Search results for: online learning management system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30921

Search results for: online learning management system

30051 Early Warning Signals: Role and Status of Risk Management in Small and Medium Enterprises

Authors: Alexander Kelíšek, Denisa Janasová, Veronika Mitašová

Abstract:

Weak signals using is often associated with early warning. It is possible to find a link between early warning, respectively early problems detection and risk management. The idea of early warning is very important in the context of crisis management because of the risk prevention possibility. Weak signals are likened to risk symptoms. Nowadays, their usefulness as a tool of proactive problems solving is emphasized. Based on it, it is possible to use weak signals not only in strategic planning, project management, or early warning system, but also as a subsidiary element in risk management. The main question is how to effectively integrate weak signals into risk management. The main aim of the paper is to point out the possibilities of weak signals using in small and medium enterprises risk management.

Keywords: early warning system, weak signals, risk management, small and medium enterprises (SMEs)

Procedia PDF Downloads 427
30050 Toward a Re-Definition of Mobile Learning

Authors: Mirna Diab

Abstract:

Mobile learning, or M-learning, drives the development of new teaching, learning, and assessment strategies in schools and colleges. With initiatives across states, districts, and institutions, the United States leads mobile learning, significantly impacting education. Since 2010, over 2,3 million American pupils have received their education via mobile devices, demonstrating its rapid expansion. Nonetheless, mobile learning lacks a consistent and explicit definition that helps educators, students, and stakeholders grasp its essence and implement it effectively. This article addresses the need for a revised definition by introducing readers to various mobile learning concepts and understandings. It seeks to raise awareness, clarify, and encourage making well-informed decisions regarding its incorporation as a potent learning tool.

Keywords: mobile learning, mobile pedagogy, mobile technological devices, learner mobility

Procedia PDF Downloads 67
30049 Enhancing Robustness in Federated Learning through Decentralized Oracle Consensus and Adaptive Evaluation

Authors: Peiming Li

Abstract:

This paper presents an innovative blockchain-based approach to enhance the reliability and efficiency of federated learning systems. By integrating a decentralized oracle consensus mechanism into the federated learning framework, we address key challenges of data and model integrity. Our approach utilizes a network of redundant oracles, functioning as independent validators within an epoch-based training system in the federated learning model. In federated learning, data is decentralized, residing on various participants' devices. This scenario often leads to concerns about data integrity and model quality. Our solution employs blockchain technology to establish a transparent and tamper-proof environment, ensuring secure data sharing and aggregation. The decentralized oracles, a concept borrowed from blockchain systems, act as unbiased validators. They assess the contributions of each participant using a Hidden Markov Model (HMM), which is crucial for evaluating the consistency of participant inputs and safeguarding against model poisoning and malicious activities. Our methodology's distinct feature is its epoch-based training. An epoch here refers to a specific training phase where data is updated and assessed for quality and relevance. The redundant oracles work in concert to validate data updates during these epochs, enhancing the system's resilience to security threats and data corruption. The effectiveness of this system was tested using the Mnist dataset, a standard in machine learning for benchmarking. Results demonstrate that our blockchain-oriented federated learning approach significantly boosts system resilience, addressing the common challenges of federated environments. This paper aims to make these advanced concepts accessible, even to those with a limited background in blockchain or federated learning. We provide a foundational understanding of how blockchain technology can revolutionize data integrity in decentralized systems and explain the role of oracles in maintaining model accuracy and reliability.

Keywords: federated learning system, block chain, decentralized oracles, hidden markov model

Procedia PDF Downloads 63
30048 A Neurosymbolic Learning Method for Uplink LTE-A Channel Estimation

Authors: Lassaad Smirani

Abstract:

In this paper we propose a Neurosymbolic Learning System (NLS) as a channel estimator for Long Term Evolution Advanced (LTE-A) uplink. The proposed system main idea based on Neural Network has modules capable of performing bidirectional information transfer between symbolic module and connectionist module. We demonstrate various strengths of the NLS especially the ability to integrate theoretical knowledge (rules) and experiential knowledge (examples), and to make an initial knowledge base (rules) converted into a connectionist network. Also to use empirical knowledge witch by learning will have the ability to revise the theoretical knowledge and acquire new one and explain it, and finally the ability to improve the performance of symbolic or connectionist systems. Compared with conventional SC-FDMA channel estimation systems, The performance of NLS in terms of complexity and quality is confirmed by theoretical analysis and simulation and shows that this system can make the channel estimation accuracy improved and bit error rate decreased.

Keywords: channel estimation, SC-FDMA, neural network, hybrid system, BER, LTE-A

Procedia PDF Downloads 394
30047 Nontraditional Online Student Perceptions of Student Success Conditions

Authors: Carrie Prendergast, Lisa Bortman

Abstract:

The focus of this presentation will be on non-traditional (adult) students as they seek their Bachelors’ degrees online. This presentation will specifically examine nontraditional online student perceptions of Tinto’s success conditions: expectations, support, assessment, and engagement. Expectations include those of the student, the faculty and the institution. Support includes academic, social, and financial support. Feedback and assessment encompasses feedback in the classroom, upon entry, and on an institutional level. The fourth success condition is involvement or engagement of students with their peers and faculty in both academic and social contexts. This program will review and discuss a rich, detailed description of the lived experience of the nontraditional online student to add to the paucity of research on this understudied population and guide higher education professionals in supporting this growing population of students.

Keywords: adult students, online education, student success, vincent tinto

Procedia PDF Downloads 373
30046 Systems Engineering Management Using Transdisciplinary Quality System Development Lifecycle Model

Authors: Mohamed Asaad Abdelrazek, Amir Taher El-Sheikh, M. Zayan, A.M. Elhady

Abstract:

The successful realization of complex systems is dependent not only on the technology issues and the process for implementing them, but on the management issues as well. Managing the systems development lifecycle requires technical management. Systems engineering management is the technical management. Systems engineering management is accomplished by incorporating many activities. The three major activities are development phasing, systems engineering process and lifecycle integration. Systems engineering management activities are performed across the system development lifecycle. Due to the ever-increasing complexity of systems as well the difficulty of managing and tracking the development activities, new ways to achieve systems engineering management activities are required. This paper presents a systematic approach used as a design management tool applied across systems engineering management roles. In this approach, Transdisciplinary System Development Lifecycle (TSDL) Model has been modified and integrated with Quality Function Deployment. Hereinafter, the name of the systematic approach is the Transdisciplinary Quality System Development Lifecycle (TQSDL) Model. The QFD translates the voice of customers (VOC) into measurable technical characteristics. The modified TSDL model is based on Axiomatic Design developed by Suh which is applicable to all designs: products, processes, systems and organizations. The TQSDL model aims to provide a robust structure and systematic thinking to support the implementation of systems engineering management roles. This approach ensures that the customer requirements are fulfilled as well as satisfies all the systems engineering manager roles and activities.

Keywords: axiomatic design, quality function deployment, systems engineering management, system development lifecycle

Procedia PDF Downloads 362
30045 Study on Water Level Management Criteria of Reservoir Failure Alert System

Authors: B. Lee, B. H. Choi

Abstract:

The loss of safety for reservoirs brought about by climate change and facility aging leads to reservoir failures, which results in the loss of lives and property damage in downstream areas. Therefore, it is necessary to provide a reservoir failure alert system for downstream residents to detect the early signs of failure (with sensors) in real-time and perform safety management to prevent and minimize possible damage. 10 case studies were carried out to verify the water level management criteria of four levels (attention, caution, alert, serious). Peak changes in water level data were analysed. The results showed that ‘Caution’ and ‘Alert’ were closed to 33% and 66% of difference in level between flood water level and full water level. Therefore, it is adequate to use initial water level management criteria of reservoir failure alert system for the first year. Acknowledgment: This research was supported by a grant (2017-MPSS31-002) from 'Supporting Technology Development Program for Disaster Management' funded by the Ministry of the Interior and Safety(MOIS)

Keywords: alert system, management criteria, reservoir failure, sensor

Procedia PDF Downloads 200
30044 A Less Complexity Deep Learning Method for Drones Detection

Authors: Mohamad Kassab, Amal El Fallah Seghrouchni, Frederic Barbaresco, Raed Abu Zitar

Abstract:

Detecting objects such as drones is a challenging task as their relative size and maneuvering capabilities deceive machine learning models and cause them to misclassify drones as birds or other objects. In this work, we investigate applying several deep learning techniques to benchmark real data sets of flying drones. A deep learning paradigm is proposed for the purpose of mitigating the complexity of those systems. The proposed paradigm consists of a hybrid between the AdderNet deep learning paradigm and the Single Shot Detector (SSD) paradigm. The goal was to minimize multiplication operations numbers in the filtering layers within the proposed system and, hence, reduce complexity. Some standard machine learning technique, such as SVM, is also tested and compared to other deep learning systems. The data sets used for training and testing were either complete or filtered in order to remove the images with mall objects. The types of data were RGB or IR data. Comparisons were made between all these types, and conclusions were presented.

Keywords: drones detection, deep learning, birds versus drones, precision of detection, AdderNet

Procedia PDF Downloads 182
30043 Design-Based Elements to Sustain Participant Activity in Massive Open Online Courses: A Case Study

Authors: C. Zimmermann, E. Lackner, M. Ebner

Abstract:

Massive Open Online Courses (MOOCs) are increasingly popular learning hubs that are boasting considerable participant numbers, innovative technical features, and a multitude of instructional resources. Still, there is a high level of evidence showing that almost all MOOCs suffer from a declining frequency of participant activity and fairly low completion rates. In this paper, we would like to share the lessons learned in implementing several design patterns that have been suggested in order to foster participant activity. Our conclusions are based on experiences with the ‘Dr. Internet’ MOOC, which was created as an xMOOC to raise awareness for a more critical approach to online health information: participants had to diagnose medical case studies. There is a growing body of recommendations (based on Learning Analytics results from earlier xMOOCs) as to how the decline in participant activity can be alleviated. One promising focus in this regard is instructional design patterns, since they have a tremendous influence on the learner’s motivation, which in turn is a crucial trigger of learning processes. Since Medieval Age storytelling, micro-learning units and specific comprehensible, narrative structures were chosen to animate the audience to follow narration. Hence, MOOC participants are not likely to abandon a course or information channel when their curiosity is kept at a continuously high level. Critical aspects that warrant consideration in this regard include shorter course duration, a narrative structure with suspense peaks (according to the ‘storytelling’ approach), and a course schedule that is diversified and stimulating, yet easy to follow. All of these criteria have been observed within the design of the Dr. Internet MOOC: 1) the standard eight week course duration was shortened down to six weeks, 2) all six case studies had a special quiz format and a corresponding resolution video which was made available in the subsequent week, 3) two out of six case studies were split up in serial video sequences to be presented over the span of two weeks, and 4) the videos were generally scheduled in a less predictable sequence. However, the statistical results from the first run of the MOOC do not indicate any strong influences on the retention rate, so we conclude with some suggestions as to why this might be and what aspects need further consideration.

Keywords: case study, Dr. internet, experience, MOOCs, design patterns

Procedia PDF Downloads 266
30042 Using Data-Driven Model on Online Customer Journey

Authors: Ing-Jen Hung, Tzu-Chien Wang

Abstract:

Nowadays, customers can interact with firms through miscellaneous online ads on different channels easily. In other words, customer now has innumerable options and limitless time to accomplish their commercial activities with firms, individualizing their own online customer journey. This kind of convenience emphasizes the importance of online advertisement allocation on different channels. Therefore, profound understanding of customer behavior can make considerable benefit from optimizing fund allocation on diverse ad channels. To achieve this objective, multiple firms utilize numerical methodology to create data-driven advertisement policy. In our research, we aim to exploit online customer click data to discover the correlations between each channel and their sequential relations. We use LSTM to deal with sequential property of our data and compare its accuracy with other non-sequential methods, such as CART decision tree, logistic regression, etc. Besides, we also classify our customers into several groups by their behavioral characteristics to perceive the differences between all groups as customer portrait. As a result, we discover distinct customer journey under each customer portrait. Our article provides some insights into marketing research and can help firm to formulate online advertising criteria.

Keywords: LSTM, customer journey, marketing, channel ads

Procedia PDF Downloads 121
30041 Relationship between Effective Classroom Management with Students’ Academic Achievement of EFL of STKIP YPUP

Authors: Eny Syatriana

Abstract:

The purpose of this study is to find out the effective instruction for classroom management, with the main identification of organizing and managing effective learning environments, to identify characteristics of effective lesson planning, identify resources and materials dealing with positive and effective classroom management. Knowing the effective instruction management is one of the characteristics of well managed teacher. The study was carried out in three randomly selected classes of STKIP YPUP in South Sulawesi. The design adopted for the study was a descriptive survey approach. Simple descriptive analysis was used. The major instrument used in this study were student questionnaire, teacher questionnaire, data were gathered with the research instrument and were analyzed, the research question were investigated and two hypothesis were duly tested using t-test statistics. Based on the findings of this research, it was concluded that effective classroom management skills or techniques have strong and positive influence on student achievement.

Keywords: effective classroom management skills, students’ achievement, students academic, effective learning environments

Procedia PDF Downloads 333
30040 Integrated Information System on Human Resource Management in Project-Based Organizations

Authors: Akbar Farahani, Afsaneh Hassani, Peyman M. Farkhondeh

Abstract:

Human Resource Management as one of the core processes of the project-based companies, despite its key role in the success and competitive advantage, is relatively unknown. In the project-based companies, due to the accelerated movement of knowledge in the work activities and the temporary nature of the project, the need to develop mechanisms for achieving optimal management of this issues is very challenging. Approach to human resource management in these companies evolves with goals, strategies, and operational processes. Therefore, the need for appropriate tools to facilitate implementation of the optimized human resource management in the project is more than before,Which currently with the development of information technology and modern communication, appropriate to address the optimal approach for dynamic management of human resources in the project have been provided.This is done by using the referral system implemented in Mahab GCE that provides 1: the ability to use humans in projects without geographic limitation and 2:information on the activities and outcomes of referrals.Furthermore, by using this system, recording the lessons learned after any particular activity on projects,accessing quantitative information, procedures, documentation of learned practices that have been stored in the data base as well as using them in future projects is provided.

Keywords: human resource management, project base company, ERP, referrals system

Procedia PDF Downloads 477
30039 MLProxy: SLA-Aware Reverse Proxy for Machine Learning Inference Serving on Serverless Computing Platforms

Authors: Nima Mahmoudi, Hamzeh Khazaei

Abstract:

Serving machine learning inference workloads on the cloud is still a challenging task at the production level. The optimal configuration of the inference workload to meet SLA requirements while optimizing the infrastructure costs is highly complicated due to the complex interaction between batch configuration, resource configurations, and variable arrival process. Serverless computing has emerged in recent years to automate most infrastructure management tasks. Workload batching has revealed the potential to improve the response time and cost-effectiveness of machine learning serving workloads. However, it has not yet been supported out of the box by serverless computing platforms. Our experiments have shown that for various machine learning workloads, batching can hugely improve the system’s efficiency by reducing the processing overhead per request. In this work, we present MLProxy, an adaptive reverse proxy to support efficient machine learning serving workloads on serverless computing systems. MLProxy supports adaptive batching to ensure SLA compliance while optimizing serverless costs. We performed rigorous experiments on Knative to demonstrate the effectiveness of MLProxy. We showed that MLProxy could reduce the cost of serverless deployment by up to 92% while reducing SLA violations by up to 99% that can be generalized across state-of-the-art model serving frameworks.

Keywords: serverless computing, machine learning, inference serving, Knative, google cloud run, optimization

Procedia PDF Downloads 179
30038 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN

Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo

Abstract:

This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.

Keywords: PM2.5 forecast, machine learning, convLSTM, DNN

Procedia PDF Downloads 54
30037 Degree Tracking System (DTS) to Improve the Efficiency and Effectiveness of Open Distance Learning System: A Case Study of Islamabad Allama Iqbal Open University (AIOU)

Authors: Hatib Shabbir

Abstract:

Student support services play an important role in providing technical and motivational support to distance learner. ICT based systems have improved the efficiency and effectiveness of support services. In distance education, students being at distant require quick responses from their institution. In the manual system, it is practically hard to give prompt response to each and every student, so as a result student has to suffer a lot. The best way to minimize inefficiencies is to use automated systems. This project involves the development of centralized automated software that would not only replace the manual degree issuance system of 1.3 million students studying at AIOU but also provide online tracking to all the students applying for Degrees. DTS is also the first step towards the paperless culture which is adopted by the major organizations of the world. DTS would not only save university cost but also save students cost and time too by conveying all the information/objection through email and SMS. Moreover, DTS also monitors the performance of each and every individual working in the exam department AIOU and generates daily, monthly and yearly reports of every individual which helps a lot in continuous performance monitoring of the employees.

Keywords: aiou dts, dts aiou, dts, degree tracking aiou

Procedia PDF Downloads 218
30036 Customer Relations and Use of Online Shopping Sites

Authors: Bahar Urhan Torun, Havva Nur Tarakcı

Abstract:

At the present time, online marketing has become the common target of small and full-scale organizations. Today’s humanbeing who has to spend most of their time in front of the computer because of his job, prefers to socialize by internet due to the easy access to technology. So online marketing area expands day by day. All business organizations from the smallest to the biggest are in a race in order to get a cut from the virtual market share in an extreme competitive environment. However these organizations which use the internet to reach more consumers cannot determine their target group accurately, so this is the biggest handicap of online marketing sales nowadays. The aim of this study is to determine some significant elements about need for communicating efficiently with the consumer on the internet on online marketing. The strategies that can be used in order to increase sales and the limitations of virtual environment where cannot be communicated with the consumer face to face are argued in this study’s scope. As a consequence it is thought that to study on this subject because of lacking and also being limited efficiency of researches and outputs. Within this scope suggesting some proposals about how to communicate efficiently with the consumer and also offering the consumers’ demands efficiently is the essential objective of this study.

Keywords: online marketing, competition, consumer, communication

Procedia PDF Downloads 268
30035 A Review of Intelligent Fire Management Systems to Reduce Wildfires

Authors: Nomfundo Ngombane, Topside E. Mathonsi

Abstract:

Remote sensing and satellite imaging have been widely used to detect wildfires; nevertheless, the technologies present some limitations in terms of early wildfire detection as the technologies are greatly influenced by weather conditions and can miss small fires. The fires need to have spread a few kilometers for the technologies to provide accurate detection. The South African Advanced Fire Information System uses MODIS (Moderate Resolution Imaging Spectroradiometer) as satellite imaging. MODIS has limitations as it can exclude small fires and can fall short in validating fire vulnerability. Thus in the future, a Machine Learning algorithm will be designed and implemented for the early detection of wildfires. A simulator will be used to evaluate the effectiveness of the proposed solution, and the results of the simulation will be presented.

Keywords: moderate resolution imaging spectroradiometer, advanced fire information system, machine learning algorithm, detection of wildfires

Procedia PDF Downloads 78
30034 Application to Monitor the Citizens for Corona and Get Medical Aids or Assistance from Hospitals

Authors: Vathsala Kaluarachchi, Oshani Wimalarathna, Charith Vandebona, Gayani Chandrarathna, Lakmal Rupasinghe, Windhya Rankothge

Abstract:

It is the fundamental function of a monitoring system to allow users to collect and process data. A worldwide threat, the corona outbreak has wreaked havoc in Sri Lanka, and the situation has gotten out of hand. Since the epidemic, the Sri Lankan government has been unable to establish a systematic system for monitoring corona patients and providing emergency care in the event of an outbreak. Most patients have been held at home because of the high number of patients reported in the nation, but they do not yet have access to a functioning medical system. It has resulted in an increase in the number of patients who have been left untreated because of a lack of medical care. The absence of competent medical monitoring is the biggest cause of mortality for many people nowadays, according to our survey. As a result, a smartphone app for analyzing the patient's state and determining whether they should be hospitalized will be developed. Using the data supplied, we are aiming to send an alarm letter or SMS to the hospital once the system recognizes them. Since we know what those patients need and when they need it, we will put up a desktop program at the hospital to monitor their progress. Deep learning, image processing and application development, natural language processing, and blockchain management are some of the components of the research solution. The purpose of this research paper is to introduce a mechanism to connect hospitals and patients even when they are physically apart. Further data security and user-friendliness are enhanced through blockchain and NLP.

Keywords: blockchain, deep learning, NLP, monitoring system

Procedia PDF Downloads 133
30033 Background Check System for Turkish IT Companies

Authors: Arzu Baloglu, Ugur Kaplancali

Abstract:

This paper focuses on Background Check Systems and Pre-Employment Screening. In our study, we attempted to make an online background checking site that will help employers when hiring employees. Our site has two types of users which are free and powered user. Free users are the employees and powered users are the employers which will hire employers. The database of the site will contain all the information about the employees and employers which are registered in the system so the employers can make a search based on their searching criteria to find the suitable employee for the job. The web site also has a comments and points system. The current employer can make comments to his/her employees and can also give them points. The comments will be shown on employee’s profile, so; when an employer searches for an employee he/she can check the points and comments of the employee to see whether he or she is capable of the job or not. The employers can also follow some employees if they desire. This paper has been designed and implemented with using ASP.NET, C# and JavaScript. The outputs have a user friendly interface. The interface also aimed to provide the useful information for Turkish Technology Companies.

Keywords: background, checking, verification, human resources, online

Procedia PDF Downloads 198
30032 Automatic Measurement of Garment Sizes Using Deep Learning

Authors: Maulik Parmar, Sumeet Sandhu

Abstract:

The online fashion industry experiences high product return rates. Many returns are because of size/fit mismatches -the size scale on labels can vary across brands, the size parameters may not capture all fit measurements, or the product may have manufacturing defects. Warehouse quality check of garment sizes can be semi-automated to improve speed and accuracy. This paper presents an approach for automatically measuring garment sizes from a single image of the garment -using Deep Learning to learn garment keypoints. The paper focuses on the waist size measurement of jeans and can be easily extended to other garment types and measurements. Experimental results show that this approach can greatly improve the speed and accuracy of today’s manual measurement process.

Keywords: convolutional neural networks, deep learning, distortion, garment measurements, image warping, keypoints

Procedia PDF Downloads 308
30031 Automatic Detection and Filtering of Negative Emotion-Bearing Contents from Social Media in Amharic Using Sentiment Analysis and Deep Learning Methods

Authors: Derejaw Lake Melie, Alemu Kumlachew Tegegne

Abstract:

The increasing prevalence of social media in Ethiopia has exacerbated societal challenges by fostering the proliferation of negative emotional posts and comments. Illicit use of social media has further exacerbated divisions among the population. Addressing these issues through manual identification and aggregation of emotions from millions of users for swift decision-making poses significant challenges, particularly given the rapid growth of Amharic language usage on social platforms. Consequently, there is a critical need to develop an intelligent system capable of automatically detecting and categorizing negative emotional content into social, religious, and political categories while also filtering out toxic online content. This paper aims to leverage sentiment analysis techniques to achieve automatic detection and filtering of negative emotional content from Amharic social media texts, employing a comparative study of deep learning algorithms. The study utilized a dataset comprising 29,962 comments collected from social media platforms using comment exporter software. Data pre-processing techniques were applied to enhance data quality, followed by the implementation of deep learning methods for training, testing, and evaluation. The results showed that CNN, GRU, LSTM, and Bi-LSTM classification models achieved accuracies of 83%, 50%, 84%, and 86%, respectively. Among these models, Bi-LSTM demonstrated the highest accuracy of 86% in the experiment.

Keywords: negative emotion, emotion detection, social media filtering sentiment analysis, deep learning.

Procedia PDF Downloads 23
30030 A Study of Relational Factors Associated with Online Celebrity Business and Consumer Purchase Intention

Authors: Sixing Chen, Shuai Yang

Abstract:

Online celebrity business, also known as Internet celebrity business (or Wanghong business in Chinese), is an emerging relational C2C business model, and an alternative to traditional C2C transactional business models. There are already millions of these consumers, and this number is growing. In this model, consumer purchase decisions are driven by recommendations and endorsements in videos posted online by celebrities. The purpose of this paper is to determine the relational constructs within consumer relationships in the Internet celebrity business model and to investigate relationships between the constructs and consumer purchase intention. A questionnaire-based study was conducted with consumers who had an awareness of, or prior purchase experience with online celebrities. The results of exploratory factor analysis (EFA) and multiple regression analysis revealed three valid relational constructs: product experience sharing, lifestyle association, and real-time interaction. This study indicated that these constructs had the direct effect on consumer preference and purchase intention. The findings of this study provide insight into a business model in which online shopping is driven by celebrities. They suggest that online celebrities should pay more attention to product experience sharing, life style association and real-time interaction for managing their product promotions. These are the most salient factors with respect to the relational constructs identified in this study.

Keywords: customer relationship, customer to customer, Internet celebrity, online celebrity, online marketing, purchase intention

Procedia PDF Downloads 318
30029 Taking Sides: The Frames of Online Media on the Bilateral Relationship between Moslem Countries (Malaysia and Indonesia)

Authors: Gatut Priyowidodo, I. I. Indrayani

Abstract:

The relations between Indonesia and Malaysia are always full of colors. Indonesia is always known as old brother of Malaysia since it has similar history, religion also socio culturally. Some decades show that the declination of relationship the both countries. Another time, as ASEAN members the two countries devotes their nationalities to purify their collective identities as Eastern. The objective of the research is to extricate the construction of Kompas online and Utusan online toward news coverage of the borders dispute between Indonesia-Malaysia in 2010. This research is proposed to examine central issues which reported by Kompas online and Utusan online consistently. As a media industry, Kompas coverage dominates circulation nationally. Kompas.com was the pioneer of online news in Indonesia and born in reformation era. Utusan is prominent media industry in Malaysia that conducted by UMNO as the ruling party in Malaysia for some periods. The method used in this research is framing method by Robert N. Entman’s which consists of four steps identification: defining problem, diagnosing causes, moral judgment and a treatment recommendation. This research found that Kompas news covered the border dispute must be negotiated as recognition of Indonesia dignity. In contrary, Utusan’s spectacle focused on the Indonesia demonstrans anarchism during the dispute.

Keywords: online media, media construction, the border dispute, Indonesia-Malaysia’s bilateral relations

Procedia PDF Downloads 341
30028 Comparative Study of Learning Achievement via Jigsaw I and IV Techniques

Authors: Phongkon Weerpiput

Abstract:

This research study aimed to compare learning achievement between Jigsaw I and jigsaw IV techniques. The target group was 70 Thai major sophomores enrolled in a course entitled Foreign Language in Thai at the Faculty of Education, Suan Sunandha Rajabhat University. The research methodology was quasi-experimental design. A control group was given the Jigsaw I technique while an experimental group experienced the Jigsaw IV technique. The treatment content focused on Khmer loanwords in Thai language executed for a period of 3 hours per week for total of 3 weeks. The instruments included learning management plans and multiple-choice test items. The result yields no significant difference at level .05 between learning achievement of both techniques.

Keywords: Jigsaw I technique, Jigsaw IV technique, learning achievement, major sophomores

Procedia PDF Downloads 287
30027 Are Values Reflected in Online Skincare Advertisements from the Philippines and Taiwan the Same?

Authors: Chih-Ping Chen

Abstract:

In recent years, some scholars established the reflection of cultural values in advertisements. However, despite the Internet’s rapid development, few studies have focused on observing cross-cultural differences of values reflected in online advertisements. As mirrors of culture, advertisements are believed to reflect values relevant to consumers. Therefore, this research aims to examine the cultural values reflected on online skincare advertisements between countries with different cultural influences. We argue that culture affects the values presented in the slogans, endorsers, brand prominence, and product prominence of online advertisements; a concept that challenges the standardized manner of communication utilized by most multinational brands. Results highlight that the Philippines and Taiwan are neither located on extreme low-context nor extreme high-context cultures. Moreover, although advertisements reflect culture, it may be affected by potential value shifting caused by globalization, standardized communication, and the advertisers’ marketing priorities.

Keywords: cross-culture, cultural values, online advertising, prominence, beauty

Procedia PDF Downloads 472
30026 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics

Authors: Farhad Asadi, Mohammad Javad Mollakazemi

Abstract:

In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.

Keywords: time series, fluctuation in statistical characteristics, optimal learning, change-point algorithm

Procedia PDF Downloads 426
30025 Technical Determinants of the Success of the Quality Management Systems Implementation in Automotive Industry

Authors: Agnieszka Misztal

Abstract:

The popularity of the quality management system models continues to grow despite the transitional crisis in 2008. Their development is associated with the demands of the new requirements for entrepreneurs, such as risk analysis projects and more emphasis on supervision of outsourced processes. In parallel appropriate to focus attention on the selection of companies aspiring to quality management system. This is particularly important in the automotive supplier industry, where requirements transferred to the levels in the supply chain should be clear, transparent and fairly satisfied. The author has carried out series of researches aimed at finding the factors that allow for the effective implementation of the quality management system in automotive companies. The research was focused on four groups of companies: 1) manufacturing (parts and assemblies for the purpose of sale or for vehicle manufacturers), 2) service (repair and maintenance of the car), 3) services for the transport of goods or people, 4) commercial (auto parts and vehicles). Identified determinants were divided in two types of criteria into: internal and external, as well as: hard and soft. The article presents hard - technical factors that automotive company must meet in order to achieve the goal of the quality management system implementation.

Keywords: automotive industry, quality management system, automotive technology, automotive company

Procedia PDF Downloads 401
30024 An Analysis of Innovative Cloud Model as Bridging the Gap between Physical and Virtualized Business Environments: The Customer Perspective

Authors: Asim Majeed, Rehan Bhana, Mak Sharma, Rebecca Goode, Nizam Bolia, Mike Lloyd-Williams

Abstract:

This study aims to investigate and explore the underlying causes of security concerns of customers emerged when WHSmith transformed its physical system to virtualized business model through NetSuite. NetSuite is essentially fully integrated software which helps transforming the physical system to virtualized business model. Modern organisations are moving away from traditional business models to cloud based models and consequently it is expected to have a better, secure and innovative environment for customers. The vital issue of the modern age race is the security when transforming virtualized through cloud based models and designers of interactive systems often misunderstand privacy and even often ignore it, thus causing concerns for users. The content analysis approach is being used to collect the qualitative data from 120 online bloggers including TRUSTPILOT. The results and finding provide useful new insights into the nature and form of security concerns of online users after they have used the WHSmith services offered online through their website. Findings have theoretical as well as practical implications for the successful adoption of cloud computing Business-to-Business model and similar systems.

Keywords: innovation, virtualization, cloud computing, organizational flexibility

Procedia PDF Downloads 384
30023 Quantum Kernel Based Regressor for Prediction of Non-Markovianity of Open Quantum Systems

Authors: Diego Tancara, Raul Coto, Ariel Norambuena, Hoseein T. Dinani, Felipe Fanchini

Abstract:

Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlapping between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum dataset. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlapping between quantum states. We observe a good performance of the models.

Keywords: quantum, machine learning, kernel, non-markovianity

Procedia PDF Downloads 180
30022 The Relationship between Competency-Based Learning and Learning Efficiency of Media Communication Students at Suan Sunandha Rajabhat University

Authors: Somtop Keawchuer

Abstract:

This research aims to study (1) the relationship between competency-based learning and learning efficiency of new media communication students at Suan Sunandha University (2) the demographic factor effect on learning efficiency of students at Suan Sunandha University. This research method will use quantitative research; data was collected by questionnaires distributed to students from new media communication in management science faculty of Suan Sunandha Rajabhat University for 1340 sample by purposive sampling method. Data was analyzed by descriptive statistic including percentage, mean, standard deviation and inferential statistic including T-test, ANOVA and Pearson correlation for hypothesis testing. The results showed that the competency-based learning in term of ability to communicate, ability to think and solve the problem, life skills and ability to use technology has a significant relationship with learning efficiency in term of the cognitive domain, psychomotor domain and affective domain at the 0.05 level and which is in harmony with the research hypotheses.

Keywords: competency-based learning, learning efficiency, new media communication students, Suan Sunandha Rajabhat University

Procedia PDF Downloads 243