Search results for: motion blur
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1323

Search results for: motion blur

453 Bhumastra “Unmanned Ground Vehicle”

Authors: Vivek Krishna, Nikhil Jain, A. Mary Posonia A., Albert Mayan J

Abstract:

Terrorism and insurgency are significant global issues that require constant attention and effort from governments and scientists worldwide. To combat these threats, nations invest billions of dollars in developing new defensive technologies to protect civilians. Breakthroughs in vehicle automation have led to the use of sophisticated machines for many dangerous and critical anti-terrorist activities. Our concept of an "Unmanned Ground Vehicle" can carry out tasks such as border security, surveillance, mine detection, and active combat independently or in tandem with human control. The robot's movement can be wirelessly controlled by a person in a distant location or can travel to a pre-programmed destination autonomously in situations where personal control is not feasible. Our defence system comprises two units: the control unit that regulates mobility and the motion tracking unit. The remote operator robot uses the camera's live visual feed to manually operate both units, and the rover can automatically detect movement. The rover is operated by manpower who controls it using a joystick or mouse, and a wireless modem enables a soldier in a combat zone to control the rover via an additional controller feature.

Keywords: robotics, computer vision, Machine learning, Artificial intelligence, future of AI

Procedia PDF Downloads 91
452 A Vertical-Axis Unidirectional Rotor with Nested Blades for Wave Energy Conversion

Authors: Yingchen Yang

Abstract:

In the present work, development of a new vertical-axis unidirectional wave rotor is reported. The wave rotor is a key component of a wave energy converter (WEC), which harvests energy from ocean waves. Differing from the huge majority of WEC designs that perform reciprocating motions (heaving up and down, swaying back and forth, etc.), our wave rotor performs unidirectional rotation about a vertical axis when directly exposed in waves. The unidirectional feature of the rotor makes the rotor respond well in a wide range of the wave frequency. The vertical axis arrangement of the rotor makes the rotor insensitive to the wave propagation direction. The rotor employs blades with a cross-section in an airfoil shape and a span curled into a semi-oval shape. Two sets of blades, with one nested inside the other, constitute the rotor. In waves, water particles perform an omnidirectional motion that constantly changes in both spatial and temporal domains. The blade nesting permits a compact rotor configuration that ‘sees’ a relatively uniform local flow in the spatial domain. The rotor was experimentally tested in simulated waves in a wave flume under various conditions. The testing results show a promising unidirectional rotor that is capable of extracting energy from waves at a capture width ratio of 0.08 to 0.15, depending on detailed wave conditions.

Keywords: unidirectional, vertical axis, wave energy converter, wave rotor

Procedia PDF Downloads 216
451 Study of Functional Relevant Conformational Mobility of β-2 Adrenoreceptor by Means of Molecular Dynamics Simulation

Authors: G. V. Novikov, V. S. Sivozhelezov, S. S. Kolesnikov, K. V. Shaitan

Abstract:

The study reports about the influence of binding of orthosteric ligands as well as point mutations on the conformational dynamics of β-2-adrenoreceptor. Using molecular dynamics simulation we found that there was a little fraction of active states of the receptor in its apo (ligand free) ensemble corresponded to its constitutive activity. Analysis of MD trajectories indicated that such spontaneous activation of the receptor is accompanied by the motion in intracellular part of its alpha-helices. Thus receptor’s constitutive activity directly results from its conformational dynamics. On the other hand the binding of a full agonist resulted in a significant shift of the initial equilibrium towards its active state. Finally, the binding of the inverse agonist stabilized the receptor in its inactive state. It is likely that the binding of inverse agonists might be a universal way of constitutive activity inhibition in vivo. Our results indicate that ligand binding redistribute pre-existing conformational degrees of freedom (in accordance to the Monod-Wyman-Changeux-Model) of the receptor rather than cause induced fit in it. Therefore, the ensemble of biologically relevant receptor conformations is encoded in its spatial structure, and individual conformations from that ensemble might be used by the cell in conformity with the physiological behaviour.

Keywords: seven-transmembrane receptors, constitutive activity, activation, x-ray crystallography, principal component analysis, molecular dynamics simulation

Procedia PDF Downloads 232
450 Various Models of Quality Management Systems

Authors: Mehrnoosh Askarizadeh

Abstract:

People, process and IT are the most important assets of any organization. Optimal utilization of these resources has been the question of research in business for many decades. The business world have responded by inventing various methodologies that can be used for addressing problems of quality improvement, efficiency of processes, continuous improvement, reduction of waste, automation, strategy alignments etc. Some of these methodologies can be commonly called as Business Process Quality Management methodologies (BPQM). In essence, the first references to the process management can be traced back to Frederick Taylor and scientific management. Time and motion study was addressed to improvement of manufacturing process efficiency. The ideas of scientific management were in use for quite a long period until more advanced quality management techniques were developed in Japan and USA. One of the first prominent methods had been Total Quality Management (TQM) which evolved during 1980’s. About the same time, Six Sigma (SS) originated at Motorola as a separate method. SS spread and evolved; and later joined with ideas of Lean manufacturing to form Lean Six Sigma. In 1990’s due to emerging IT technologies, beginning of globalization, and strengthening of competition, companies recognized the need for better process and quality management. Business Process Management (BPM) emerged as a novel methodology that has taken all this into account and helped to align IT technologies with business processes and quality management. In this article we will study various aspects of above mentioned methods and identified their relations.

Keywords: e-process, quality, TQM, BPM, lean, six sigma, CPI, information technology, management

Procedia PDF Downloads 411
449 Numerical Investigation of the Effect of Sidewalls on Low-Speed Finite Width Cavity Flows

Authors: Foo Kok, Varun Thangamani

Abstract:

Rectangular cavities with a full-span or finite-width configuration have been the basis of much previous research on cavity flows. However, much less attention has been given to the influence of sidewalls, in particular, on low-speed cavity flows. In this study, the flow characteristics of two separate low-speed finite-width cavities with a Reynolds number of 𝑅𝑒𝐷 = 10⁴ are examined using large eddy simulations. Two different lateral boundary conditions are used to investigate the influence of sidewalls on the self-sustaining oscillations and the three-dimensional flow fields inside the cavities. The results show that the full-span finite width cavities are less sensitive to the sidewall effect at a low length-to-width ratio 𝐿/𝐷. The increase in 𝐿/𝐷 leads to a departure from two-dimensional instability and results in the loss of spanwise homogeneity. The analysis of the spanwise flow structures shows that these effects correspond closely to the declination of the centrifugal force from the primary recirculation zone. Such effects are also reflected in the distinct modulation of the secondary vortices in the primary recirculation zone, which suggests that the instabilities observed in the full-span finite-width cavity flows are predominantly dependent on the secondary motion from the primary recirculation zone.

Keywords: LES, cavity flows, unsteady shear layer, instability modes, secondary flow

Procedia PDF Downloads 34
448 Online Pose Estimation and Tracking Approach with Siamese Region Proposal Network

Authors: Cheng Fang, Lingwei Quan, Cunyue Lu

Abstract:

Human pose estimation and tracking are to accurately identify and locate the positions of human joints in the video. It is a computer vision task which is of great significance for human motion recognition, behavior understanding and scene analysis. There has been remarkable progress on human pose estimation in recent years. However, more researches are needed for human pose tracking especially for online tracking. In this paper, a framework, called PoseSRPN, is proposed for online single-person pose estimation and tracking. We use Siamese network attaching a pose estimation branch to incorporate Single-person Pose Tracking (SPT) and Visual Object Tracking (VOT) into one framework. The pose estimation branch has a simple network structure that replaces the complex upsampling and convolution network structure with deconvolution. By augmenting the loss of fully convolutional Siamese network with the pose estimation task, pose estimation and tracking can be trained in one stage. Once trained, PoseSRPN only relies on a single bounding box initialization and producing human joints location. The experimental results show that while maintaining the good accuracy of pose estimation on COCO and PoseTrack datasets, the proposed method achieves a speed of 59 frame/s, which is superior to other pose tracking frameworks.

Keywords: computer vision, pose estimation, pose tracking, Siamese network

Procedia PDF Downloads 129
447 The Pressure Distribution on the Rectangular and Trapezoidal Storage Tanks' Perimeters Due to Liquid Sloshing Impact

Authors: Hassan Saghi, Gholam Reza Askarzadeh Garmroud, Seyyed Ali Reza Emamian

Abstract:

Sloshing phenomenon is a complicated free surface flow problem that increases the dynamic pressure on the sidewalls and the bottom of the storage tanks. When the storage tanks are partially filled, it is essential to be able to evaluate the fluid dynamic loads on the tank’s perimeter. In this paper, a numerical code was developed to determine the pressure distribution on the rectangular and trapezoidal storage tanks’ perimeters due to liquid sloshing impact. Assuming the fluid to be inviscid, the Laplace equation and the nonlinear free surface boundary conditions are solved using coupled BEM-FEM. The code performance for sloshing modeling is validated against available data. Finally, this code is used for partially filled rectangular and trapezoidal storage tanks and the pressure distribution on the tanks’ perimeters due to liquid sloshing impact is estimated. The results show that the maximum pressure on the perimeter of the rectangular and trapezoidal storage tanks was decreased along the sidewalls from the top to the bottom. Furthermore, the period of the pressure distribution is different for different points on the tank’s perimeter and it is bigger in the trapezoidal tanks compared to the rectangular ones.

Keywords: pressure distribution, liquid sloshing impact, sway motion, trapezoidal storage tank, coupled BEM-FEM

Procedia PDF Downloads 520
446 Comparison of Interactive Performance of Clicking Tasks Using Cursor Control Devices under Different Feedback Modes

Authors: Jinshou Shi, Xiaozhou Zhou, Yingwei Zhou, Tuoyang Zhou, Ning Li, Chi Zhang, Zhanshuo Zhang, Ziang Chen

Abstract:

In order to select the optimal interaction method for common computer click tasks, the click experiment test adopts the ISO 9241-9 task paradigm, using four common operations: mouse, trackball, touch, and eye control under visual feedback, auditory feedback, and no feedback. Through data analysis of various parameters of movement time, throughput, and accuracy, it is found that the movement time of touch-control is the shortest, the operation accuracy and throughput are higher than others, and the overall operation performance is the best. In addition, the motion time of the click operation with auditory feedback is significantly lower than the other two feedback methods in each operation mode experiment. In terms of the size of the click target, it is found that when the target is too small (less than 14px), the click performance of all aspects is reduced, so it is proposed that the design of the interface button should not be less than 28px. In this article, we discussed in detail the advantages and disadvantages of the operation and feedback methods, and the results of the discussion of the click operation can be applied to the design of the buttons in the interactive interface.

Keywords: cursor control performance, feedback, human computer interaction, throughput

Procedia PDF Downloads 172
445 Fundamental Theory of the Evolution Force: Gene Engineering utilizing Synthetic Evolution Artificial Intelligence

Authors: L. K. Davis

Abstract:

The effects of the evolution force are observable in nature at all structural levels ranging from small molecular systems to conversely enormous biospheric systems. However, the evolution force and work associated with formation of biological structures has yet to be described mathematically or theoretically. In addressing the conundrum, we consider evolution from a unique perspective and in doing so we introduce the “Fundamental Theory of the Evolution Force: FTEF”. We utilized synthetic evolution artificial intelligence (SYN-AI) to identify genomic building blocks and to engineer 14-3-3 ζ docking proteins by transforming gene sequences into time-based DNA codes derived from protein hierarchical structural levels. The aforementioned served as templates for random DNA hybridizations and genetic assembly. The application of hierarchical DNA codes allowed us to fast forward evolution, while dampening the effect of point mutations. Natural selection was performed at each hierarchical structural level and mutations screened using Blosum 80 mutation frequency-based algorithms. Notably, SYN-AI engineered a set of three architecturally conserved docking proteins that retained motion and vibrational dynamics of native Bos taurus 14-3-3 ζ.

Keywords: 14-3-3 docking genes, synthetic protein design, time-based DNA codes, writing DNA code from scratch

Procedia PDF Downloads 90
444 Analysis of Airborne Data Using Range Migration Algorithm for the Spotlight Mode of Synthetic Aperture Radar

Authors: Peter Joseph Basil Morris, Chhabi Nigam, S. Ramakrishnan, P. Radhakrishna

Abstract:

This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data using the Range Migration Algorithm (RMA) for the spotlight mode of operation. Unlike in polar format algorithm (PFA), space-variant defocusing and geometric distortion effects are mitigated in RMA since it does not assume that the illuminating wave-fronts are planar. This facilitates the use of RMA for imaging scenarios involving severe differential range curvatures enabling the imaging of larger scenes at fine resolution and at shorter ranges with low center frequencies. The RMA algorithm for the spotlight mode of SAR is analyzed in this paper using the airborne data. Pre-processing operations viz: - range de-skew and motion compensation to a line are performed on the raw data before being fed to the RMA component. Various stages of the RMA viz:- 2D Matched Filtering, Along Track Fourier Transform and Slot Interpolation are analyzed to find the performance limits and the dependence of the imaging geometry on the resolution of the final image. The ability of RMA to compensate for severe differential range curvatures in the two-dimensional spatial frequency domain are also illustrated in this paper.

Keywords: range migration algorithm, spotlight SAR, synthetic aperture radar, matched filtering, slot interpolation

Procedia PDF Downloads 216
443 Application of Residual Correction Method on Hyperbolic Thermoelastic Response of Hollow Spherical Medium in Rapid Transient Heat Conduction

Authors: Po-Jen Su, Huann-Ming Chou

Abstract:

In this article we uses the residual correction method to deal with transient thermoelastic problems with a hollow spherical region when the continuum medium possesses spherically isotropic thermoelastic properties. Based on linear thermoelastic theory, the equations of hyperbolic heat conduction and thermoelastic motion were combined to establish the thermoelastic dynamic model with consideration of the deformation acceleration effect and non-Fourier effect under the condition of transient thermal shock. The approximate solutions of temperature and displacement distributions are obtained using the residual correction method based on the maximum principle in combination with the finite difference method, making it easier and faster to obtain upper and lower approximations of exact solutions. The proposed method is found to be an effective numerical method with satisfactory accuracy. Moreover, the result shows that the effect of transient thermal shock induced by deformation acceleration is enhanced by non-Fourier heat conduction with increased peak stress. The influence on the stress increases with the thermal relaxation time.

Keywords: maximum principle, non-Fourier heat conduction, residual correction method, thermo-elastic response

Procedia PDF Downloads 401
442 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling

Authors: Amin Nezarat, Naeime Seifadini

Abstract:

Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.

Keywords: predicting, deep learning, neural network, urban trip

Procedia PDF Downloads 109
441 Early Detection of Instability in Emulsions via Diffusing Wave Spectroscopy

Authors: Coline Bretz, Andrea Vaccaro, Dario Leumann

Abstract:

The food, personal care, and cosmetic industries are seeing increased consumer demand for more sustainable and innovative ingredients. When developing new formulations incorporating such ingredients, stability is one of the first criteria that must be assessed, and it is thus of great importance to have a method that can detect instabilities early and quickly. Diffusing Wave Spectroscopy (DWS) is a light scattering technique that probes the motion,i.e., the mean square displacement (MSD), of colloids, such as nanoparticles in a suspension or droplets in emulsions. From the MSD, the rheological properties of the surrounding medium can be determined via the so-called microrheology approach. In the case of purely viscous media, it is also possible to obtain information about particle size. DWS can thus be used to monitor the size evolution of particles, droplets, or bubbles in aging dispersions, emulsions, or foams. In the context of early instability detection in emulsions, DWS offers considerable advantages, as the samples are measured in a contact-free manner, using only small quantities of samples loaded in a sealable cuvette. The sensitivity and rapidity of the technique are key to detecting and following the ageing of emulsions reliably. We present applications of DWS focused on the characterization of emulsions. In particular, we demonstrate the ability to record very subtle changes in the structural properties early on. We also discuss the various mechanisms at play in the destabilization of emulsions, such as coalescence or Ostwald ripening, and how to identify them through this technique.

Keywords: instrumentation, emulsions, stability, DWS

Procedia PDF Downloads 41
440 Video Text Information Detection and Localization in Lecture Videos Using Moments

Authors: Belkacem Soundes, Guezouli Larbi

Abstract:

This paper presents a robust and accurate method for text detection and localization over lecture videos. Frame regions are classified into text or background based on visual feature analysis. However, lecture video shows significant degradation mainly related to acquisition conditions, camera motion and environmental changes resulting in low quality videos. Hence, affecting feature extraction and description efficiency. Moreover, traditional text detection methods cannot be directly applied to lecture videos. Therefore, robust feature extraction methods dedicated to this specific video genre are required for robust and accurate text detection and extraction. Method consists of a three-step process: Slide region detection and segmentation; Feature extraction and non-text filtering. For robust and effective features extraction moment functions are used. Two distinct types of moments are used: orthogonal and non-orthogonal. For orthogonal Zernike Moments, both Pseudo Zernike moments are used, whereas for non-orthogonal ones Hu moments are used. Expressivity and description efficiency are given and discussed. Proposed approach shows that in general, orthogonal moments show high accuracy in comparison to the non-orthogonal one. Pseudo Zernike moments are more effective than Zernike with better computation time.

Keywords: text detection, text localization, lecture videos, pseudo zernike moments

Procedia PDF Downloads 128
439 Effects of Near-Fault Ground Motions on Earthquake-Induced Pounding Response of RC Buildings

Authors: Mehmet Akköse

Abstract:

In ground motions recorded in recent major earthquakes such as 1994 Northridge earthquake in US, 1995 Kobe earthquake in Japan, 1999 Chi-Chi earthquake in Taiwan, and 1999 Kocaeli earthquake in Turkey, it is noticed that they have large velocity pulses. The ground motions with the velocity pulses recorded in the vicinity of an earthquake fault are quite different from the usual far-fault earthquake ground motions. The velocity pulse duration in the near-fault ground motions is larger than 1.0 sec. In addition, the ratio of the peak ground velocity (PGV) to the peak ground acceleration (PGA) of the near-fault ground motions is larger than 0.1 sec. The ground motions having these characteristics expose the structure to high input energy in the beginning of the earthquake and cause large structural responses. Therefore, structural response to near-fault ground motions has received much attention in recent years. Interactions between neighboring, inadequately separated buildings have been repeatedly observed during earthquakes. This phenomenon often referred to as earthquake-induced structural pounding, may result in substantial damage or even total destruction of colliding structures during strong ground motions. This study focuses on effects of near-fault ground motions on earthquake-induced pounding response of RC buildings. The program SAP2000 is employed in the response calculations. The results obtained from the pounding analyses for near-fault and far-fault ground motions are compared with each other.

Keywords: near-fault ground motion, pounding analysis, RC buildings, SAP2000

Procedia PDF Downloads 239
438 Vibration Response of Soundboards of Classical Guitars

Authors: Meng Koon Lee, Mohammad Hosseini Fouladi, Satesh Narayana Namasivayam

Abstract:

Research is focused on the response of soundboards of Classical guitars at frequencies up to 5 kHz as the soundboard is a major contributor to acoustic radiation at high frequencies when compared to the bridge and sound hole. A thin rectangular plate of variable thickness that is simply-supported on all sides is used as an analytical model of the research. This model is used to study the response of the guitar soundboard as the latter can be considered as a modified form of a rectangular plate. Homotopy Perturbation Method (HPM) is selected as a mathematical method to obtain an analytical solution of the 4th-order parabolic partial differential equation of motion of the rectangular plate of constant thickness viewed as a linear problem. This procedure is generalized to the nonlinear problem of the rectangular plate with variable thickness and an analytical solution can also be obtained. Sound power is used as a parameter to investigate the acoustic radiation of soundboards made from spruce using various bracing patterns. The sound power of soundboards made from Malaysian softwood such as damar minyak, sempilor or podo are investigated to determine the viability of replacing spruce as future materials for soundboards of Classical guitars.

Keywords: rectangular plates, analytical solution, homotopy perturbation, natural frequencies

Procedia PDF Downloads 368
437 Radial Fuel Injection Computational Fluid Dynamics Model for a Compression Ignition Two-Stroke Opposed Piston Engine

Authors: Tytus Tulwin, Rafal Sochaczewski, Ksenia Siadkowska

Abstract:

Designing a new engine requires a large number of different cases to be considered. Especially different injector parameters and combustion chamber geometries. This is essential when developing an engine with unconventional build – compression ignition, two-stroke operating with direct side injection. Computational Fluid Dynamics modelling allows to test those different conditions and seek for the best conditions with correct combustion. This research presents the combustion results for different injector and combustion chamber cases. The shape of combustion chamber is different than for conventional engines as it requires side injection. This completely changes the optimal shape for the given condition compared to standard automotive heart shaped combustion chamber. Because the injection is not symmetrical there is a strong influence of cylinder swirl and piston motion on the injected fuel stream. The results present the fuel injection phenomena allowing to predict the right injection parameters for a maximum combustion efficiency and minimum piston heat loads. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: CFD, combustion, injection, opposed piston

Procedia PDF Downloads 245
436 Coding Structures for Seated Row Simulation of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform

Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho

Abstract:

Simulation for seated row exercise was a continued task to assist NASA in analyzing a one-dimensional vibration isolation and stabilization system for astronaut’s exercise platform. Feedback delay and signal noise were added to the model as previously done in simulation for squat exercise. Simulation runs for this study were conducted in two software simulation tools, Trick and MBDyn, software simulation environments developed at the NASA Johnson Space Center. The exciter force in the simulation was calculated from the motion capture of an exerciser during a seated row exercise. The simulation runs include passive control, active control using a Proportional, Integral, Derivative (PID) controller, and active control using a Piecewise Linear Integral Derivative (PWLID) controller. Output parameters include displacements of the exercise platform, the exerciser, and the counterweight; transmitted force to the wall of spacecraft; and actuator force to the platform. The simulation results showed excellent force reduction in the actively controlled system compared to the passive controlled system, which showed less force reduction.

Keywords: control, counterweight, isolation, vibration.

Procedia PDF Downloads 117
435 Structural Element Vibration Analysis with finite element method: Use of Rayleigh Quotient

Authors: Houari Boumediene University of Science, Technology.

Abstract:

"Various methods are typically used in the dynamic analysis of transversely vibrating beams. To achieve this, numerical methods are used to solve the general eigenvalue problem. The equations of equilibrium, which describe the motion, are derived from a fourth-order differential equation. Our study is based on the finite element method, and the results of the investigation are the vibration frequencies obtained using the Jacobi method. Two types of elementary mass matrices are considered: one representing a uniform distribution of mass along the element and the other consisting of concentrated masses located at fixed points whose number increases progressively with equal distances at each evaluation stage. The beams studied have different boundary constraints, representing several classical situations. Comparisons are made for beams where the distributed mass is replaced by n concentrated masses. As expected, the first calculation stage involves determining the lowest number of beam parts that gives a frequency comparable to that obtained from the Rayleigh formula. The obtained values are then compared to theoretical results based on the assumptions of the Bernoulli-Euler theory. These steps are repeated for the second type of mass representation in the same manner."

Keywords: finite element method, bernouilli eulertheory, structural analysis, vibration analysis, rayleigh quotient

Procedia PDF Downloads 62
434 Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method

Authors: Atilla Bayram

Abstract:

This paper presents the trajectory tracking control of a spatial redundant hybrid manipulator. This manipulator consists of two parallel manipulators which are a variable geometry truss (VGT) module. In fact, each VGT module with 3-degress of freedom (DOF) is a planar parallel manipulator and their operational planes of these VGT modules are arranged to be orthogonal to each other. Also, the manipulator contains a twist motion part attached to the top of the second VGT module to supply the missing orientation of the endeffector. These three modules constitute totally 7-DOF hybrid (parallel-parallel) redundant spatial manipulator. The forward kinematics equations of this manipulator are obtained, then, according to these equations, the inverse kinematics is solved based on an optimization with the joint limit avoidance. The dynamic equations are formed by using virtual work method. In order to test the performance of the redundant manipulator and the controllers presented, two different desired trajectories are followed by using the computed force control method and a switching control method. The switching control method is combined with the computed force control method and genetic algorithm. In the switching control method, the genetic algorithm is only used for fine tuning in the compensation of the trajectory tracking errors.

Keywords: computed force method, genetic algorithm, hybrid manipulator, inverse kinematics of redundant manipulators, variable geometry truss

Procedia PDF Downloads 313
433 A Case Study on the Collapse Assessment of the Steel Moment-Frame Setback High-Rise Tower

Authors: Marzie Shahini, Rasoul Mirghaderi

Abstract:

This paper describes collapse assessments of a steel moment-frame high-rise tower with setback irregularity, designed per the 2010 ASCE7 code, under spectral-matched ground motion records. To estimate a safety margin against life-threatening collapse, an analytical model of the tower is subjected to a suite of ground motions with incremental intensities from maximum considered earthquake hazard level to the incipient collapse level. Capability of the structural system to collapse prevention is evaluated based on the similar methodology reported in FEMA P695. Structural performance parameters in terms of maximum/mean inter-story drift ratios, residual drift ratios, and maximum plastic hinge rotations are also compared to the acceptance criteria recommended by the TBI Guidelines. The results demonstrate that the structural system satisfactorily safeguards the building against collapse. Moreover, for this tower, the code-specified requirements in ASCE7-10 are reasonably adequate to satisfy seismic performance criteria developed in the TBI Guidelines for the maximum considered earthquake hazard level.

Keywords: high-rise buildings, set back, residual drift, seismic performance

Procedia PDF Downloads 239
432 Transient Response of Rheological Properties of a CI-Water Based Magnetorheological Fluid under Different Operating Modes

Authors: Chandra Shekhar Maurya, Chiranjit Sarkar

Abstract:

The transient response of rheological properties of a carbonyl iron (CI)-water-based magnetorheological fluid (MRF) was studied under shear rate, shear stress, and shear strain working mode subjected to step-change in an applied magnetic field. MR fluid is a kind of smart material whose rheological properties change under an applied magnetic field. We prepared an MR fluid comprising of CI 65 weight %, water 35 weight %, and OPTIGEL WX used as an additive by changing the weight %. It was found that the MR effect of the CI/water suspension was enhanced by using an additive. A transient shear stress response was observed by switched on and switched off of the magnetic field to see the stability, relaxation behavior, and resulting change in rheological properties. When the magnetic field is on, a sudden increase in the shear stress was observed due to the fast motion of magnetic structures that describe the transition from the liquidlike state to the solid-like state due to an increase in dipole-dipole interaction of magnetic particles. Simultaneously, the complete reverse transition occurs due to instantaneous breakage of the chain structure once the magnetic field is switched off.

Keywords: magnetorheological fluid, rheological properties, shears stress, shears strain, viscosity

Procedia PDF Downloads 154
431 Blood Oxygen Saturation Measurement System Using Broad-Band Light Source with LabVIEW Program

Authors: Myoung Ah Kim, Dong Ho Sin, Chul Gyu Song

Abstract:

Blood oxygen saturation system is a well-established, noninvasive photoplethysmographic method to monitor vital signs. Conventional blood oxygen saturation measurements for the two LED light source is the ambiguity of the oxygen saturation measurement principle and the measurement results greatly influenced and heat and motion artifact. A high accuracy in order to solve these problems blood oxygen saturation measuring method has been proposed using a broadband light source that can be easily understood by the algorithm. The measurement of blood oxygen saturation based on broad-band light source has advantage of simple testing facility and easy understanding. Broadband light source based on blood oxygen saturation measuring program proposed in this paper is a combination of LabVIEW and MATLAB. Using the wavelength range of 450 nm-750 nm using a floating light absorption of oxyhemoglobin and deoxyhemoglobin to measure the blood oxygen saturation. Hand movement is to fix the probe to the motor stage in order to prevent oxygen saturation measurement that affect the sample and probe kept constant interval. Experimental results show that the proposed method noticeably increases the accuracy and saves time compared with the conventional methods.

Keywords: oxygen saturation, broad-band light source, CCD, light reflectance theory

Procedia PDF Downloads 421
430 Frequency Modulation Continuous Wave Radar Human Fall Detection Based on Time-Varying Range-Doppler Features

Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou

Abstract:

The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.

Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-doppler features

Procedia PDF Downloads 95
429 Computational Fluid Dynamics Simulation Study of Flow near Moving Wall of Various Surface Types Using Moving Mesh Method

Authors: Khizir Mohd Ismail, Yu Jun Lim, Tshun Howe Yong

Abstract:

The study of flow behavior in an enclosed volume using Computational Fluid Dynamics (CFD) has been around for decades. However, due to the knowledge limitation of adaptive grid methods, the flow in an enclosed volume near the moving wall using CFD is less explored. A CFD simulation of flow in an enclosed volume near a moving wall was demonstrated and studied by introducing a moving mesh method and was modeled with Unsteady Reynolds-Averaged Navier-Stokes (URANS) approach. A static enclosed volume with controlled opening size in the bottom was positioned against a moving, translational wall with sliding mesh features. Controlled variables such as smoothed, crevices and corrugated wall characteristics, the distance between the enclosed volume to the wall and the moving wall speed against the enclosed chamber were varied to understand how the flow behaves and reacts in between these two geometries. These model simulations were validated against experimental results and provided result confidence when the simulation had shown good agreement with the experimental data. This study had provided better insight into the flow behaving in an enclosed volume when various wall types in motion were introduced within the various distance between each other and create a potential opportunity of application which involves adaptive grid methods in CFD.

Keywords: moving wall, adaptive grid methods, CFD, moving mesh method

Procedia PDF Downloads 120
428 In vitro Effects of Amygdalin on the Functional Competence of Rabbit Spermatozoa

Authors: Marek Halenár, Eva Tvrdá, Tomáš Slanina, Ľubomír Ondruška, Eduard Kolesár, Peter Massányi, Adriana Kolesárová

Abstract:

The present in vitro study was designed to reveal whether amygdalin (AMG) is able to cause changes to the motility, viability and mitochondrial activity of rabbit spermatozoa. New Zealand White rabbits (n = 10) aged four months were used in the study. Semen samples were collected from each animal and used for the in vitro incubation. The samples were divided into five equal parts and diluted with saline supplemented with 0, 0.5, 1, 2.5 and 5 mg/mL AMG. At times 0h, 3h and 5h spermatozoa motion parameters were assessed using the SpermVision™ computer-aided sperm analysis (CASA) system, cell viability was examined with the metabolic activity (MTT) assay, and the eosin-nigrosin staining technique was used to evaluate the viability of rabbit spermatozoa. All AMG concentrations exhibited stimulating effects on the spermatozoa activity, as shown by a significant preservation of the motility (P<0.05 with respect to 0.5 mg/mL and 1 mg/mL AMG; Time 5 h) and mitochondrial activity (P< 0.05 in case of 0.5 mg/mL AMG; P< 0.01 in case of 1 mg/mL AMG; P < 0.001 with respect to 2.5 mg/mL and 5 mg/mL AMG; Time 5 h). None of the AMG doses supplemented had any significant impact of the spermatozoa viability. In conclusion, the data revealed that short-term co-incubation of spermatozoa with AMG may result in a higher preservation of the sperm structural integrity and functional activity.

Keywords: amygdalin, CASA, mitochondrial activity, motility, rabbits, spermatozoa, viability

Procedia PDF Downloads 309
427 A Numerical Study on Electrophoresis of a Soft Particle with Charged Core Coated with Polyelectrolyte Layer

Authors: Partha Sarathi Majee, S. Bhattacharyya

Abstract:

Migration of a core-shell soft particle under the influence of an external electric field in an electrolyte solution is studied numerically. The soft particle is coated with a positively charged polyelectrolyte layer (PEL) and the rigid core is having a uniform surface charge density. The Darcy-Brinkman extended Navier-Stokes equations are solved for the motion of the ionized fluid, the non-linear Nernst-Planck equations for the ion transport and the Poisson equation for the electric potential. A pressure correction based iterative algorithm is adopted for numerical computations. The effects of convection on double layer polarization (DLP) and diffusion dominated counter ions penetration are investigated for a wide range of Debye layer thickness, PEL fixed surface charge density, and permeability of the PEL. Our results show that when the Debye layer is in order of the particle size, the DLP effect is significant and produces a reduction in electrophoretic mobility. However, the double layer polarization effect is negligible for a thin Debye layer or low permeable cases. The point of zero mobility and the existence of mobility reversal depending on the electrolyte concentration are also presented.

Keywords: debye length, double layer polarization, electrophoresis, mobility reversal, soft particle

Procedia PDF Downloads 323
426 Vibration Behavior of Nanoparticle Delivery in a Single-Walled Carbon Nanotube Using Nonlocal Timoshenko Beam Theory

Authors: Haw-Long Lee, Win-Jin Chang, Yu-Ching Yang

Abstract:

In the paper, the coupled equation of motion for the dynamic displacement of a fullerene moving in a (10,10) single-walled carbon nanotube (SWCNT) is derived using nonlocal Timoshenko beam theory, including the effects of rotary inertia and shear deformation. The effects of confined stiffness between the fullerene and nanotube, foundation stiffness, and nonlocal parameter on the dynamic behavior are analyzed using the Runge-Kutta Method. The numerical solution is in agreement with the analytical result for the special case. The numerical results show that increasing the confined stiffness and foundation stiffness decrease the dynamic displacement of SWCNT. However, the dynamic displacement increases with increasing the nonlocal parameter. In addition, result using the Euler beam theory and the Timoshenko beam theory are compared. It can be found that ignoring the effects of rotary inertia and shear deformation leads to an underestimation of the displacement.

Keywords: single-walled carbon nanotube, nanoparticle delivery, Nonlocal Timoshenko beam theory, Runge-Kutta Method, Van der Waals force

Procedia PDF Downloads 351
425 Time Optimal Control Mode Switching between Detumbling and Pointing in the Early Orbit Phase

Authors: W. M. Ng, O. B. Iskender, L. Simonini, J. M. Gonzalez

Abstract:

A multitude of factors, including mechanical imperfections of the deployment system and separation instance of satellites from launchers, oftentimes results in highly uncontrolled initial tumbling motion immediately after deployment. In particular, small satellites which are characteristically launched as a piggyback to a large rocket, are generally allocated a large time window to complete detumbling within the early orbit phase. Because of the saturation risk of the actuators, current algorithms are conservative to avoid draining excessive power in the detumbling phase. This work aims to enable time-optimal switching of control modes during the early phase, reducing the time required to transit from launch to sun-pointing mode for power budget conscious satellites. This assumes the usage of B-dot controller for detumbling and PD controller for pointing. Nonlinear Euler's rotation equations are used to represent the attitude dynamics of satellites and Commercial-off-the-shelf (COTS) reaction wheels and magnetorquers are used to perform the manoeuver. Simulation results will be based on a spacecraft attitude simulator and the use case will be for multiple orbits of launch deployment general to Low Earth Orbit (LEO) satellites.

Keywords: attitude control, detumbling, small satellites, spacecraft autonomy, time optimal control

Procedia PDF Downloads 94
424 Induction Heating and Electromagnetic Stirring of Bi-Phasic Metal/Glass Molten Bath for Mixed Nuclear Waste Treatment

Authors: P. Charvin, R. Bourrou, F. Lemont, C. Lafon, A. Russello

Abstract:

For nuclear waste treatment and confinement, a specific IN-CAN melting module based on low-frequency induction heating have been designed. The frequency of 50Hz has been chosen to improve penetration length through metal. In this design, the liquid metal, strongly stirred by electromagnetic effects, presents shape of a dome caused by strong Laplace forces developing in the bulk of bath. Because of a lower density, the glass phase is located above the metal phase and is heated and stirred by metal through interface. Electric parameters (Intensity, frequency) give precious information about metal load and composition (resistivity of alloy) through impedance modification. Then, power supply can be adapted to energy transfer efficiency for suitable process supervision. Modeling of this system allows prediction of metal dome shape (in agreement with experimental measurement with a specific device), glass and metal velocity, heat and motion transfer through interface. MHD modeling is achieved with COMSOL and Fluent. First, a simplified model is used to obtain the shape of the metal dome. Then the shape is fixed to calculate the fluid flow and the thermal part.

Keywords: electromagnetic stirring, induction heating, interface modeling, metal load

Procedia PDF Downloads 239