Search results for: temporal%20changes
218 Empirical Orthogonal Functions Analysis of Hydrophysical Characteristics in the Shira Lake in Southern Siberia
Authors: Olga S. Volodko, Lidiya A. Kompaniets, Ludmila V. Gavrilova
Abstract:
The method of empirical orthogonal functions is the method of data analysis with a complex spatial-temporal structure. This method allows us to decompose the data into a finite number of modes determined by empirically finding the eigenfunctions of data correlation matrix. The modes have different scales and can be associated with various physical processes. The empirical orthogonal function method has been widely used for the analysis of hydrophysical characteristics, for example, the analysis of sea surface temperatures in the Western North Atlantic, ocean surface currents in the North Carolina, the study of tropical wave disturbances etc. The method used in this study has been applied to the analysis of temperature and velocity measurements in saline Lake Shira (Southern Siberia, Russia). Shira is a shallow lake with the maximum depth of 25 m. The lake Shira can be considered as a closed water site because of it has one small river providing inflow and but it has no outflows. The main factor that causes the motion of fluid is variable wind flows. In summer the lake is strongly stratified by temperature and saline. Long-term measurements of the temperatures and currents were conducted at several points during summer 2014-2015. The temperature has been measured with an accuracy of 0.1 ºC. The data were analyzed using the empirical orthogonal function method in the real version. The first empirical eigenmode accounts for 70-80 % of the energy and can be interpreted as temperature distribution with a thermocline. A thermocline is a thermal layer where the temperature decreases rapidly from the mixed upper layer of the lake to much colder deep water. The higher order modes can be interpreted as oscillations induced by internal waves. The currents measurements were recorded using Acoustic Doppler Current Profilers 600 kHz and 1200 kHz. The data were analyzed using the empirical orthogonal function method in the complex version. The first empirical eigenmode accounts for about 40 % of the energy and corresponds to the Ekman spiral occurring in the case of a stationary homogeneous fluid. Other modes describe the effects associated with the stratification of fluids. The second and next empirical eigenmodes were associated with dynamical modes. These modes were obtained for a simplified model of inhomogeneous three-level fluid at a water site with a flat bottom.Keywords: Ekman spiral, empirical orthogonal functions, data analysis, stratified fluid, thermocline
Procedia PDF Downloads 134217 Algorithm for Modelling Land Surface Temperature and Land Cover Classification and Their Interaction
Authors: Jigg Pelayo, Ricardo Villar, Einstine Opiso
Abstract:
The rampant and unintended spread of urban areas resulted in increasing artificial component features in the land cover types of the countryside and bringing forth the urban heat island (UHI). This paved the way to wide range of negative influences on the human health and environment which commonly relates to air pollution, drought, higher energy demand, and water shortage. Land cover type also plays a relevant role in the process of understanding the interaction between ground surfaces with the local temperature. At the moment, the depiction of the land surface temperature (LST) at city/municipality scale particularly in certain areas of Misamis Oriental, Philippines is inadequate as support to efficient mitigations and adaptations of the surface urban heat island (SUHI). Thus, this study purposely attempts to provide application on the Landsat 8 satellite data and low density Light Detection and Ranging (LiDAR) products in mapping out quality automated LST model and crop-level land cover classification in a local scale, through theoretical and algorithm based approach utilizing the principle of data analysis subjected to multi-dimensional image object model. The paper also aims to explore the relationship between the derived LST and land cover classification. The results of the presented model showed the ability of comprehensive data analysis and GIS functionalities with the integration of object-based image analysis (OBIA) approach on automating complex maps production processes with considerable efficiency and high accuracy. The findings may potentially lead to expanded investigation of temporal dynamics of land surface UHI. It is worthwhile to note that the environmental significance of these interactions through combined application of remote sensing, geographic information tools, mathematical morphology and data analysis can provide microclimate perception, awareness and improved decision-making for land use planning and characterization at local and neighborhood scale. As a result, it can aid in facilitating problem identification, support mitigations and adaptations more efficiently.Keywords: LiDAR, OBIA, remote sensing, local scale
Procedia PDF Downloads 281216 Analyzing the Impact of Local and International Artists in Creating Cultural Identity through Public Art: Case Study of Chicago Public Policies
Authors: Kaesha M. Freyaldenhoven
Abstract:
Chicago is a city in the United States whose cultural identity is largely shaped by public art pieces. Quintessential public works created by internationally renown artists – such as Anish Kapoor’s Cloud Gate in Millennium Park and 'The Picasso' in Daley Plaza – have historically contributed to developing a shared sense of community. In 2017, the city implemented a policy titled 50x50 Neighborhood Arts Project under the Chicago Public Art Plan. The policy promotes investments in contemporary public art to elevate neighborhood cultural assets and create a sense of place. Exclusively community-based artists were commissioned to accomplish the mission of the policy. Administrators felt only local artists would be capable of capturing the true essence of a neighborhood through art. This paper discusses the relationship between the public art and the culture of its respective neighborhood through close examination of aesthetic formal properties and social significance. Research compares the role of international artists with the role of local artists in cultivating the identity of a city through site-specific artworks in Chicago. Methodology unites theoretical research on understanding art and its function in the public space with empirical research on Chicago-based works. Theoretical frameworks provide an art historical foundation to explore the manner in which physical properties convey meaning through the work itself and its placement in an urban setting. Empirical research that examines policy documentation and press announcements released by the Department of Cultural Affairs and Special Events investigates project selection processes pertaining to the artists and neighborhoods. Ethnographies and interviews of individuals from diverse social segments in contemporary Chicago society measure impacts of the works on respective populations. Findings demonstrate works created by local artists activate neighborhoods and inculcate a sense of pride among community residents. Works created by international artists garner widespread media attention that frames the city’s cultural identity across temporal and geographic zones. This research can be utilized to inform future cultural policies pertaining to the commission of public art.Keywords: Chicago, cultural policy, public art, urban art
Procedia PDF Downloads 127215 Analyzing Growth Trends of the Built Area in the Precincts of Various Types of Tourist Attractions in India: 2D and 3D Analysis
Authors: Yarra Sulina, Nunna Tagore Sai Priya, Ankhi Banerjee
Abstract:
With the rapid growth in tourist arrivals, there has been a huge demand for the growth of infrastructure in the destinations. With the increasing preference of tourists to stay near attractions, there has been a considerable change in the land use around tourist sites. However, with the inclusion of certain regulations and guidelines provided by the authorities based on the nature of tourism activity and geographical constraints, the pattern of growth of built form is different for various tourist sites. Therefore, this study explores the patterns of growth of built-up for a decade from 2009 to 2019 through two-dimensional and three-dimensional analysis. Land use maps are created through supervised classification of satellite images obtained from LANDSAT 4-5 and LANDSAT 8 for 2009 and 2019, respectively. The overall expansion of the built-up area in the region is analyzed in relation to the distance from the city's geographical center and the tourism-related growth regions are identified which are influenced by the proximity of tourist attractions. The primary tourist sites of various destinations with different geographical characteristics and tourism activities, that have undergone a significant increase in built-up area and are occupied with tourism-related infrastructure are selected for further study. Proximity analysis of the tourism-related growth sites is carried out to delineate the influence zone of the tourist site in a destination. Further, a temporal analysis of volumetric growth of built form is carried out to understand the morphology of the tourist precincts over time. The Digital Surface Model (DSM) and Digital Terrain Model (DTM) are used to extract the building footprints along with building height. Factors such as building height, and building density are evaluated to understand the patterns of three-dimensional growth of the built area in the region. The study also explores the underlying reasons for such changes in built form around various tourist sites and predicts the impact of such growth patterns in the region. The building height and building density around tourist site creates a huge impact on the appeal of the destination. The surroundings that are incompatible with the theme of the tourist site have a negative impact on the attractiveness of the destination that leads to negative feedback by the tourists, which is not a sustainable form of development. Therefore, proper spatial measures are necessary in terms of area and volume of the built environment for a healthy and sustainable environment around the tourist sites in the destination.Keywords: sustainable tourism, growth patterns, land-use changes, 3-dimensional analysis of built-up area
Procedia PDF Downloads 77214 Personality Moderates the Relation Between Mother´s Emotional Intelligence and Young Children´s Emotion Situation Knowledge
Authors: Natalia Alonso-Alberca, Ana I. Vergara
Abstract:
From the very first years of their life, children are confronted with situations in which they need to deal with emotions. The family provides the first emotional experiences, and it is in the family context that children usually take their first steps towards acquiring emotion knowledge. Parents play a key role in this important task, helping their children develop emotional skills that they will need in challenging situations throughout their lives. Specifically, mothers are models imitated by their children. They create specific spatial and temporal contexts in which children learn about emotions, their causes, consequences, and complexity. This occurs not only through what mothers say or do directly to the child. Rather, it occurs, to a large extent, through the example that they set using their own emotional skills. The aim of the current study was to analyze how maternal abilities to perceive and to manage emotions influence children’s emotion knowledge, specifically, their emotion situation knowledge, taking into account the role played by the mother’s personality, the time spent together, and controlling the effect of age, sex and the child’s verbal abilities. Participants were 153 children from 4 schools in Spain, and their mothers. Children (41.8% girls)age range was 35 - 72 months. Mothers (N = 140) age (M = 38.7; R = 27-49). Twelve mothers had more than one child participating in the study. Main variables were the child´s emotion situation knowledge (ESK), measured by the Emotion Matching Task (EMT), and receptive language, using the Picture Vocabulary Test. Also, their mothers´ Emotional Intelligence (EI), through the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT) and personality, with The Big Five Inventory were analyzed. The results showed that the predictive power of maternal emotional skills on ESK was moderated by the mother’s personality, affecting both the direction and size of the relationships detected: low neuroticism and low openness to experience lead to a positive influence of maternal EI on children’s ESK, while high levels in these personality dimensions resulted in a negative influence on child´s ESK. The time that the mother and the child spend together was revealed as a positive predictor of this EK, while it did not moderate the influence of the mother's EI on child’s ESK. In light of the results, we can infer that maternal EI is linked to children’s emotional skills, though high level of maternal EI does not necessarily predict a greater degree of emotionknowledge in children, which seems rather to depend on specific personality profiles. The results of the current study indicate that a good level of maternal EI does not guarantee that children will learn the emotional skills that foster prosocial adaptation. Rather, EI must be accompanied by certain psychological characteristics (personality traits in this case).Keywords: emotional intelligence, emotion situation knowledge, mothers, personality, young children
Procedia PDF Downloads 132213 Long-Term Economic-Ecological Assessment of Optimal Local Heat-Generating Technologies for the German Unrefurbished Residential Building Stock on the Quarter Level
Authors: M. A. Spielmann, L. Schebek
Abstract:
In order to reach the long-term national climate goals of the German government for the building sector, substantial energetic measures have to be executed. Historically, those measures were primarily energetic efficiency measures at the buildings’ shells. Advanced technologies for the on-site generation of heat (or other types of energy) often are not feasible at this small spatial scale of a single building. Therefore, the present approach uses the spatially larger dimension of a quarter. The main focus of the present paper is the long-term economic-ecological assessment of available decentralized heat-generating (CHP power plants and electrical heat pumps) technologies at the quarter level for the German unrefurbished residential buildings. Three distinct terms have to be described methodologically: i) Quarter approach, ii) Economic assessment, iii) Ecological assessment. The quarter approach is used to enable synergies and scaling effects over a single-building. For the present study, generic quarters that are differentiated according to significant parameters concerning their heat demand are used. The core differentiation of those quarters is made by the construction time period of the buildings. The economic assessment as the second crucial parameter is executed with the following structure: Full costs are quantized for each technology combination and quarter. The investment costs are analyzed on an annual basis and are modeled with the acquisition of debt. Annuity loans are assumed. Consequently, for each generic quarter, an optimal technology combination for decentralized heat generation is provided in each year of the temporal boundaries (2016-2050). The ecological assessment elaborates for each technology combination and each quarter a Life Cycle assessment. The measured impact category hereby is GWP 100. The technology combinations for heat production can be therefore compared against each other concerning their long-term climatic impacts. Core results of the approach can be differentiated to an economic and ecological dimension. With an annual resolution, the investment and running costs of different energetic technology combinations are quantified. For each quarter an optimal technology combination for local heat supply and/or energetic refurbishment of the buildings within the quarter is provided. Coherently to the economic assessment, the climatic impacts of the technology combinations are quantized and compared against each other.Keywords: building sector, economic-ecological assessment, heat, LCA, quarter level
Procedia PDF Downloads 223212 Kinematical Analysis of Normal Children in Different Age Groups during Gait
Authors: Nawaf Al Khashram, Graham Arnold, Weijie Wang
Abstract:
Background—Gait classifying allows clinicians to differentiate gait patterns into clinically important categories that help in clinical decision making. Reliable comparison of gait data between normal and patients requires knowledge of the gait parameters of normal children's specific age group. However, there is still a lack of the gait database for normal children of different ages. Objectives—The aim of this study is to investigate the kinematics of the lower limb joints during gait for normal children in different age groups. Methods—Fifty-three normal children (34 boys, 19 girls) were recruited in this study. All the children were aged between 5 to 16 years old. Age groups were defined as three types: young child aged (5-7), child (8-11), and adolescent (12-16). When a participant agreed to take part in the project, their parents signed a consent form. Vicon® motion capture system was used to collect gait data. Participants were asked to walk at their comfortable speed along a 10-meter walkway. Each participant walked up to 20 trials. Three good trials were analyzed using the Vicon Plug-in-Gait model to obtain parameters of the gait, e.g., walking speed, cadence, stride length, and joint parameters, e.g. joint angle, force, moments, etc. Moreover, each gait cycle was divided into 8 phases. The range of motion (ROM) angle of pelvis, hip, knee, and ankle joints in three planes of both limbs were calculated using an in-house program. Results—The temporal-spatial variables of three age groups of normal children were compared between each other; it was found that there was a significant difference (p < 0.05) between the groups. The step length and walking speed were gradually increasing from young child to adolescent, while cadence was gradually decreasing from young child to adolescent group. The mean and standard deviation (SD) of the step length of young child, child and adolescent groups were 0.502 ± 0.067 m, 0.566 ± 0.061 m and 0.672 ± 0.053 m, respectively. The mean and SD of the cadence of the young child, child and adolescent groups were 140.11±15.79 step/min, 129±11.84 step/min, and a 115.96±6.47 step/min, respectively. Moreover, it was observed that there were significant differences in kinematic parameters, either whole gait cycle or each phase. For example, RoM of knee angle in the sagittal plane in whole cycle of young child group is (65.03±0.52 deg) larger than child group (63.47±0.47 deg). Conclusion—Our result showed that there are significant differences between each age group in the gait phases and thus children walking performance changes with ages. Therefore, it is important for the clinician to consider age group when analyzing the patients with lower limb disorders before any clinical treatment.Keywords: age group, gait analysis, kinematics, normal children
Procedia PDF Downloads 118211 Alveolar Ridge Preservation in Post-extraction Sockets Using Concentrated Growth Factors: A Split-Mouth, Randomized, Controlled Clinical Trial
Authors: Sadam Elayah
Abstract:
Background: One of the most critical competencies in advanced dentistry is alveolar ridge preservation after exodontia. The aim of this clinical trial was to assess the impact of autologous concentrated growth factor (CGF) as a socket-filling material and its ridge preservation properties following the lower third molar extraction. Materials and Methods: A total of 60 sides of 30 participants who had completely symmetrical bilateral impacted lower third molars were enrolled. The short-term outcome variables were wound healing, swelling and pain, clinically assessed at different time intervals (1st, 3rd & 7th days). While the long-term outcome variables were bone height & width, bone density and socket surface area in the coronal section. Cone beam computed tomography images were obtained immediately after surgery and three months after surgery as a temporal measure. Randomization was achieved by opaque, sealed envelopes. Follow-up data were compared to baseline using Paired & Unpaired t-tests. Results: The wound healing index was significantly better in the test sides (P =0.001). Regarding the facial swelling, the test sides had significantly fewer values than the control sides, particularly on the 1st (1.01±.57 vs 1.55 ±.56) and 3rd days (1.42±0.8 vs 2.63±1.2) postoperatively. Nonetheless, the swelling disappeared within the 7th day on both sides. The pain scores of the visual analog scale were not a statistically significant difference between both sides on the 1st day; meanwhile, the pain scores were significantly lower on the test sides compared with the control sides, especially on the 3rd (P=0.001) and 7th days (P˂0.001) postoperatively. Regarding long-term outcomes, CGF sites had higher values in height and width when compared to Control sites (Buccal wall 32.9±3.5 vs 29.4±4.3 mm, Lingual wall 25.4±3.5 vs 23.1±4 mm, and Alveolar bone width 21.07±1.55vs19.53±1.90 mm) respectively. Bone density showed significantly higher values in CGF sites than in control sites (Coronal half 200±127.3 vs -84.1±121.3, Apical half 406.5±103 vs 64.2±158.6) respectively. There was a significant difference between both sites in reducing periodontal pockets. Conclusion: CGF application following surgical extraction provides an easy, low-cost, and efficient option for alveolar ridge preservation. Thus, dentists may encourage using CGF during dental extractions, particularly when alveolar ridge preservation is required.Keywords: platelet, extraction, impacted teeth, alveolar ridge, regeneration, CGF
Procedia PDF Downloads 65210 The Effect of Emotional Stimuli Related to Body Imbalance in Postural Control and the Phenomenological Experience of Young Healthy Adults
Authors: David Martinez-Pernia, Alvaro Rivera-Rei, Alejandro Troncoso, Gonzalo Forno, Andrea Slachevsky, David Huepe, Victoria Silva-Mack, Jorge Calderon, Mayte Vergara, Valentina Carrera
Abstract:
Background: Recent theories in the field of emotions have taken the relevance of motor control beyond a system related to personal autonomy (walking, running, grooming), and integrate it into the emotional dimension. However, to our best knowledge, there are no studies that specifically investigate how emotional stimuli related to motor control modify emotional states in terms of postural control and phenomenological experience. Objective: The main aim of this work is to investigate the emotions produced by stimuli of bodily imbalance (neutral, pleasant and unpleasant) in the postural control and the phenomenological experience of young, healthy adults. Methodology: 46 healthy young people are shown emotional videos (neutral, pleasant, motor unpleasant, and non-motor unpleasant) related to the body imbalance. During the period of stimulation of each of the videos (60 seconds) the participant is standing on a force platform to collect temporal and spatial data of postural control. In addition, the electrophysiological activity of the heart and electrodermal activity is recorded. In relation to the two unpleasant conditions (motor versus non-motor), a phenomenological interview is carried out to collect the subjective experience of emotion and body perception. Results: Pleasant and unpleasant emotional videos have significant changes with respect to the neutral condition in terms of greater area, higher mean velocity, and greater mean frequency power on the anterior-posterior axis. The results obtained with respect to the electrodermal response was that the pleasurable and unpleasant conditions produced a significant increase in the phasic component with respect to the neutral condition. Regarding the electrophysiology of the heart, no significant change was found in any condition. Phenomenological experiences in the two unpleasant conditions differ in body perception and the emotional meaning of the experience. Conclusion: Emotional stimuli related to bodily imbalance produce changes in postural control, electrodermal activity, and phenomenological experience. This experimental setting could be relevant to be implemented in people with motor disorders (Parkinson, Stroke, TBI) to know how emotions affect motor control.Keywords: body imbalance stimuli, emotion, phenomenological experience, postural control
Procedia PDF Downloads 171209 Modeling of Turbulent Flow for Two-Dimensional Backward-Facing Step Flow
Authors: Alex Fedoseyev
Abstract:
This study investigates a generalized hydrodynamic equation (GHE) simplified model for the simulation of turbulent flow over a two-dimensional backward-facing step (BFS) at Reynolds number Re=132000. The GHE were derived from the generalized Boltzmann equation (GBE). GBE was obtained by first principles from the chain of Bogolubov kinetic equations and considers particles of finite dimensions. The GHE has additional terms, temporal and spatial fluctuations, compared to the Navier-Stokes equations (NSE). These terms have a timescale multiplier τ, and the GHE becomes the NSE when $\tau$ is zero. The nondimensional τ is a product of the Reynolds number and the squared length scale ratio, τ=Re*(l/L)², where l is the apparent Kolmogorov length scale, and L is a hydrodynamic length scale. The BFS flow modeling results obtained by 2D calculations cannot match the experimental data for Re>450. One or two additional equations are required for the turbulence model to be added to the NSE, which typically has two to five parameters to be tuned for specific problems. It is shown that the GHE does not require an additional turbulence model, whereas the turbulent velocity results are in good agreement with the experimental results. A review of several studies on the simulation of flow over the BFS from 1980 to 2023 is provided. Most of these studies used different turbulence models when Re>1000. In this study, the 2D turbulent flow over a BFS with height H=L/3 (where L is the channel height) at Reynolds number Re=132000 was investigated using numerical solutions of the GHE (by a finite-element method) and compared to the solutions from the Navier-Stokes equations, k–ε turbulence model, and experimental results. The comparison included the velocity profiles at X/L=5.33 (near the end of the recirculation zone, available from the experiment), recirculation zone length, and velocity flow field. The mean velocity of NSE was obtained by averaging the solution over the number of time steps. The solution with a standard k −ε model shows a velocity profile at X/L=5.33, which has no backward flow. A standard k−ε model underpredicts the experimental recirculation zone length X/L=7.0∓0.5 by a substantial amount of 20-25%, and a more sophisticated turbulence model is needed for this problem. The obtained data confirm that the GHE results are in good agreement with the experimental results for turbulent flow over two-dimensional BFS. A turbulence model was not required in this case. The computations were stable. The solution time for the GHE is the same or less than that for the NSE and significantly less than that for the NSE with the turbulence model. The proposed approach was limited to 2D and only one Reynolds number. Further work will extend this approach to 3D flow and a higher Re.Keywords: backward-facing step, comparison with experimental data, generalized hydrodynamic equations, separation, reattachment, turbulent flow
Procedia PDF Downloads 59208 Depositional Environment and Diagenetic Alterations, Influences of Facies and Fine Kaolinite Formation Migration on Sandstones’ Reservoir Quality, Sarir Formation, Sirt Basin Libya
Authors: Faraj M. Elkhatri, Hana Ali Allafi
Abstract:
The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. (present day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Ba-sin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly find by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some of fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets, but also small, disaggregated kaolinite platelets derived from the dis-aggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore, but also coat some of the sur-rounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and re-duce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on select-ed minerals observed during the SEM study were obtained using an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats, with limited occlusion by kaolinite.Keywords: por throat, formation damage, porosity lose, solids plugging
Procedia PDF Downloads 56207 A Reduced Ablation Model for Laser Cutting and Laser Drilling
Authors: Torsten Hermanns, Thoufik Al Khawli, Wolfgang Schulz
Abstract:
In laser cutting as well as in long pulsed laser drilling of metals, it can be demonstrated that the ablation shape (the shape of cut faces respectively the hole shape) that is formed approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from the ultrashort pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in laser cutting and long pulse drilling of metals is identified, its underlying mechanism numerically implemented, tested and clearly confirmed by comparison with experimental data. In detail, there now is a model that allows the simulation of the temporal (pulse-resolved) evolution of the hole shape in laser drilling as well as the final (asymptotic) shape of the cut faces in laser cutting. This simulation especially requires much less in the way of resources, such that it can even run on common desktop PCs or laptops. Individual parameters can be adjusted using sliders – the simulation result appears in an adjacent window and changes in real time. This is made possible by an application-specific reduction of the underlying ablation model. Because this reduction dramatically decreases the complexity of calculation, it produces a result much more quickly. This means that the simulation can be carried out directly at the laser machine. Time-intensive experiments can be reduced and set-up processes can be completed much faster. The high speed of simulation also opens up a range of entirely different options, such as metamodeling. Suitable for complex applications with many parameters, metamodeling involves generating high-dimensional data sets with the parameters and several evaluation criteria for process and product quality. These sets can then be used to create individual process maps that show the dependency of individual parameter pairs. This advanced simulation makes it possible to find global and local extreme values through mathematical manipulation. Such simultaneous optimization of multiple parameters is scarcely possible by experimental means. This means that new methods in manufacturing such as self-optimization can be executed much faster. However, the software’s potential does not stop there; time-intensive calculations exist in many areas of industry. In laser welding or laser additive manufacturing, for example, the simulation of thermal induced residual stresses still uses up considerable computing capacity or is even not possible. Transferring the principle of reduced models promises substantial savings there, too.Keywords: asymptotic ablation shape, interactive process simulation, laser drilling, laser cutting, metamodeling, reduced modeling
Procedia PDF Downloads 213206 A Review on Stormwater Harvesting and Reuse
Authors: Fatema Akram, Mohammad G. Rasul, M. Masud K. Khan, M. Sharif I. I. Amir
Abstract:
Australia is a country of some 7,700 million square kilometres with a population of about 22.6 million. At present water security is a major challenge for Australia. In some areas the use of water resources is approaching and in some parts it is exceeding the limits of sustainability. A focal point of proposed national water conservation programs is the recycling of both urban storm-water and treated wastewater. But till now it is not widely practiced in Australia, and particularly storm-water is neglected. In Australia, only 4% of storm-water and rainwater is recycled, whereas less than 1% of reclaimed wastewater is reused within urban areas. Therefore, accurately monitoring, assessing and predicting the availability, quality and use of this precious resource are required for better management. As storm-water is usually of better quality than untreated sewage or industrial discharge, it has better public acceptance for recycling and reuse, particularly for non-potable use such as irrigation, watering lawns, gardens, etc. Existing storm-water recycling practice is far behind of research and no robust technologies developed for this purpose. Therefore, there is a clear need for using modern technologies for assessing feasibility of storm-water harvesting and reuse. Numerical modelling has, in recent times, become a popular tool for doing this job. It includes complex hydrological and hydraulic processes of the study area. The hydrologic model computes storm-water quantity to design the system components, and the hydraulic model helps to route the flow through storm-water infrastructures. Nowadays water quality module is incorporated with these models. Integration of Geographic Information System (GIS) with these models provides extra advantage of managing spatial information. However for the overall management of a storm-water harvesting project, Decision Support System (DSS) plays an important role incorporating database with model and GIS for the proper management of temporal information. Additionally DSS includes evaluation tools and Graphical user interface. This research aims to critically review and discuss all the aspects of storm-water harvesting and reuse such as available guidelines of storm-water harvesting and reuse, public acceptance of water reuse, the scopes and recommendation for future studies. In addition to these, this paper identifies, understand and address the importance of modern technologies capable of proper management of storm-water harvesting and reuse.Keywords: storm-water management, storm-water harvesting and reuse, numerical modelling, geographic information system, decision support system, database
Procedia PDF Downloads 370205 Coulomb-Explosion Driven Proton Focusing in an Arched CH Target
Authors: W. Q. Wang, Y. Yin, D. B. Zou, T. P. Yu, J. M. Ouyang, F. Q. Shao
Abstract:
High-energy-density state, i.e., matter and radiation at energy densities in excess of 10^11 J/m^3, is related to material, nuclear physics, astrophysics, and geophysics. Laser-driven particle beams are better suited to heat the matter as a trigger due to their unique properties of ultrashort duration and low emittance. Compared to X-ray and electron sources, it is easier to generate uniformly heated large-volume material for the proton and ion beams because of highly localized energy deposition. With the construction of state-of-art high power laser facilities, creating of extremely conditions of high-temperature and high-density in laboratories becomes possible. It has been demonstrated that on a picosecond time scale the solid density material can be isochorically heated to over 20 eV by the ultrafast proton beam generated from spherically shaped targets. For the above-mentioned technique, the proton energy density plays a crucial role in the formation of warm dense matter states. Recently, several methods have devoted to realize the focusing of the accelerated protons, involving externally exerted static-fields or specially designed targets interacting with a single or multi-pile laser pulses. In previous works, two co-propagating or opposite direction laser pulses are employed to strike a submicron plasma-shell. However, ultra-high pulse intensities, accurately temporal synchronization and undesirable transverse instabilities for a long time are still intractable for currently experimental implementations. A mechanism of the focusing of laser-driven proton beams from two-ion-species arched targets is investigated by multi-dimensional particle-in-cell simulations. When an intense linearly-polarized laser pulse impinges on the thin arched target, all electrons are completely evacuated, leading to a Coulomb-explosive electric-field mostly originated from the heavier carbon ions. The lighter protons in the moving reference frame by the ionic sound speed will be accelerated and effectively focused because of this radially isotropic field. At a 2.42×10^21 W/cm^2 laser intensity, a ballistic proton bunch with its energy-density as high as 2.15×10^17 J/m^3 is produced, and the highest proton energy and the focusing position agree well with that from the theory.Keywords: Coulomb explosion, focusing, high-energy-density, ion acceleration
Procedia PDF Downloads 344204 Experimental Study Analyzing the Similarity Theory Formulations for the Effect of Aerodynamic Roughness Length on Turbulence Length Scales in the Atmospheric Surface Layer
Authors: Matthew J. Emes, Azadeh Jafari, Maziar Arjomandi
Abstract:
Velocity fluctuations of shear-generated turbulence are largest in the atmospheric surface layer (ASL) of nominal 100 m depth, which can lead to dynamic effects such as galloping and flutter on small physical structures on the ground when the turbulence length scales and characteristic length of the physical structure are the same order of magnitude. Turbulence length scales are a measure of the average sizes of the energy-containing eddies that are widely estimated using two-point cross-correlation analysis to convert the temporal lag to a separation distance using Taylor’s hypothesis that the convection velocity is equal to the mean velocity at the corresponding height. Profiles of turbulence length scales in the neutrally-stratified ASL, as predicted by Monin-Obukhov similarity theory in Engineering Sciences Data Unit (ESDU) 85020 for single-point data and ESDU 86010 for two-point correlations, are largely dependent on the aerodynamic roughness length. Field measurements have shown that longitudinal turbulence length scales show significant regional variation, whereas length scales of the vertical component show consistent Obukhov scaling from site to site because of the absence of low-frequency components. Hence, the objective of this experimental study is to compare the similarity theory relationships between the turbulence length scales and aerodynamic roughness length with those calculated using the autocorrelations and cross-correlations of field measurement velocity data at two sites: the Surface Layer Turbulence and Environmental Science Test (SLTEST) facility in a desert ASL in Dugway, Utah, USA and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) wind tower in a rural ASL in Jemalong, NSW, Australia. The results indicate that the longitudinal turbulence length scales increase with increasing aerodynamic roughness length, as opposed to the relationships derived by similarity theory correlations in ESDU models. However, the ratio of the turbulence length scales in the lateral and vertical directions to the longitudinal length scales is relatively independent of surface roughness, showing consistent inner-scaling between the two sites and the ESDU correlations. Further, the diurnal variation of wind velocity due to changes in atmospheric stability conditions has a significant effect on the turbulence structure of the energy-containing eddies in the lower ASL.Keywords: aerodynamic roughness length, atmospheric surface layer, similarity theory, turbulence length scales
Procedia PDF Downloads 123203 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model
Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho
Abstract:
Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem
Procedia PDF Downloads 294202 Surface Elevation Dynamics Assessment Using Digital Elevation Models, Light Detection and Ranging, GPS and Geospatial Information Science Analysis: Ecosystem Modelling Approach
Authors: Ali K. M. Al-Nasrawi, Uday A. Al-Hamdany, Sarah M. Hamylton, Brian G. Jones, Yasir M. Alyazichi
Abstract:
Surface elevation dynamics have always responded to disturbance regimes. Creating Digital Elevation Models (DEMs) to detect surface dynamics has led to the development of several methods, devices and data clouds. DEMs can provide accurate and quick results with cost efficiency, in comparison to the inherited geomatics survey techniques. Nowadays, remote sensing datasets have become a primary source to create DEMs, including LiDAR point clouds with GIS analytic tools. However, these data need to be tested for error detection and correction. This paper evaluates various DEMs from different data sources over time for Apple Orchard Island, a coastal site in southeastern Australia, in order to detect surface dynamics. Subsequently, 30 chosen locations were examined in the field to test the error of the DEMs surface detection using high resolution global positioning systems (GPSs). Results show significant surface elevation changes on Apple Orchard Island. Accretion occurred on most of the island while surface elevation loss due to erosion is limited to the northern and southern parts. Concurrently, the projected differential correction and validation method aimed to identify errors in the dataset. The resultant DEMs demonstrated a small error ratio (≤ 3%) from the gathered datasets when compared with the fieldwork survey using RTK-GPS. As modern modelling approaches need to become more effective and accurate, applying several tools to create different DEMs on a multi-temporal scale would allow easy predictions in time-cost-frames with more comprehensive coverage and greater accuracy. With a DEM technique for the eco-geomorphic context, such insights about the ecosystem dynamic detection, at such a coastal intertidal system, would be valuable to assess the accuracy of the predicted eco-geomorphic risk for the conservation management sustainability. Demonstrating this framework to evaluate the historical and current anthropogenic and environmental stressors on coastal surface elevation dynamism could be profitably applied worldwide.Keywords: DEMs, eco-geomorphic-dynamic processes, geospatial Information Science, remote sensing, surface elevation changes,
Procedia PDF Downloads 266201 Contributions of Natural and Human Activities to Urban Surface Runoff with Different Hydrological Scenarios (Orléans, France)
Authors: Al-Juhaishi Mohammed, Mikael Motelica-Heino, Fabrice Muller, Audrey Guirimand-Dufour, Christian Défarge
Abstract:
This study aims at improving the urban hydrological cycle of the Orléans agglomeration (France) and understanding the relationship between physical and chemical parameters of urban surface runoff and the hydrological conditions. In particular water quality parameters such as pH, conductivity, total dissolved solids, major dissolved cations and anions, and chemical and biological oxygen demands were monitored for three types of urban water discharges (wastewater treatment plant output (WWTP), storm overflow and stormwater outfall) under two hydrologic scenarii (dry and wet weather). The first results were obtained over a period of five months.Each investigated (Ormes and l’Egoutier) outfall represents an urban runoff source that receives water from runoff roads, gutters, the irrigation of gardens and other sources of flow over the Earth’s surface that drains in its catchments and carries it to the Loire River. In wet weather conditions there is rain water runoff and an additional input from the roof gutters that have entered the stormwater system during rainfall. For the comparison the results La Chilesse is a storm overflow that was selected in our study as a potential source of waste water which is located before the (WWTP).The comparison of the physical-chemical parameters (total dissolved solids, turbidity, pH, conductivity, dissolved organic carbon (DOC), concentration of major cations and anions) together with the chemical oxygen demand (COD) and biological oxygen demand (BOD) helped to characterize sources of runoff waters in the different watersheds. It also helped to highlight the infiltration of wastewater in some stormwater systems that reject directly in the Loire River. The values of the conductivity measured in the outflow of Ormes were always higher than those measured in the other two outlets. The results showed a temporal variation for the Ormes outfall of conductivity from 1465 µS cm-1 in the dry weather flow to 650 µS cm-1 in the wet weather flow and also a spatial variation in the wet weather flow from 650 µS cm-1 in the Ormes outfall to 281 μS cm-1 in L’Egouttier outfall. The ultimate BOD (BOD28) showed a significant decrease in La Corne outfall from 210 mg L-1 in the wet weather flow to 75 mg L-1 in the dry weather flow because of the nutrient load that was transported by the runoff.Keywords: BOD, COD, the Loire River, urban hydrology, urban dry and wet weather discharges, macronutrients
Procedia PDF Downloads 264200 Hydraulic Performance of Curtain Wall Breakwaters Based on Improved Moving Particle Semi-Implicit Method
Authors: Iddy Iddy, Qin Jiang, Changkuan Zhang
Abstract:
This paper addresses the hydraulic performance of curtain wall breakwaters as a coastal structure protection based on the particles method modelling. The hydraulic functions of curtain wall as wave barriers by reflecting large parts of incident waves through the vertical wall, a part transmitted and a particular part was dissipating the wave energies through the eddy flows formed beneath the lower end of the plate. As a Lagrangian particle, the Moving Particle Semi-implicit (MPS) method which has a robust capability for numerical representation has proven useful for design of structures application that concern free-surface hydrodynamic flow, such as wave breaking and overtopping. In this study, a vertical two-dimensional numerical model for the simulation of violent flow associated with the interaction between the curtain-wall breakwaters and progressive water waves is developed by MPS method in which a higher precision pressure gradient model and free surface particle recognition model were proposed. The wave transmission, reflection, and energy dissipation of the vertical wall were experimentally and theoretically examined. With the numerical wave flume by particle method, very detailed velocity and pressure fields around the curtain-walls under the action of waves can be computed in each calculation steps, and the effect of different wave and structural parameters on the hydrodynamic characteristics was investigated. Also, the simulated results of temporal profiles and distributions of velocity and pressure in the vicinity of curtain-wall breakwaters are compared with the experimental data. Herein, the numerical investigation of hydraulic performance of curtain wall breakwaters indicated that the incident wave is largely reflected from the structure, while the large eddies or turbulent flows occur beneath the curtain-wall resulting in big energy losses. The improved MPS method shows a good agreement between numerical results and analytical/experimental data which are compared to related researches. It is thus verified that the improved pressure gradient model and free surface particle recognition methods are useful for enhancement of stability and accuracy of MPS model for water waves and marine structures. Therefore, it is possible for particle method (MPS method) to achieve an appropriate level of correctness to be applied in engineering fields through further study.Keywords: curtain wall breakwaters, free surface flow, hydraulic performance, improved MPS method
Procedia PDF Downloads 148199 Effect of the Orifice Plate Specifications on Coefficient of Discharge
Authors: Abulbasit G. Abdulsayid, Zinab F. Abdulla, Asma A. Omer
Abstract:
On the ground that the orifice plate is relatively inexpensive, requires very little maintenance and only calibrated during the occasion of plant turnaround, the orifice plate has turned to be in a real prevalent use in gas industry. Inaccuracy of measurement in the fiscal metering stations may highly be accounted to be the most vital factor for mischarges in the natural gas industry in Libya. A very trivial error in measurement can add up a fast escalating financial burden to the custodian transactions. The unaccounted gas quantity transferred annually via orifice plates in Libya, could be estimated in an extent of multi-million dollars. As the oil and gas wealth is the solely source of income to Libya, every effort is now being exerted to improve the accuracy of existing orifice metering facilities. Discharge coefficient has become pivotal in current researches undertaken in this regard. Hence, increasing the knowledge of the flow field in a typical orifice meter is indispensable. Recently and in a drastic pace, the CFD has become the most time and cost efficient versatile tool for in-depth analysis of fluid mechanics, heat and mass transfer of various industrial applications. Getting deeper into the physical phenomena lied beneath and predicting all relevant parameters and variables with high spatial and temporal resolution have been the greatest weighing pros counting for CFD. In this paper, flow phenomena for air passing through an orifice meter were numerically analyzed with CFD code based modeling, giving important information about the effect of orifice plate specifications on the discharge coefficient for three different tappings locations, i.e., flange tappings, D and D/2 tappings compared with vena contracta tappings. Discharge coefficients were paralleled with discharge coefficients estimated by ISO 5167. The influences of orifice plate bore thickness, orifice plate thickness, beveled angle, perpendicularity and buckling of the orifice plate, were all duly investigated. A case of an orifice meter whose pipe diameter of 2 in, beta ratio of 0.5 and Reynolds number of 91100, was taken as a model. The results highlighted that the discharge coefficients were highly responsive to the variation of plate specifications and under all cases, the discharge coefficients for D and D/2 tappings were very close to that of vena contracta tappings which were believed as an ideal arrangement. Also, in general sense, it was appreciated that the standard equation in ISO 5167, by which the discharge coefficient was calculated, cannot capture the variation of the plate specifications and thus further thorough considerations would be still needed.Keywords: CFD, discharge coefficients, orifice meter, orifice plate specifications
Procedia PDF Downloads 118198 Juvenile Fish Associated with Pondweed and Charophyte Habitat: A Case Study Using Upgraded Pop-up Net in the Estuarine Part of the Curonian Lagoon
Authors: M. Bučas, A. Skersonas, E. Ivanauskas, J. Lesutienė, N. Nika, G. Srėbalienė, E. Tiškus, J. Gintauskas, A.Šaškov, G. Martin
Abstract:
Submerged vegetation enhances heterogeneity of sublittoral habitats; therefore, macrophyte stands are essential elements of aquatic ecosystems to maintain a diverse fish fauna. Fish-habitat relations have been extensively studied in streams and coastal waters, but in lakes and estuaries are still underestimated. The aim of this study is to assess temporal (diurnal and seasonal) patterns of fish juvenile assemblages associated with common submerged macrophyte habitats, which have significantly spread during the recent decade in the upper littoral part of the Curonian Lagoon. The assessment was performed by means of an upgraded pop-up net approach resulting in much precise sampling versus other techniques. The optimal number of samples (i.e., pop-up nets) required to cover>80% of the total number of fish species depended on the time of the day in both study sites: at least 7and 9 nets in the evening (18-24 pm) in the Southern and Northern study sites, respectively. In total, 14 fish species were recorded, where perch and roach dominated (respectively 48% and 24%). From multivariate analysis, water salinity and seasonality (temperature or sampling month) were primary factors determining fish assemblage composition. The southern littoral area, less affected by brackish water conditions, hosted a higher number of species (13) than in the Northern site (8). In the latter site, brackish water tolerant species (three-spined and nine-spined sticklebacks, spiny loach, roach, and round goby) were more abundant than in the Southern site. Perch and ruffe dominated in the Southern site. Spiny loach and nine-spined stickleback were more frequent in September, while ruffe, perch, and roach occurred more in July. The diel dynamics of the common species such as perch, roach, and ruffe followed the general pattern, but it was species specific and depended on the study site, habitat, and month. The species composition between macrophyte habitats did not significantly differ; however, it differed from the results obtained in 2005 at both study sites indicating the importance of expanded charophyte stands during the last decade in the littoral zone.Keywords: diel dynamics, charophytes, pondweeds, herbivorous and benthivorous fishes, littoral, nursery habitat, shelter
Procedia PDF Downloads 186197 Performance Assessment of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser during ‘Hot Standby’ Operation
Authors: M. J. Baum, B. Gibbes, A. Grinham, S. Albert, D. Gale, P. Fisher
Abstract:
Alongside the rapid expansion of Seawater Reverse Osmosis technologies there is a concurrent increase in the production of hypersaline brine by-products. To minimize environmental impact, these by-products are commonly disposed into open-coastal environments via submerged diffuser systems as inclined dense jet outfalls. Despite the widespread implementation of this process, diffuser designs are typically based on small-scale laboratory experiments under idealistic quiescent conditions. Studies concerning diffuser performance in the field are limited. A set of experiments were conducted to assess the near field characteristics of brine disposal at the Gold Coast Desalination Plant offshore multiport diffuser. The aim of the field experiments was to determine the trajectory and dilution characteristics of the plume under various discharge configurations with production ranging 66 – 100% of plant operative capacity. The field monitoring system employed an unprecedented static array of temperature and electrical conductivity sensors in a three-dimensional grid surrounding a single diffuser port. Complimenting these measurements, Acoustic Doppler Current Profilers were also deployed to record current variability over the depth of the water column and wave characteristics. Recorded data suggested the open-coastal environment was highly active over the experimental duration with ambient velocities ranging 0.0 – 0.5 m∙s-1, with considerable variability over the depth of the water column observed. Variations in background electrical conductivity corresponding to salinity fluctuations of ± 1.7 g∙kg-1 were also observed. Increases in salinity were detected during plant operation and appeared to be most pronounced 10 – 30 m from the diffuser, consistent with trajectory predictions described by existing literature. Plume trajectories and respective dilutions extrapolated from salinity data are compared with empirical scaling arguments. Discharge properties were found to adequately correlate with modelling projections. Temporal and spatial variation of background processes and their subsequent influence upon discharge outcomes are discussed with a view to incorporating the influence of waves and ambient currents in the design of brine outfalls into the future.Keywords: brine disposal, desalination, field study, negatively buoyant discharge
Procedia PDF Downloads 237196 Microplastics in the Seine River Catchment: Results and Lessons from a Pluriannual Research Programme
Authors: Bruno Tassin, Robin Treilles, Cleo Stratmann, Minh Trang Nguyen, Sam Azimi, Vincent Rocher, Rachid Dris, Johnny Gasperi
Abstract:
Microplastics (<5mm) in the environment and in hydro systems is one of the major present environmental issues. Over the last five years a research programme was conducted in order to assess the behavior of microplastics in the Seine river catchment, in a Man-Land-Sea continuum approach. Results show that microplastic concentration varies at the seasonal scale, but also at much smaller scales, during flood events and with tides in the estuary for instance. Moreover, microplastic sampling and characterization issues emerged throughout this work. The Seine river is a 750km long river flowing in Northwestern France. It crosses the Paris megacity (12 millions inhabitants) and reaches the English Channel after a 170 km long estuary. This site is a very relevant one to assess the effect of anthropogenic pollution as the mean river flow is low (mean flow around 350m³/s) while the human presence and activities are very intense. Monthly monitoring of the microplastic concentration took place over a 19-month period and showed significant temporal variations at all sampling stations but no significant upstream-downstream increase, indicating a possible major sink to the sediment. At the scale of a major flood event (winter and spring 2018), microplastic concentration shows an evolution similar to the well-known suspended solids concentration, with an increase during the increase of the flow and a decrease during the decrease of the flow. Assessing the position of the concentration peak in relation to the flow peak was unfortunately impossible. In the estuary, concentrations vary with time in connection with tides movements and in the water column in relation to the salinity and the turbidity. Although major gains of knowledge on the microplastic dynamics in the Seine river have been obtained over the last years, major gaps remain to deal mostly with the interaction with the dynamics of the suspended solids, the selling processes in the water column and the resuspension by navigation or shear stress increase. Moreover, the development of efficient chemical characterization techniques during the 5 year period of this pluriannual research programme led to the improvement of the sampling techniques in order to access smaller microplastics (>10µm) as well as larger but rare ones (>500µm).Keywords: microplastics, Paris megacity, seine river, suspended solids
Procedia PDF Downloads 197195 Recognizing Juxtaposition Patterns of the Dwelling Units in Housing Cluster: The Case Study of Aghayan Complex: An Example of Rural Residential Development in Qajar Era in Iran
Authors: Outokesh Fatemeh, Jourabchi Keivan, Talebi Maryam, Nikbakht Fatemeh
Abstract:
Mayamei is a small town in Iran that is located between Shahrud and Sabzevar cities, on the Silk Road. It enjoys a history of approximately 1000 years. An alley entitled ‘Aghayan’ exists in this town that comprises residential buildings of a famous family. Bathhouse, mosque, telegraph center, cistern are all related to this alley. This architectural complex belongs to Sadat Mousavi, who is one of the Mayamei's major grandees and religious household. The alley after construction has been inherited from generation to generation within the family masters. The purpose of this study, which was conducted on Aghayan alley and its associated complex, was to elucidate Iranian vernacular domestic architecture of Qajar era in small towns and villages. We searched for large, medium, and small architectural patterns in the contemplated complex, and tried to elaborate their evolution from past to the present. The other objective of this project was finding a correlation between changes in the lifestyle of the alley’s inhabitants with the form of the building's architecture. Our investigation methods included: literature review especially in regard to historical travelogues, peer site visiting, mapping, interviewing of the elderly people of the Mousavi family (the owners), and examining the available documents especially the 4 meters’ scroll-type testament of 150 years ago. For the analysis of the aforementioned data, an effort was made to discover (1) the patterns of placing of different buildings in respect of the others, (2) finding the relation between function of the buildings with their relative location in the complex, as was considered in the original design, and (3) possible changes of functions of the buildings during the time. In such an investigation, special attention was paid to the chronological changes of lifestyles of the residents. In addition, we tried to take all different activities of the residents into account including their daily life activities, religious ceremonies, etc. By combining such methods, we were able to obtain a picture of the buildings in their original (construction) state, along with a knowledge of the temporal evolution of the architecture. An interesting finding is that the Aghayan complex seems to be a big structure of the horizontal type apartments, which are placed next to each other. The houses made in this way are connected to the adjacent neighbors both by the bifacial rooms and from the roofs.Keywords: Iran, Qajar period, vernacular domestic architecture, life style, residential complex
Procedia PDF Downloads 161194 A Matched Case-Control Study to Asses the Association of Chikunguynya Severity among Blood Groups and Other Determinants in Tesseney, Gash Barka Zone, Eritrea
Authors: Ghirmay Teklemicheal, Samsom Mehari, Sara Tesfay
Abstract:
Objectives: A total of 1074 suspected chikungunya cases were reported in Tesseney Province, Gash Barka region, Eritrea, during an outbreak. This study was aimed to assess the possible association of chikungunya severity among ABO blood groups and other potential determinants. Methods: A sex-matched and age-matched case-control study was conducted during the outbreak. For each case, one control subject had been selected from the mild Chikungunya cases. Along the same line of argument, a second control subject had also been designated through which neighborhood of cases were analyzed, scrutinized, and appeared to the scheme of comparison. Time is always the most sacrosanct element in pursuance of any study. According to the temporal calculation, this study was pursued from October 15, 2018, to November 15, 2018. Coming to the methodological dependability, calculating odds ratios (ORs) and conditional (fixed-effect) logistic regression methods were being applied. As a consequence of this, the data was analyzed and construed on the basis of the aforementioned methodological systems. Results: In this outbreak, 137 severe suspected chikungunya cases and 137 mild chikungunya suspected patients, and 137 controls free of chikungunya from the neighborhood of cases were analyzed. Non-O individuals compared to those with O blood group indicated as significant with a p-value of 0.002. Separate blood group comparison among A and O blood groups reflected as significant with a p-value of 0.002. However, there was no significant difference in the severity of chikungunya among B, AB, and O blood groups with a p-value of 0.113 and 0.708, respectively, and a strong association of chikungunya severity was found with hypertension and diabetes (p-value of < 0.0001); whereas, there was no association between chikungunya severity and asthma with a p-value of 0.695 and also no association with pregnancy (p-value =0.881), ventilator (p-value =0.181), air conditioner (p-value = 0.247), and didn’t use latrine and pit latrine (p-value = 0.318), among individuals using septic and pit latrine (p-value = 0.567) and also among individuals using flush and pit latrine (p-value = 0.194). Conclusions: Non- O blood groups were found to be at risk more than their counterpart O blood group individuals with severe form of chikungunya disease. By the same token, individuals with chronic disease were more prone to severe forms of the disease in comparison with individuals without chronic disease. Prioritization is recommended for patients with chronic diseases and non-O blood group since they are found to be susceptible to severe chikungunya disease. Identification of human cell surface receptor(s) for CHIKV is quite necessary for further understanding of its pathophysiology in humans. Therefore, molecular and functional studies will necessarily be helpful in disclosing the association of blood group antigens and CHIKV infections.Keywords: Chikungunya, Chikungunya virus, disease outbreaks, case-control studies, Eritrea
Procedia PDF Downloads 161193 Linking Soil Spectral Behavior and Moisture Content for Soil Moisture Content Retrieval at Field Scale
Authors: Yonwaba Atyosi, Moses Cho, Abel Ramoelo, Nobuhle Majozi, Cecilia Masemola, Yoliswa Mkhize
Abstract:
Spectroscopy has been widely used to understand the hyperspectral remote sensing of soils. Accurate and efficient measurement of soil moisture is essential for precision agriculture. The aim of this study was to understand the spectral behavior of soil at different soil water content levels and identify the significant spectral bands for soil moisture content retrieval at field-scale. The study consisted of 60 soil samples from a maize farm, divided into four different treatments representing different moisture levels. Spectral signatures were measured for each sample in laboratory under artificial light using an Analytical Spectral Device (ASD) spectrometer, covering a wavelength range from 350 nm to 2500 nm, with a spectral resolution of 1 nm. The results showed that the absorption features at 1450 nm, 1900 nm, and 2200 nm were particularly sensitive to soil moisture content and exhibited strong correlations with the water content levels. Continuum removal was developed in the R programming language to enhance the absorption features of soil moisture and to precisely understand its spectral behavior at different water content levels. Statistical analysis using partial least squares regression (PLSR) models were performed to quantify the correlation between the spectral bands and soil moisture content. This study provides insights into the spectral behavior of soil at different water content levels and identifies the significant spectral bands for soil moisture content retrieval. The findings highlight the potential of spectroscopy for non-destructive and rapid soil moisture measurement, which can be applied to various fields such as precision agriculture, hydrology, and environmental monitoring. However, it is important to note that the spectral behavior of soil can be influenced by various factors such as soil type, texture, and organic matter content, and caution should be taken when applying the results to other soil systems. The results of this study showed a good agreement between measured and predicted values of Soil Moisture Content with high R2 and low root mean square error (RMSE) values. Model validation using independent data was satisfactory for all the studied soil samples. The results has significant implications for developing high-resolution and precise field-scale soil moisture retrieval models. These models can be used to understand the spatial and temporal variation of soil moisture content in agricultural fields, which is essential for managing irrigation and optimizing crop yield.Keywords: soil moisture content retrieval, precision agriculture, continuum removal, remote sensing, machine learning, spectroscopy
Procedia PDF Downloads 98192 Spatial and Temporal Analysis of Forest Cover Change with Special Reference to Anthropogenic Activities in Kullu Valley, North-Western Indian Himalayan Region
Authors: Krisala Joshi, Sayanta Ghosh, Renu Lata, Jagdish C. Kuniyal
Abstract:
Throughout the world, monitoring and estimating the changing pattern of forests across diverse landscapes through remote sensing is instrumental in understanding the interactions of human activities and the ecological environment with the changing climate. Forest change detection using satellite imageries has emerged as an important means to gather information on a regional scale. Kullu valley in Himachal Pradesh, India is situated in a transitional zone between the lesser and the greater Himalayas. Thus, it presents a typical rugged mountainous terrain with moderate to high altitude which varies from 1200 meters to over 6000 meters. Due to changes in agricultural cropping patterns, urbanization, industrialization, hydropower generation, climate change, tourism, and anthropogenic forest fire, it has undergone a tremendous transformation in forest cover in the past three decades. The loss and degradation of forest cover results in soil erosion, loss of biodiversity including damage to wildlife habitats, and degradation of watershed areas, and deterioration of the overall quality of nature and life. The supervised classification of LANDSAT satellite data was performed to assess the changes in forest cover in Kullu valley over the years 2000 to 2020. Normalized Burn Ratio (NBR) was calculated to discriminate between burned and unburned areas of the forest. Our study reveals that in Kullu valley, the increasing number of forest fire incidents specifically, those due to anthropogenic activities has been on a rise, each subsequent year. The main objective of the present study is, therefore, to estimate the change in the forest cover of Kullu valley and to address the various social aspects responsible for the anthropogenic forest fires. Also, to assess its impact on the significant changes in the regional climatic factors, specifically, temperature, humidity, and precipitation over three decades, with the help of satellite imageries and ground data. The main outcome of the paper, we believe, will be helpful for the administration for making a quantitative assessment of the forest cover area changes due to anthropogenic activities and devising long-term measures for creating awareness among the local people of the area.Keywords: Anthropogenic Activities, Forest Change Detection, Normalized Burn Ratio (NBR), Supervised Classification
Procedia PDF Downloads 171191 Extraction of Urban Building Damage Using Spectral, Height and Corner Information
Authors: X. Wang
Abstract:
Timely and accurate information on urban building damage caused by earthquake is important basis for disaster assessment and emergency relief. Very high resolution (VHR) remotely sensed imagery containing abundant fine-scale information offers a large quantity of data for detecting and assessing urban building damage in the aftermath of earthquake disasters. However, the accuracy obtained using spectral features alone is comparatively low, since building damage, intact buildings and pavements are spectrally similar. Therefore, it is of great significance to detect urban building damage effectively using multi-source data. Considering that in general height or geometric structure of buildings change dramatically in the devastated areas, a novel multi-stage urban building damage detection method, using bi-temporal spectral, height and corner information, was proposed in this study. The pre-event height information was generated using stereo VHR images acquired from two different satellites, while the post-event height information was produced from airborne LiDAR data. The corner information was extracted from pre- and post-event panchromatic images. The proposed method can be summarized as follows. To reduce the classification errors caused by spectral similarity and errors in extracting height information, ground surface, shadows, and vegetation were first extracted using the post-event VHR image and height data and were masked out. Two different types of building damage were then extracted from the remaining areas: the height difference between pre- and post-event was used for detecting building damage showing significant height change; the difference in the density of corners between pre- and post-event was used for extracting building damage showing drastic change in geometric structure. The initial building damage result was generated by combining above two building damage results. Finally, a post-processing procedure was adopted to refine the obtained initial result. The proposed method was quantitatively evaluated and compared to two existing methods in Port au Prince, Haiti, which was heavily hit by an earthquake in January 2010, using pre-event GeoEye-1 image, pre-event WorldView-2 image, post-event QuickBird image and post-event LiDAR data. The results showed that the method proposed in this study significantly outperformed the two comparative methods in terms of urban building damage extraction accuracy. The proposed method provides a fast and reliable method to detect urban building collapse, which is also applicable to relevant applications.Keywords: building damage, corner, earthquake, height, very high resolution (VHR)
Procedia PDF Downloads 212190 Informational Habits and Ideology as Predictors for Political Efficacy: A Survey Study of the Brazilian Political Context
Authors: Pedro Cardoso Alves, Ana Lucia Galinkin, José Carlos Ribeiro
Abstract:
Political participation, can be a somewhat tricky subject to define, not in small part due to the constant changes in the concept fruit of the effort to include new forms of participatory behavior that go beyond traditional institutional channels. With the advent of the internet and mobile technologies, defining political participation has become an even more complicated endeavor, given de amplitude of politicized behaviors that are expressed throughout these mediums, be it in the very organization of social movements, in the propagation of politicized texts, videos and images, or in the micropolitical behaviors that are expressed in daily interaction. In fact, the very frontiers that delimit physical and digital spaces have become ever more diluted due to technological advancements, leading to a hybrid existence that is simultaneously physical and digital, not limited, as it once was, to the temporal limitations of classic communications. Moving away from those institutionalized actions of traditional political behavior, an idea of constant and fluid participation, which occurs in our daily lives through conversations, posts, tweets and other digital forms of expression, is discussed. This discussion focuses on the factors that precede more direct forms of political participation, interpreting the relation between informational habits, ideology, and political efficacy. Though some of the informational habits can be considered political participation, by some authors, a distinction is made to establish a logical flow of behaviors leading to participation, that is, one must gather and process information before acting on it. To reach this objective, a quantitative survey is currently being applied in Brazilian social media, evaluating feelings of political efficacy, social and economic issue-based ideological stances and informational habits pertaining to collection, fact-checking, and diversity of sources and ideological positions present in the participant’s political information network. The measure being used for informational habits relies strongly on a mix of information literacy and political sophistication concepts, bringing a more up-to-date understanding of information and knowledge production and processing in contemporary hybrid (physical-digital) environments. Though data is still being collected, preliminary analysis point towards a strong correlation between information habits and political efficacy, while ideology shows a weaker influence over efficacy. Moreover, social ideology and economic ideology seem to have a strong correlation in the sample, such intermingling between social and economic ideals is generally considered a red flag for political polarization.Keywords: political efficacy, ideology, information literacy, cyberpolitics
Procedia PDF Downloads 233189 Camera Trapping Coupled With Field Sign Survey Reveal the Mammalian Diversity and Abundance at Murree-Kotli Sattian-Kahuta National Park, Pakistan
Authors: Shehnila Kanwal
Abstract:
Murree-Kotli Sattian-Kahta National Park (MKKNP) was declared in 2009. However, not much is known about the diversity and relative abundance of the mammalian fauna of this park. In the current study, we used field sign survey and infrared camera trapping techniques to get an insight into the diversity of mammalian species and their relative abundance. We conducted field surveys in different areas of the park at various elevations from April 2023 up to March 2024 to record the field signs (scats, pug marks etc.) of the mammals’ species; in addition, we deployed a total of 22 infrared trail camera traps in different areas of the park, for 116 nights. We obtained a total of 5201 photographs using camera trapping. Results of camera trapping coupled with field sign surveys confirmed the presence of a total of twenty-one different mammalian species (large, meso and small mammals) recorded in the study area. The common leopard was recorded at four different sites in the park, with an altitudinal range between 648m-1533m. Distribution of Asiatic jackal and a red fox was recorded positive at all the sites surveyed in the park with an altitudinal range between 498m-1287m and 433m-2049m, respectively. Leopard cats were recorded at two different sites within the altitudinal range between 498m-894m. Jungle cat was recorded at three sites within an altitudinal range between 498m-846. Asian palm civets and small Indian civets were both recorded at three sites. Grey mongoose and small Indian mongoose were recorded at four and three sites. We also collected a total of 75 scats of different mammal species in the park to further confirm their occurrence. For the Indian pangolin, we recorded three field burrows at two different sites. Diversity index (H’=2.369960) and species evenness (E=0.81995) were calculated. Analysis of data revealed that wild boar (Sus sucrofa) was the most abundant species in the park; most of the mammal species were found nocturnal; these remain active from dusk throughout the night, and some of them remain active at dawn time. Leopard and Asian palm civets were highly overlapping species in the study area. Their temporal activity pattern overlapped 61%. Barking deer and Indian crested porcupine were also found to be nocturnal species they remained active throughout the night.Keywords: MKKNP, diversity, abundance, evenness, distribution, mammals, overlapped
Procedia PDF Downloads 17