an important occupational group frequently affected by wrist musculoskeletal disorders (WMSDs) due to a heavy workload, working shifts, poor posture, giving shots, making beds, lifting patients, bending their waist and insufficient rest time every day. However, lack of research reported nurses whether workload in household correlated with the severity of WMSDs. Methods: 550 nurses from a hospital in Taoyuan were interviewed using a modified standardized Nordic Musculoskeletal (NMQ) questionnaire including the demographic information, workplace condition and nine body parts of musculoskeletal disorders. Results: 17.9% and 23.9% of severity and symptoms in WMSDs among nurses with children were significant higher than among nurses without children (1​2.4% and 15.9%). Based on multiple logistic regression models adjusted for age, work duration, job title and body mass index (BMI), we found that heavy workload in hospital had higher odds ratio (OR) of the severity and symptoms of WMSD among nurses with children (OR= 8.67 and OR= 4.30, p<0.05) compared to nurses without children (OR= 1.94 and OR= 1.70). Conclusion: The severity and symptoms of WMSDs among nurses significantly correlated with workload in hospital among nurses with children. If women are at greater risk because of the combination of their work and family demands, synergistic effect of WMSDs was found among nurses. Comment: Women's domestic work, especially once they become mothers, they invest more time and energy caring for children, helping others, and doing housework. Thus domestic work, per se, may be a risk factor for wrist musculoskeletal problems, and, more importantly, it may constrain women's ability to protect themselves from the effects of their paid work. If nurses with more domestic work periodically make efforts to physical activity or modify inappropriate posture, their WMSDs symptoms will be alleviated.

Keywords: musculoskeletal disorders, nurse, NMQ, WMSDs

Procedia PDF Downloads 351
1628 Service Interactions Coordination Using a Declarative Approach: Focuses on Deontic Rule from Semantics of Business Vocabulary and Rules Models

Authors: Nurulhuda A. Manaf, Nor Najihah Zainal Abidin, Nur Amalina Jamaludin

Abstract:

Coordinating service interactions are a vital part of developing distributed applications that are built up as networks of autonomous participants, e.g., software components, web services, online resources, involve a collaboration between a diverse number of participant services on different providers. The complexity in coordinating service interactions reflects how important the techniques and approaches require for designing and coordinating the interaction between participant services to ensure the overall goal of a collaboration between participant services is achieved. The objective of this research is to develop capability of steering a complex service interaction towards a desired outcome. Therefore, an efficient technique for modelling, generating, and verifying the coordination of service interactions is developed. The developed model describes service interactions using service choreographies approach and focusing on a declarative approach, advocating an Object Management Group (OMG) standard, Semantics of Business Vocabulary and Rules (SBVR). This model, namely, SBVR model for service choreographies focuses on a declarative deontic rule expressing both obligation and prohibition, which can be more useful in working with coordinating service interactions. The generated SBVR model is then be formulated and be transformed into Alloy model using Alloy Analyzer for verifying the generated SBVR model. The transformation of SBVR into Alloy allows to automatically generate the corresponding coordination of service interactions (service choreography), hence producing an immediate instance of execution that satisfies the constraints of the specification and verifies whether a specific request can be realised in the given choreography in the generated choreography.

Keywords: service choreography, service coordination, behavioural modelling, complex interactions, declarative specification, verification, model transformation, semantics of business vocabulary and rules, SBVR

Procedia PDF Downloads 146
1627 Efficient Chiller Plant Control Using Modern Reinforcement Learning

Authors: Jingwei Du

Abstract:

The need of optimizing air conditioning systems for existing buildings calls for control methods designed with energy-efficiency as a primary goal. The majority of current control methods boil down to two categories: empirical and model-based. To be effective, the former heavily relies on engineering expertise and the latter requires extensive historical data. Reinforcement Learning (RL), on the other hand, is a model-free approach that explores the environment to obtain an optimal control strategy often referred to as “policy”. This research adopts Proximal Policy Optimization (PPO) to improve chiller plant control, and enable the RL agent to collaborate with experienced engineers. It exploits the fact that while the industry lacks historical data, abundant operational data is available and allows the agent to learn and evolve safely under human supervision. Thanks to the development of language models, renewed interest in RL has led to modern, online, policy-based RL algorithms such as the PPO. This research took inspiration from “alignment”, a process that utilizes human feedback to finetune the pretrained model in case of unsafe content. The methodology can be summarized into three steps. First, an initial policy model is generated based on minimal prior knowledge. Next, the prepared PPO agent is deployed so feedback from both critic model and human experts can be collected for future finetuning. Finally, the agent learns and adapts itself to the specific chiller plant, updates the policy model and is ready for the next iteration. Besides the proposed approach, this study also used traditional RL methods to optimize the same simulated chiller plants for comparison, and it turns out that the proposed method is safe and effective at the same time and needs less to no historical data to start up.

Keywords: chiller plant, control methods, energy efficiency, proximal policy optimization, reinforcement learning

Procedia PDF Downloads 5
1626 Discussing the Values of Collective Memory and Cultural / Rural Landscape Based on the Concept of Eco-Village; Case of Turkey, Gölpazarı, Kurşunlu Village

Authors: Parisa Göker, Hilal Kahveci, Özlem Candan Hergül

Abstract:

Humans are generating culture while being in touch with nature. Along with skills, local knowledge based on experience, and many other subjects developed within this process, 'culture' offers humans a chance to survive. For this reason, culture forms the equipment for humans, which facilitates their survival in all ecosystems. Together with technology, quick consumption of natural sources and overuse culture of humans have brought up the eco-village concept. Ecovillages are ecologically, economically, socio-culturally, and spiritually sustainable settlement models. It is known that the eco-village approach is applying a proper methodology on behalf of integrative and versatile solution generation. Today, the eco-village approach, introducing a radical criticism to the understanding of civilization and consumption culture and deeming urban solutions inadequate as a spatial reflection to civilization and consumption culture, while making a difference about integrative solution offering with multidimensional features, along with the goal of creating self-sufficient communities, is creating solutions on the subject of both reducing the ecological footprint of humans and to provide social order and also to solve the injustice seen in terms of income and life standards. In this study, environmental issues, sustainable development, and environmental sustainability topics are examined within the context of eco-tourism and eco-village. Alongside this, the natural and cultural landscape values of Kurşunlu village which are located in Bilecik province’s Gölpazarı county, and a contextual frame is created for the facilitation of sustainability in the event of dynamizing the Kurşunlu village in terms of tourism-oriented activities.

Keywords: eco village, sustainability, rural landscape, cultural landscape

Procedia PDF Downloads 135
1625 Direct Approach in Modeling Particle Breakage Using Discrete Element Method

Authors: Ebrahim Ghasemi Ardi, Ai Bing Yu, Run Yu Yang

Abstract:

Current study is aimed to develop an available in-house discrete element method (DEM) code and link it with direct breakage event. So, it became possible to determine the particle breakage and then its fragments size distribution, simultaneous with DEM simulation. It directly applies the particle breakage inside the DEM computation algorithm and if any breakage happens the original particle is replaced with daughters. In this way, the calculation will be followed based on a new updated particles list which is very similar to the real grinding environment. To validate developed model, a grinding ball impacting an unconfined particle bed was simulated. Since considering an entire ball mill would be too computationally demanding, this method provided a simplified environment to test the model. Accordingly, a representative volume of the ball mill was simulated inside a box, which could emulate media (ball)–powder bed impacts in a ball mill and during particle bed impact tests. Mono, binary and ternary particle beds were simulated to determine the effects of granular composition on breakage kinetics. The results obtained from the DEM simulations showed a reduction in the specific breakage rate for coarse particles in binary mixtures. The origin of this phenomenon, commonly known as cushioning or decelerated breakage in dry milling processes, was explained by the DEM simulations. Fine particles in a particle bed increase mechanical energy loss, and reduce and distribute interparticle forces thereby inhibiting the breakage of the coarse component. On the other hand, the specific breakage rate of fine particles increased due to contacts associated with coarse particles. Such phenomenon, known as acceleration, was shown to be less significant, but should be considered in future attempts to accurately quantify non-linear breakage kinetics in the modeling of dry milling processes.

Keywords: particle bed, breakage models, breakage kinetic, discrete element method

Procedia PDF Downloads 194
1624 Quantifying Stakeholders’ Values of Technical and Vocational Education and Training Provision in Nigeria

Authors: Lidimma Benjamin, Nimmyel Gwakzing, Wuyep Nanyi

Abstract:

Technical and Vocational Education and Training (TVET) has many stakeholders, each with their own values and interests. This study will focus on the diversity of the values and interests within and across groups of stakeholders by quantifying the value that stakeholders attached to several quality attributes of TVET, and also find out to what extent TVET stakeholders differ in their values. The quality of TVET therefore, depends on how well it aligns with the values and interests of these stakeholders. The five stakeholders are parents, students, teachers, policy makers, and work place training supervisors. The 9 attributes are employer appreciation of students, graduation rate, obtained computer skills of students, mentoring hours in workplace learning/Students Industrial Work Experience Scheme (SIWES), challenge, structure, students’ appreciation of teachers, schooling hours, and attention to civic education. 346 respondents (comprising Parents, Students, Teachers, Policy Makers, and Workplace Training Supervisors) were repeatedly asked to rank a set of 4 programs, each with a specific value on the nine quality indicators. Conjoint analysis was used to obtain the values that the stakeholders assigned to the 9 attributes when evaluating the quality of TVET programs. Rank-ordered logistic regression was the statistical/tool used for ranking the respondents values assign to the attributes. The similarities and diversity in values and interests of the different stakeholders will be of use by both Nigerian government and TVET colleges, to improve the overall quality of education and the match between vocational programs and their stakeholders simultaneous evaluation and combination of information in product attributes. Such approach models the decision environment by confronting a respondent with choices that are close to real-life choices. Therefore, it is more realistically than traditional survey methods.

Keywords: TVET, vignette study, conjoint analysis, quality perception, educational stakeholders

Procedia PDF Downloads 75
1623 Additive Weibull Model Using Warranty Claim and Finite Element Analysis Fatigue Analysis

Authors: Kanchan Mondal, Dasharath Koulage, Dattatray Manerikar, Asmita Ghate

Abstract:

This paper presents an additive reliability model using warranty data and Finite Element Analysis (FEA) data. Warranty data for any product gives insight to its underlying issues. This is often used by Reliability Engineers to build prediction model to forecast failure rate of parts. But there is one major limitation in using warranty data for prediction. Warranty periods constitute only a small fraction of total lifetime of a product, most of the time it covers only the infant mortality and useful life zone of a bathtub curve. Predicting with warranty data alone in these cases is not generally provide results with desired accuracy. Failure rate of a mechanical part is driven by random issues initially and wear-out or usage related issues at later stages of the lifetime. For better predictability of failure rate, one need to explore the failure rate behavior at wear out zone of a bathtub curve. Due to cost and time constraints, it is not always possible to test samples till failure, but FEA-Fatigue analysis can provide the failure rate behavior of a part much beyond warranty period in a quicker time and at lesser cost. In this work, the authors proposed an Additive Weibull Model, which make use of both warranty and FEA fatigue analysis data for predicting failure rates. It involves modeling of two data sets of a part, one with existing warranty claims and other with fatigue life data. Hazard rate base Weibull estimation has been used for the modeling the warranty data whereas S-N curved based Weibull parameter estimation is used for FEA data. Two separate Weibull models’ parameters are estimated and combined to form the proposed Additive Weibull Model for prediction.

Keywords: bathtub curve, fatigue, FEA, reliability, warranty, Weibull

Procedia PDF Downloads 66
1622 Allied Health Students Health-Related Quality of Life and Its Musculoskeletal and Mental Stress Predictors

Authors: Khader A. Almhdawi, Saddam F. Kanaan

Abstract:

Background: Allied health (AH) students, including rehabilitation sciences students, are subjected to significant levels of physical and mental stressors, which could affect their education. This study aimed to study physical and mental of Health-related Quality of Life (HR-QoL) levels along with their predictors among students of nine AH majors. Methods: Students filled validated anonymous surveys covering demographics and life style, Nordic Musculoskeletal Questionnaire, 12-item Short-Form Health Survey (SF-12), and Depression Anxiety Stress Scale (DASS- 42). SF-12 Mental (MCS) and Physical (PCS) summary scores were compared between academic majors and gender. Multiple linear regression models were conducted to examine potential predictors of PCS and MCS scores. Results: 838 students (77.4% females) participated in this study. Participants’ PCS mean score was 45.64±7.93 and found statistically different between the nine academic majors (P < 0.001). Additionally, participants’’ MCS mean score was 39.45±10.86 and significantly greater in males (P < 0.001). Significant PCS scores predictors included hip and upper back musculoskeletal pain, anxiety score, diet self-evaluation, and GPA. Finally, MCS scores were statistically associated with neck musculoskeletal pain, stress score, depression score, number of weekly clinical training hours, gender, university year, GPA, sleep quality self-evaluation, and diet self-evaluation. Conclusion: Clinical educators of AH need to account for students’ low levels of HR-QoL and their academic-related, health-related, and lifestyle-related associated factors. More studies are recommended to investigate the progression of HR-QoL throughout university years and to create effective interventions to improve HR-QoL among healthcare students.

Keywords: medical education, quality of life, stress, anxiety, depression

Procedia PDF Downloads 124
1621 Transit-Oriented Development as a Tool for Building Social Capital

Authors: Suneet Jagdev

Abstract:

Rapid urbanization has resulted in informal settlements on the periphery of nearly all big cities in the developing world due to lack of affordable housing options in the city. Residents of these communities have to travel long distances to get to work or search for jobs in these cities, and women, children and elderly people are excluded from urban opportunities. Affordable and safe public transport facilities can help them expand their possibilities. The aim of this research is to identify social capital as another important element of livable cities that can be protected and nurtured through transit-oriented development, as a tool to provide real resources that can help these transit-oriented communities become self-sustainable. Social capital has been referred to the collective value of all social networks and the inclinations that arise from these networks to do things for each other. It is one of the key component responsible to build and maintain democracy. Public spaces, pedestrian amenities and social equity are the other essential part of Transit Oriented Development models that will be analyzed in this research. The data has been collected through the analysis of several case studies, the urban design strategies implemented and their impact on the perception and on the community´s experience, and, finally, how these focused on the social capital. Case studies have been evaluated on several metrics, namely ecological, financial, energy consumption, etc. A questionnaire and other tools were designed to collect data to analyze the research objective and reflect the dimension of social capital. The results of the questionnaire indicated that almost all the participants have a positive attitude towards this dimensions of building a social capital with the aid of transit-oriented development. Statistical data of the identified key motivators against against demographic characteristics have been generated based on the case studies used for the paper. The findings suggested that there is a direct relation between urbanization, transit-oriented developments, and social capital.

Keywords: better opportunities, low-income settlements, social capital, social inclusion, transit oriented development

Procedia PDF Downloads 328
1620 Hansen Solubility Parameter from Surface Measurements

Authors: Neveen AlQasas, Daniel Johnson

Abstract:

Membranes for water treatment are an established technology that attracts great attention due to its simplicity and cost effectiveness. However, membranes in operation suffer from the adverse effect of membrane fouling. Bio-fouling is a phenomenon that occurs at the water-membrane interface, and is a dynamic process that is initiated by the adsorption of dissolved organic material, including biomacromolecules, on the membrane surface. After initiation, attachment of microorganisms occurs, followed by biofilm growth. The biofilm blocks the pores of the membrane and consequently results in reducing the water flux. Moreover, the presence of a fouling layer can have a substantial impact on the membrane separation properties. Understanding the mechanism of the initiation phase of biofouling is a key point in eliminating the biofouling on membrane surfaces. The adhesion and attachment of different fouling materials is affected by the surface properties of the membrane materials. Therefore, surface properties of different polymeric materials had been studied in terms of their surface energies and Hansen solubility parameters (HSP). The difference between the combined HSP parameters (HSP distance) allows prediction of the affinity of two materials to each other. The possibilities of measuring the HSP of different polymer films via surface measurements, such as contact angle has been thoroughly investigated. Knowing the HSP of a membrane material and the HSP of a specific foulant, facilitate the estimation of the HSP distance between the two, and therefore the strength of attachment to the surface. Contact angle measurements using fourteen different solvents on five different polymeric films were carried out using the sessile drop method. Solvents were ranked as good or bad solvents using different ranking method and ranking was used to calculate the HSP of each polymeric film. Results clearly indicate the absence of a direct relation between contact angle values of each film and the HSP distance between each polymer film and the solvents used. Therefore, estimating HSP via contact angle alone is not sufficient. However, it was found if the surface tensions and viscosities of the used solvents are taken in to the account in the analysis of the contact angle values, a prediction of the HSP from contact angle measurements is possible. This was carried out via training of a neural network model. The trained neural network model has three inputs, contact angle value, surface tension and viscosity of solvent used. The model is able to predict the HSP distance between the used solvent and the tested polymer (material). The HSP distance prediction is further used to estimate the total and individual HSP parameters of each tested material. The results showed an accuracy of about 90% for all the five studied films

Keywords: surface characterization, hansen solubility parameter estimation, contact angle measurements, artificial neural network model, surface measurements

Procedia PDF Downloads 87
1619 Sensitivity Analysis and Solitary Wave Solutions to the (2+1)-Dimensional Boussinesq Equation in Dispersive Media

Authors: Naila Nasreen, Dianchen Lu

Abstract:

This paper explores the dynamical behavior of the (2+1)-dimensional Boussinesq equation, which is a nonlinear water wave equation and is used to model wave packets in dispersive media with weak nonlinearity. This equation depicts how long wave made in shallow water propagates due to the influence of gravity. The (2+1)- dimensional Boussinesq equation combines the two-way propagation of the classical Boussinesq equation with the dependence on a second spatial variable, as that occurs in the two-dimensional Kadomstev- Petviashvili equation. This equation provides a description of head- on collision of oblique waves and it possesses some interesting properties. The governing model is discussed by the assistance of Ricatti equation mapping method, a relatively integration tool. The solutions have been extracted in different forms the solitary wave solutions as well as hyperbolic and periodic solutions. Moreover, the sensitivity analysis is demonstrated for the designed dynamical structural system’s wave profiles, where the soliton wave velocity and wave number parameters regulate the water wave singularity. In addition to being helpful for elucidating nonlinear partial differential equations, the method in use gives previously extracted solutions and extracts fresh exact solutions. Assuming the right values for the parameters, various graph in different shapes are sketched to provide information about the visual format of the earned results. This paper’s findings support the efficacy of the approach taken in enhancing nonlinear dynamical behavior. We believe this research will be of interest to a wide variety of engineers that work with engineering models. Findings show the effectiveness simplicity, and generalizability of the chosen computational approach, even when applied to complicated systems in a variety of fields, especially in ocean engineering.

Keywords: (2+1)-dimensional Boussinesq equation, solitary wave solutions, Ricatti equation mapping approach, nonlinear phenomena

Procedia PDF Downloads 92
1618 Changing Pedagogy from Segregation to Inclusion: A Phenomenological Case Study of Ten Special Educators

Authors: Monique Somma

Abstract:

As special education service delivery models are shifting in order to better meet the academic and social rights of students with exceptionalities, teaching practices must also align with these goals. This phenomenological case study explored the change experiences of special education teachers who have transitioned from teaching in a self-contained special education class to an inclusive class setting. Ten special educators who had recently changed their teaching roles to inclusive classrooms, completed surveys and participated in a focus group. Of the original ten educators, five chose to participate further in individual interviews. Data collected from the three methods was examined and compared for common themes. Emergent themes included, support and training, attitudes and perceptions, inclusive practice, growth and change, and teaching practice. The overall findings indicated that despite their special education training, these educators were challenged by their own beliefs and expectations, the attitudes of others and systematic barriers in the education system. They were equally surprised by the overall social and academic performance of students with exceptionalities in inclusive classes, as well as, the social and academic growth and development of the other students in the class. Over the course of their careers, they all identified an overall personal pedagogical shift, to some degree or another, which they contributed to the successful experiences of inclusion they had. They also recognized that collaborating with others was essential for inclusion to be successful. The findings from this study suggest several implications for professional development and training needs specific to special education teachers moving into inclusive settings. Maximizing the skills of teachers with special education experience in a Professional Learning Community (PLC) and mentorship opportunities would be beneficial to all staffs working toward creating inclusive classrooms and schools.

Keywords: attitudes and perceptions, inclusion of students with exceptionalities, special education teachers, teacher change

Procedia PDF Downloads 228
1617 Toxicity, Analgesic, and Anti-Pyretic Activities of Methanolic Extract from Hyoscyamus albus’ Leaves in Albinos Rats

Authors: Yahia Massinissa, Afaf Benhouda, Mouloud Yahia

Abstract:

Objective: The aim of this study was to investigate the toxicity; analgesic and anti-pyretic properties of standardized HA methanolic extract (HAMeOH) in vivo. Methods: The acute toxicity study was performed on rats while adopting the OECD-420 Guidelines (fixed dose procedure). Assessment of analgesic activity was performed in rats with two analgesic models. One was acetic acid induced writhing response and the other formalin-induced paw licking. The anti-pyretic effect was tested by Brewer’s yeast induced fever in rats. Results: For the acute toxicity test, the higher dose administration of 2000 mg/kg bw. of H.albus did not produce any toxic signs or deaths in rats. There were no significant differences (p>0.05) in the body and organ weights between control and treated groups. The (LD50) of 'H. albus' was higher than 2000 g/kg bw. In subacute toxicity study, no mortality and toxic signs were observed with the doses of 100 and 200 mg/kg bw. of extracts of for 28 consecutive days. These analgesic experimental results indicated that HAMeOH (100 mg/kg and 200 mg/kg) decreased the acetic acid-induced writhing responses and HAMeOH (100 mg/kg and 200 mg/kg) decreased the licking time in the second phase of the formalin test. Moreover, in the model of yeast-induced elevation of the body temperature HAMeOH showed dose-dependent lowering of the body temperature up to 3h at both the doses these results obtained, were comparable to that of paracetamol. Conclusion: The present findings indicate that the leaves of Hyoscyamus albus L. possess potent analgesic and antipyretic activity.

Keywords: Hyoscyamus albus, Umbilicus rupestris, secondary metabolites, NMR with protons, pharmacobiologic activities, methanolic extract

Procedia PDF Downloads 418
1616 The Effect of Recycling on Price Volatility of Critical Metals in the EU (2010-2019): An Application of Multivariate GARCH Family Models

Authors: Marc Evenst Jn Jacques, Sophie Bernard

Abstract:

Electrical and electronic applications, as well as rechargeable batteries, are common in any economy. They also contain a number of important and valuable metals. It is critical to investigate the impact of these new materials or volume sources on the metal market dynamics. This paper investigates the impact of responsible recycling within the European region on metal price volatility. As far as we know, no empirical studies have been conducted to assess the role of metal recycling in metal market price volatility. The goal of this paper is to test the claim that metal recycling helps to cushion price volatility. A set of circular economy indicators/variables, namely, 1) annual total trade values of recycled metals, 2) annual volume of scrap traded and 3) circular material use rate, and 4) information about recycling, are used to estimate the volatility of monthly spot prices of regular metals. A combination of the GARCH-MIDAS model for mixed frequency data sampling and a simple GARCH (1,1) model for the same frequency variables was adopted to examine the potential links between each variable and price volatility. We discovered that from 2010 to 2019, except for Nickel, scrap consumption (Millions of tons), Scrap Trade Values, and Recycled Material use rate had no significant impact on the price volatility of standard metals (Aluminum, Lead) and precious metals (Gold and Platinum). Worldwide interest in recycling has no impact on returns or volatility. Specific interest in metal recycling did have a link to the mean return equation for Aluminum, Gold and to the volatility equation for lead and Nickel.

Keywords: recycling, circular economy, price volatility, GARCH, mixed data sampling

Procedia PDF Downloads 53
1615 The Choosing the Right Projects With Multi-Criteria Decision Making to Ensure the Sustainability of the Projects

Authors: Saniye Çeşmecioğlu

Abstract:

The importance of project sustainability and success has become increasingly significant due to the proliferation of external environmental factors that have decreased project resistance in contemporary times. The primary approach to forestall the failure of projects is to ensure their long-term viability through the strategic selection of projects as creating judicious project selection framework within the organization. Decision-makers require precise decision contexts (models) that conform to the company's business objectives and sustainability expectations during the project selection process. The establishment of a rational model for project selection enables organizations to create a distinctive and objective framework for the selection process. Additionally, for the optimal implementation of this decision-making model, it is crucial to establish a Project Management Office (PMO) team and Project Steering Committee within the organizational structure to oversee the framework. These teams enable updating project selection criteria and weights in response to changing conditions, ensuring alignment with the company's business goals, and facilitating the selection of potentially viable projects. This paper presents a multi-criteria decision model for selecting project sustainability and project success criteria that ensures timely project completion and retention. The model was developed using MACBETH (Measuring Attractiveness by a Categorical Based Evaluation Technique) and was based on broadcaster companies’ expectations. The ultimate results of this study provide a model that endorses the process of selecting the appropriate project objectively by utilizing project selection and sustainability criteria along with their respective weights for organizations. Additionally, the study offers suggestions that may ascertain helpful in future endeavors.

Keywords: project portfolio management, project selection, multi-criteria decision making, project sustainability and success criteria, MACBETH

Procedia PDF Downloads 57
1614 Peptidoglycan Vaccine-On-Chip against a Lipopolysaccharide-Induced Experimental Sepsis Model

Authors: Katerina Bakela, Ioanna Zerva, Irene Athanassakis

Abstract:

Lipopolysaccharide (LPS) is commonly used in murine sepsis models, which are largely associated with immunosuppression (incretion of MDSCs cells and Tregs, imbalance of inflammatory/anti-inflammatory cytokines) and collapse of the immune system. After adapting the LPS treatment to the needs of locally bred BALB/c mice, the present study explored the protective role of Micrococcus luteus peptidoglycan (PG) pre-activated vaccine-on chip in endotoxemia. The established protocol consisted of five daily intraperitoneal injections of 0.2mg/g LPS. Such protocol allowed longer survival, necessary in the prospect of the therapeutic treatment application. The so-called vaccine-on-chip consists of a 3-dimensional laser micro-texture Si-scaffold loaded with BALB/c mouse macrophages and activated in vitro with 1μg/ml PG, which exert its action upon subcutaneous implantation. The LPS treatment significantly decreased CD4+, CD8+, CD3z+, and CD19+ cells, while increasing myeloid-derived suppressor cells (MDSCs), CD25+, and Foxp3+ cells. These results were accompanied by increased arginase-1 activity in spleen cell lysates and production of IL-6, TNF-a, and IL-18 while acquiring severe sepsis phenotype as defined by the murine sepsis scoring. The in vivo application of PG pre-activated vaccine-on chip significantly decreased the percent of CD11b+, Gr1+, CD25+, Foxp3+ cells, and arginase-1 activity in the spleen of LPS-treated animals, while decreasing IL-6 and TNF-a in the serum, allowing survival to all animals tested and rescuing the severity of sepsis phenotype. In conclusion, these results reveal a promising mode of action of PG pre-activated vaccine-on chip in LPS endotoxemia, strengthening; thus, the use of treatment is septic patients.

Keywords: myeloid-derived suppressor cells, peptidoglycan, sepsis, Si-scaffolds

Procedia PDF Downloads 131
1613 The Effects of Impact Forces and Kinematics of Two Different Stance Position at Straight Punch Techniques in Boxing

Authors: Bergun Meric Bingul, Cigdem Bulgan, Ozlem Tore, Mensure Aydin, Erdal Bal

Abstract:

The aim of the study was to compare the effects of impact forces and some kinematic parameters with two different straight punch stance positions in boxing. 9 elite boxing athletes from the Turkish National Team (mean age± SD 19.33±2.11 years, mean height 174.22±3.79 cm, mean weight 66.0±6.62 kg) participated in this study as voluntarily. Boxing athletes performed one trial in straight punch technique for each two different stance positions (orthodox and southpaw stances) at sandbag. The trials were recorded at a frequency of 120Hz using eight synchronized high-speed cameras (Oqus 7+), which were placed, approximately at right- angles to one another. The three-dimensional motion analysis was performed with a Motion Capture System (Qualisys, Sweden). Data was transferred to Windows-based data acquisition software, which was QTM (Qualisys Track Manager). 11 segment models were used for determination of the kinematic variables (Calf, leg, punch, upperarm, lowerarm, trunk). Also, the sandbag was markered for calculation of the impact forces. Wand calibration method (with T stick) was used for field calibration. The mean velocity and acceleration of the punch; mean acceleration of the sandbag and angles of the trunk, shoulder, hip and knee were calculated. Stance differences’ data were compared with Wilcoxon test for using SPSS 20.0 program. According to the results, there were statistically significant differences found in trunk angle on the sagittal plane (yz) (p<0.05). There was a significant difference also found in sandbag acceleration and impact forces between stance positions (p < 0.05). Boxing athletes achieved more impact forces and accelerations in orthodox stance position. It is recommended that to use an orthodox stance instead of southpaw stance in straight punch technique especially for creating more impact forces.

Keywords: boxing, impact force, kinematics, straight punch, orthodox, southpaw

Procedia PDF Downloads 319
1612 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances

Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim

Abstract:

This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.

Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering

Procedia PDF Downloads 182