Search results for: exploratory data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42679

Search results for: exploratory data analysis

41809 Prevalence Of Listeria And Salmonella Contamination In Fda Recalled Foods

Authors: Oluwatofunmi Musa-Ajakaiye, Paul Olorunfemi M.D MPH, John Obafaiye

Abstract:

Introduction: The U.S Food and Drug Administration (FDA) reports the public notices for recalled FDA-regulated products over periods of time. It study reviewed the primary reasons for recalls of products of various types over a period of 7 years. Methods: The study analyzed data provided in the FDA’s archived recalls for the years 2010-2017. It identified the various reasons for product recalls in the categories of foods, beverages, drugs, medical devices, animal and veterinary products, and dietary supplements. Using SPSS version 29, descriptive statistics and chi-square analysis of the data were performed. Results (numbers, percentages, p-values, chi-square): Over the period of analysis, a total of 931 recalls were reported. The most frequent reason for recalls was undeclared products (36.7%). The analysis showed that the most recalled product type in the data set was foods and beverages, representing 591 of all recalled products (63.5%).In addition, it was observed that foods and beverages represent 77.2% of products recalled due to the presence of microorganisms. Also, a sub-group analysis of recall reasons of food and beverages found that the most prevalent reason for such recalls was undeclared products (50.1%) followed by Listeria (17.3%) then Salmonella (13.2%). Conclusion: This analysis shows that foods and beverages have the greatest percentages of total recalls due to the presence of undeclared products listeria contamination and Salmonella contamination. The prevalence of Salmonella and Listeria contamination suggests that there is a high risk of microbial contamination in FDA-approved products and further studies on the effects of such contamination must be conducted to ensure consumer safety.

Keywords: food, beverages, listeria, salmonella, FDA, contamination, microbial

Procedia PDF Downloads 69
41808 Towards a Distributed Computation Platform Tailored for Educational Process Discovery and Analysis

Authors: Awatef Hicheur Cairns, Billel Gueni, Hind Hafdi, Christian Joubert, Nasser Khelifa

Abstract:

Given the ever changing needs of the job markets, education and training centers are increasingly held accountable for student success. Therefore, education and training centers have to focus on ways to streamline their offers and educational processes in order to achieve the highest level of quality in curriculum contents and managerial decisions. Educational process mining is an emerging field in the educational data mining (EDM) discipline, concerned with developing methods to discover, analyze and provide a visual representation of complete educational processes. In this paper, we present our distributed computation platform which allows different education centers and institutions to load their data and access to advanced data mining and process mining services. To achieve this, we present also a comparative study of the different clustering techniques developed in the context of process mining to partition efficiently educational traces. Our goal is to find the best strategy for distributing heavy analysis computations on many processing nodes of our platform.

Keywords: educational process mining, distributed process mining, clustering, distributed platform, educational data mining, ProM

Procedia PDF Downloads 458
41807 Optimizing Energy Efficiency: Leveraging Big Data Analytics and AWS Services for Buildings and Industries

Authors: Gaurav Kumar Sinha

Abstract:

In an era marked by increasing concerns about energy sustainability, this research endeavors to address the pressing challenge of energy consumption in buildings and industries. This study delves into the transformative potential of AWS services in optimizing energy efficiency. The research is founded on the recognition that effective management of energy consumption is imperative for both environmental conservation and economic viability. Buildings and industries account for a substantial portion of global energy use, making it crucial to develop advanced techniques for analysis and reduction. This study sets out to explore the integration of AWS services with big data analytics to provide innovative solutions for energy consumption analysis. Leveraging AWS's cloud computing capabilities, scalable infrastructure, and data analytics tools, the research aims to develop efficient methods for collecting, processing, and analyzing energy data from diverse sources. The core focus is on creating predictive models and real-time monitoring systems that enable proactive energy management. By harnessing AWS's machine learning and data analytics capabilities, the research seeks to identify patterns, anomalies, and optimization opportunities within energy consumption data. Furthermore, this study aims to propose actionable recommendations for reducing energy consumption in buildings and industries. By combining AWS services with metrics-driven insights, the research strives to facilitate the implementation of energy-efficient practices, ultimately leading to reduced carbon emissions and cost savings. The integration of AWS services not only enhances the analytical capabilities but also offers scalable solutions that can be customized for different building and industrial contexts. The research also recognizes the potential for AWS-powered solutions to promote sustainable practices and support environmental stewardship.

Keywords: energy consumption analysis, big data analytics, AWS services, energy efficiency

Procedia PDF Downloads 65
41806 On the Principle of Sustainable Development and International Law

Authors: Zhang Rui

Abstract:

Context: The paper addresses the necessity of incorporating the principle of sustainable development into international law to guide states and international organizations towards achieving this goal. Research aim: To emphasize the importance of integrating sustainable development into international law and establishing procedures to attain this objective. Methodology: The study utilizes document analysis, comparative law analysis, and international law analysis to support the argument for including sustainable development in international legal frameworks. Findings: The findings suggest that integrating sustainable development into international law can lead to significant improvements in legal practices, treaty interpretations, and state behaviors. Theoretical importance: The paper highlights the potential impacts of the principle of sustainable development on reshaping existing legal norms and promoting sustainable practices globally. Data collection: The data is gathered through the analysis of relevant legal documents, comparative studies, and international legal frameworks. Analysis procedures: The analysis involves examining how the principle of sustainable development can influence legal outcomes, treaty interpretations, and state behaviors. Questions addressed: The study addresses how the principle of sustainable development can be integrated into international law and what implications this integration can have on legal practices and state behaviors. Conclusion: Integrating sustainable development into international law is crucial for advancing global sustainability objectives and guiding states and international organizations towards sustainable practices.

Keywords: international law, sustainable development, environmental legislation, sovereign equality

Procedia PDF Downloads 28
41805 A Nexus between Financial Development and Its Determinants: A Panel Data Analysis from a Global Perspective

Authors: Bilal Ashraf, Qianxiao Zhang

Abstract:

This study empirically investigated the linkage amid financial development and its important determinants such as information and communication technology, natural resource rents, economic growth, current account balance, and gross savings in 107 economies. This paper preferred to employ the second-generation unit root tests to handle the issues of slope heterogeneity and “cross-sectional dependence” in panel data. The “Kao, Pedroni, and Westerlund tests” confirm the long-lasting connections among the variables under study, while the significant endings of “cross-sectionally augmented autoregressive distributed lag (CS-ARDL)” exposed that NRR, CAB, and S negatively affected the financial development while ICT and EG stimulates the procedure of FD. Further, the robustness analysis's application of FGLS supports the appropriateness and applicability of CS-ARDL. Finally, the findings of “DH causality analysis” endorse the bidirectional causality linkages amongst research factors. Based on the study's outcomes, we suggest some policy suggestions that empower the process of financial development, globally.

Keywords: determinants of financial developments, CS-ARDL, financial development, global sample, causality analysis

Procedia PDF Downloads 63
41804 A Shared Space: A Pioneering Approach to Interprofessional Education in New Zealand

Authors: Maria L. Ulloa, Ruth M. Crawford, Stephanie Kelly, Joey Domdom

Abstract:

In recent decades health and social service delivery have become more collaborative and interdisciplinary. Emerging trends suggest the need for an integrative and interprofessional approach to meet the challenges faced by professionals navigating the complexities of health and social service practice environments. Terms such as multidisciplinary practice, interprofessional collaboration, interprofessional education and transprofessional practice have become the common language used across a range of social services and health providers in western democratic systems. In Aotearoa New Zealand, one example of an interprofessional collaborative approach to curriculum design and delivery in health and social service is the development of an innovative Masters of Professional Practice programme. This qualification is the result of a strategic partnership between two tertiary institutions – Whitireia New Zealand (NZ) and the Wellington Institute of Technology (Weltec) in Wellington. The Master of Professional Practice programme was designed and delivered from the perspective of a collaborative, interprofessional and relational approach. Teachers and students in the programme come from a diverse range of cultural, professional and personal backgrounds and are engaged in courses using a blended learning approach that incorporates the values and pedagogies of interprofessional education. Students are actively engaged in professional practice while undertaking the programme. This presentation describes the themes of exploratory qualitative formative observations of engagement in class and online, student assessments, student research projects, as well as qualitative interviews with the programme teaching staff. These formative findings reveal the development of critical practice skills around the common themes of the programme: research and evidence based practice, education, leadership, working with diversity and advancing critical reflection of professional identities and interprofessional practice. This presentation will provide evidence of enhanced learning experiences in higher education and learning in multi-disciplinary contexts.

Keywords: diversity, exploratory research, interprofessional education, professional identity

Procedia PDF Downloads 303
41803 Optimal Feature Extraction Dimension in Finger Vein Recognition Using Kernel Principal Component Analysis

Authors: Amir Hajian, Sepehr Damavandinejadmonfared

Abstract:

In this paper the issue of dimensionality reduction is investigated in finger vein recognition systems using kernel Principal Component Analysis (KPCA). One aspect of KPCA is to find the most appropriate kernel function on finger vein recognition as there are several kernel functions which can be used within PCA-based algorithms. In this paper, however, another side of PCA-based algorithms -particularly KPCA- is investigated. The aspect of dimension of feature vector in PCA-based algorithms is of importance especially when it comes to the real-world applications and usage of such algorithms. It means that a fixed dimension of feature vector has to be set to reduce the dimension of the input and output data and extract the features from them. Then a classifier is performed to classify the data and make the final decision. We analyze KPCA (Polynomial, Gaussian, and Laplacian) in details in this paper and investigate the optimal feature extraction dimension in finger vein recognition using KPCA.

Keywords: biometrics, finger vein recognition, principal component analysis (PCA), kernel principal component analysis (KPCA)

Procedia PDF Downloads 368
41802 Control the Flow of Big Data

Authors: Shizra Waris, Saleem Akhtar

Abstract:

Big data is a research area receiving attention from academia and IT communities. In the digital world, the amounts of data produced and stored have within a short period of time. Consequently this fast increasing rate of data has created many challenges. In this paper, we use functionalism and structuralism paradigms to analyze the genesis of big data applications and its current trends. This paper presents a complete discussion on state-of-the-art big data technologies based on group and stream data processing. Moreover, strengths and weaknesses of these technologies are analyzed. This study also covers big data analytics techniques, processing methods, some reported case studies from different vendor, several open research challenges and the chances brought about by big data. The similarities and differences of these techniques and technologies based on important limitations are also investigated. Emerging technologies are suggested as a solution for big data problems.

Keywords: computer, it community, industry, big data

Procedia PDF Downloads 197
41801 An Overview of Domain Models of Urban Quantitative Analysis

Authors: Mohan Li

Abstract:

Nowadays, intelligent research technology is more and more important than traditional research methods in urban research work, and this proportion will greatly increase in the next few decades. Frequently such analyzing work cannot be carried without some software engineering knowledge. And here, domain models of urban research will be necessary when applying software engineering knowledge to urban work. In many urban plan practice projects, making rational models, feeding reliable data, and providing enough computation all make indispensable assistance in producing good urban planning. During the whole work process, domain models can optimize workflow design. At present, human beings have entered the era of big data. The amount of digital data generated by cities every day will increase at an exponential rate, and new data forms are constantly emerging. How to select a suitable data set from the massive amount of data, manage and process it has become an ability that more and more planners and urban researchers need to possess. This paper summarizes and makes predictions of the emergence of technologies and technological iterations that may affect urban research in the future, discover urban problems, and implement targeted sustainable urban strategies. They are summarized into seven major domain models. They are urban and rural regional domain model, urban ecological domain model, urban industry domain model, development dynamic domain model, urban social and cultural domain model, urban traffic domain model, and urban space domain model. These seven domain models can be used to guide the construction of systematic urban research topics and help researchers organize a series of intelligent analytical tools, such as Python, R, GIS, etc. These seven models make full use of quantitative spatial analysis, machine learning, and other technologies to achieve higher efficiency and accuracy in urban research, assisting people in making reasonable decisions.

Keywords: big data, domain model, urban planning, urban quantitative analysis, machine learning, workflow design

Procedia PDF Downloads 180
41800 Machine Learning-Based Workflow for the Analysis of Project Portfolio

Authors: Jean Marie Tshimula, Atsushi Togashi

Abstract:

We develop a data-science approach for providing an interactive visualization and predictive models to find insights into the projects' historical data in order for stakeholders understand some unseen opportunities in the African market that might escape them behind the online project portfolio of the African Development Bank. This machine learning-based web application identifies the market trend of the fastest growing economies across the continent as well skyrocketing sectors which have a significant impact on the future of business in Africa. Owing to this, the approach is tailored to predict where the investment needs are the most required. Moreover, we create a corpus that includes the descriptions of over more than 1,200 projects that approximately cover 14 sectors designed for some of 53 African countries. Then, we sift out this large amount of semi-structured data for extracting tiny details susceptible to contain some directions to follow. In the light of the foregoing, we have applied the combination of Latent Dirichlet Allocation and Random Forests at the level of the analysis module of our methodology to highlight the most relevant topics that investors may focus on for investing in Africa.

Keywords: machine learning, topic modeling, natural language processing, big data

Procedia PDF Downloads 169
41799 Exploring Dynamics of Regional Creative Economy

Authors: Ari Lindeman, Melina Maunula, Jani Kiviranta, Ronja Pölkki

Abstract:

The aim of this paper is to build a vision of the utilization of creative industry competences in industrial and services firms connected to Kymenlaakso region, Finland, smart specialization focus areas. Research indicates that creativity and the use of creative industry’s inputs can enhance innovation and competitiveness. Currently creative methods and services are underutilized in regional businesses and the added value they provide is not well grasped. Methodologically, the research adopts a qualitative exploratory approach. Data is collected in multiple ways including a survey, focus groups, and interviews. Theoretically, the paper contributes to the discussion about the use creative industry competences in regional development, and argues for building regional creative economy ecosystems in close co-operation with regional strategies and traditional industries rather than as treating regional creative industry ecosystem initiatives separate from them. The practical contribution of the paper is the creative vision for the use of regional authorities in updating smart specialization strategy as well as boosting industrial and creative & cultural sectors’ competitiveness. The paper also illustrates a research-based model of vision building.

Keywords: business, cooperation, creative economy, regional development, vision

Procedia PDF Downloads 137
41798 Public-Private Partnership for Community Empowerment and Sustainability: Exploring Save the Children’s 'School Me' Project in West Africa

Authors: Gae Hee Song

Abstract:

This paper aims to address the evolution of public-private partnerships for mainstreaming an evaluation approach in the community-based education project. It examines the distinctive features of Save the Children’s School Me project in terms of empowerment evaluation principles introduced by David M. Fetterman, especially community ownership, capacity building, and organizational learning. School Me is a Save the Children Korea funded-project, having been implemented in Cote d’Ivoire and Sierra Leone since 2016. The objective of this project is to reduce gender-based disparities in school completion and learning outcomes by creating an empowering learning environment for girls and boys. Both quasi-experimental and experimental methods for impact evaluation have been used to explore changes in learning outcomes, gender attitudes, and learning environments. To locate School Me in the public-private partnership framework for community empowerment and sustainability, the data have been collected from School Me progress/final reports, baseline, and endline reports, fieldwork observations, inter-rater reliability of baseline and endline data collected from a total of 75 schools in Cote d’Ivoire and Sierra Leone. The findings of this study show that School Me project has a significant evaluation component, including qualitative exploratory research, participatory monitoring, and impact evaluation. It strongly encourages key actors, girls, boys, parents, teachers, community leaders, and local education authorities, to participate in the collection and interpretation of data. For example, 45 community volunteers collected baseline data in Cote d’Ivoire; on the other hand, three local government officers and fourteen enumerators participated in the follow-up data collection of Sierra Leone. Not only does this public-private partnership improve local government and community members’ knowledge and skills of monitoring and evaluation, but the evaluative findings also help them find their own problems and solutions with a strong sense of community ownership. Such community empowerment enables Save the Children country offices and member offices to gain invaluable experiences and lessons learned. As a result, empowerment evaluation leads to community-oriented governance and the sustainability of the School Me project.

Keywords: community empowerment, Cote d’Ivoire, empowerment evaluation, public-private partnership, save the children, school me, Sierra Leone, sustainability

Procedia PDF Downloads 130
41797 The Current Status of Middle Class Internet Use in China: An Analysis Based on the Chinese General Social Survey 2015 Data and Semi-Structured Investigation

Authors: Abigail Qian Zhou

Abstract:

In today's China, the well-educated middle class, with stable jobs and above-average income, are the driving force behind its Internet society. Through the analysis of data from the 2015 Chinese General Social Survey and 50 interviewees, this study investigates the current situation of this group’s specific internet usage. The findings of this study demonstrate that daily life among the members of this socioeconomic group is closely tied to the Internet. For Chinese middle class, the Internet is used to socialize and entertain self and others. It is also used to search for and share information as well as to build their identities. The empirical results of this study will provide a reference, supported by factual data, for enterprises seeking to target the Chinese middle class through online marketing efforts.

Keywords: middle class, Internet use, network behaviour, online marketing, China

Procedia PDF Downloads 127
41796 Strategic Management Methods in Non-Profit Making Organization

Authors: P. Řehoř, D. Holátová, V. Doležalová

Abstract:

Paper deals with analysis of strategic management methods in non-profit making organization in the Czech Republic. Strategic management represents an aggregate of methods and approaches that can be applied for managing organizations - in this article the organizations which associate owners and keepers of non-state forest properties. Authors use these methods of strategic management: analysis of stakeholders, SWOT analysis and questionnaire inquiries. The questionnaire was distributed electronically via e-mail. In October 2013 we obtained data from a total of 84 questionnaires. Based on the results the authors recommend the using of confrontation strategy which improves the competitiveness of non-profit making organizations.

Keywords: strategic management, non-profit making organization, strategy analysis, SWOT analysis, strategy, competitiveness

Procedia PDF Downloads 489
41795 Analysis of Citation Rate and Data Reuse for Openly Accessible Biodiversity Datasets on Global Biodiversity Information Facility

Authors: Nushrat Khan, Mike Thelwall, Kayvan Kousha

Abstract:

Making research data openly accessible has been mandated by most funders over the last 5 years as it promotes reproducibility in science and reduces duplication of effort to collect the same data. There are evidence that articles that publicly share research data have higher citation rates in biological and social sciences. However, how and whether shared data is being reused is not always intuitive as such information is not easily accessible from the majority of research data repositories. This study aims to understand the practice of data citation and how data is being reused over the years focusing on biodiversity since research data is frequently reused in this field. Metadata of 38,878 datasets including citation counts were collected through the Global Biodiversity Information Facility (GBIF) API for this purpose. GBIF was used as a data source since it provides citation count for datasets, not a commonly available feature for most repositories. Analysis of dataset types, citation counts, creation and update time of datasets suggests that citation rate varies for different types of datasets, where occurrence datasets that have more granular information have higher citation rates than checklist and metadata-only datasets. Another finding is that biodiversity datasets on GBIF are frequently updated, which is unique to this field. Majority of the datasets from the earliest year of 2007 were updated after 11 years, with no dataset that was not updated since creation. For each year between 2007 and 2017, we compared the correlations between update time and citation rate of four different types of datasets. While recent datasets do not show any correlations, 3 to 4 years old datasets show weak correlation where datasets that were updated more recently received high citations. The results are suggestive that it takes several years to cumulate citations for research datasets. However, this investigation found that when searched on Google Scholar or Scopus databases for the same datasets, the number of citations is often not the same as GBIF. Hence future aim is to further explore the citation count system adopted by GBIF to evaluate its reliability and whether it can be applicable to other fields of studies as well.

Keywords: data citation, data reuse, research data sharing, webometrics

Procedia PDF Downloads 185
41794 Advancement of Computer Science Research in Nigeria: A Bibliometric Analysis of the Past Three Decades

Authors: Temidayo O. Omotehinwa, David O. Oyewola, Friday J. Agbo

Abstract:

This study aims to gather a proper perspective of the development landscape of Computer Science research in Nigeria. Therefore, a bibliometric analysis of 4,333 bibliographic records of Computer Science research in Nigeria in the last 31 years (1991-2021) was carried out. The bibliographic data were extracted from the Scopus database and analyzed using VOSviewer and the bibliometrix R package through the biblioshiny web interface. The findings of this study revealed that Computer Science research in Nigeria has a growth rate of 24.19%. The most developed and well-studied research areas in the Computer Science field in Nigeria are machine learning, data mining, and deep learning. The social structure analysis result revealed that there is a need for improved international collaborations. Sparsely established collaborations are largely influenced by geographic proximity. The funding analysis result showed that Computer Science research in Nigeria is under-funded. The findings of this study will be useful for researchers conducting Computer Science related research. Experts can gain insights into how to develop a strategic framework that will advance the field in a more impactful manner. Government agencies and policymakers can also utilize the outcome of this research to develop strategies for improved funding for Computer Science research.

Keywords: bibliometric analysis, biblioshiny, computer science, Nigeria, science mapping

Procedia PDF Downloads 117
41793 Threat Modeling Methodology for Supporting Industrial Control Systems Device Manufacturers and System Integrators

Authors: Raluca Ana Maria Viziteu, Anna Prudnikova

Abstract:

Industrial control systems (ICS) have received much attention in recent years due to the convergence of information technology (IT) and operational technology (OT) that has increased the interdependence of safety and security issues to be considered. These issues require ICS-tailored solutions. That led to the need to creation of a methodology for supporting ICS device manufacturers and system integrators in carrying out threat modeling of embedded ICS devices in a way that guarantees the quality of the identified threats and minimizes subjectivity in the threat identification process. To research, the possibility of creating such a methodology, a set of existing standards, regulations, papers, and publications related to threat modeling in the ICS sector and other sectors was reviewed to identify various existing methodologies and methods used in threat modeling. Furthermore, the most popular ones were tested in an exploratory phase on a specific PLC device. The outcome of this exploratory phase has been used as a basis for defining specific characteristics of ICS embedded devices and their deployment scenarios, identifying the factors that introduce subjectivity in the threat modeling process of such devices, and defining metrics for evaluating the minimum quality requirements of identified threats associated to the deployment of the devices in existing infrastructures. Furthermore, the threat modeling methodology was created based on the previous steps' results. The usability of the methodology was evaluated through a set of standardized threat modeling requirements and a standardized comparison method for threat modeling methodologies. The outcomes of these verification methods confirm that the methodology is effective. The full paper includes the outcome of research on different threat modeling methodologies that can be used in OT, their comparison, and the results of implementing each of them in practice on a PLC device. This research is further used to build a threat modeling methodology tailored to OT environments; a detailed description is included. Moreover, the paper includes results of the evaluation of created methodology based on a set of parameters specifically created to rate threat modeling methodologies.

Keywords: device manufacturers, embedded devices, industrial control systems, threat modeling

Procedia PDF Downloads 84
41792 A Critical Discourse Analysis of Jamaican and Trinidadian News Articles about D/Deafness

Authors: Melissa Angus Baboun

Abstract:

Utilizing a Critical Discourse Analysis (CDA) methodology and a theoretical framework based on disability studies, how Jamaican and Trinidadian newspapers discussed issues relating to the Deaf community were examined. The term deaf was inputted into the search engine tool of the online website for the Jamaica Observer and the Trinidad & Tobago Guardian. All 27 articles that contained the term deaf in its content and were written between August 1, 2017 and November 15, 2017 were chosen for the study. The data analysis was divided into three steps: (1) listing and analysis instances of metaphorical deafness (e.g. fall on deaf ears), (2) categorization of the content of the articles into the models of disability discourse (the medical, socio-cultural, and superscrip models of disability narratives), and (3) the analysis of any additional data found. A total of 42% of the articles pulled for this study did not deal with the Deaf community in any capacity, but rather instances of the use of idiomatic expressions that use deafness as a metaphor for a non-physical, undesirable trait. The most common idiomatic expression found was fall on deaf ears. Regarding the models of disability discourse, eight articles were found to follow the socio-cultural model, two were found to follow the medical model, and two were found to follow the superscrip model. The additional data found in these articles include two instances of the term deaf and mute, an overwhelming use of lower case d for the term deaf, and the misuse of the term translator (to mean interpreter).

Keywords: deafness, disability, news coverage, Caribbean newspapers

Procedia PDF Downloads 236
41791 A Regression Analysis Study of the Applicability of Side Scan Sonar based Safety Inspection of Underwater Structures

Authors: Chul Park, Youngseok Kim, Sangsik Choi

Abstract:

This study developed an electric jig for underwater structure inspection in order to solve the problem of the application of side scan sonar to underwater inspection, and analyzed correlations of empirical data in order to enhance sonar data resolution. For the application of tow-typed sonar to underwater structure inspection, an electric jig was developed. In fact, it was difficult to inspect a cross-section at the time of inspection with tow-typed equipment. With the development of the electric jig for underwater structure inspection, it was possible to shorten an inspection time over 20%, compared to conventional tow-typed side scan sonar, and to inspect a proper cross-section through accurate angle control. The indoor test conducted to enhance sonar data resolution proved that a water depth, the distance from an underwater structure, and a filming angle influenced a resolution and data quality. Based on the data accumulated through field experience, multiple regression analysis was conducted on correlations between three variables. As a result, the relational equation of sonar operation according to a water depth was drawn.

Keywords: underwater structure, SONAR, safety inspection, resolution

Procedia PDF Downloads 268
41790 Public Libraries as Social Spaces for Vulnerable Populations

Authors: Natalie Malone

Abstract:

This study explores the role of a public library in the creation of social spaces for vulnerable populations. The data stems from a longitudinal ethnographic study of the Anderson Library community, which included field notes, artifacts, and interview data. Thematic analysis revealed multiple meanings and thematic relationships within and among the data sources -interviews, field notes, and artifacts. Initial analysis suggests the Anderson Library serves as a space for vulnerable populations, with the sub-themes of fostering interpersonal communication to create a social space for children and fostering interpersonal communication to create a social space for parents and adults. These findings are important as they illustrate the potential of public libraries to serve as community empowering institutions.

Keywords: capital, immigrant families, public libraries, space, vulnerable

Procedia PDF Downloads 160
41789 Mental Health Awareness and Help Seeking Among Adolescents in Kerala

Authors: Fathima M. A., Milu Maria Anto

Abstract:

Aim: The current study aims to explore the understanding about Mental Health and the likelihood to seek help for mental health problems among adolescents in the state of Kerala (India). Method: A cross sectional exploratory design was used. Samples were selected using convenience sampling. Ninety nine high school and higher secondary school students who had enrolled in the program “Responsible Adolescents (READ)” organized by MKMS Education from Kerala participated in this study. The data for the present study was collected using google forms prior to the commencement of the READ programme. Open-ended questions were used to explore the understanding of participants about mental health, mental health problems, causes of mental health problems and the role of mental health professionals. The likelihood to seek help (from friends, parents, teachers and mental health professionals) for mental health problems was assessed using a visual analogue scale. Further open-ended questions were used to identify what changes in teachers and parents will make them feel more comfortable to approach them when they need help. Content analysis was used to identify themes and coded data was further analyzed using correlation. Results: The results show that students have a fair idea about what Mental Health is. Even though the majority is familiar with the names of mental health disorders, relatively fewer students identify it as irregularity in mental functions such as thoughts, emotions and behaviors. The students tend to attribute symptoms of mental health problems as the cause of mental health problems. Very few students have the understanding that biological variations and adverse childhood experiences are primary causes for the development of mental health problems. Less than half of the students were aware of the role of psychiatrists and psychologists in mental health treatment. The students were more likely to seek help from parents and friends during distress. They had a medium inclination to seek help from mental health professionals and showed even lower likelihood to seek help from teachers. The majority of the students responded that they would be more comfortable approaching teachers if they were more open-minded and approachable as well as non-judgmental and non-dismissive. Conclusion: Findings show that there is inadequate awareness among adolescents about mental health problems and their causes. There is a lack of understanding about the roles of two main mental health professionals which can pose a big hurdle in accessing adequate help from the appropriate professional at the right time. The low likelihood to seek help from teachers for mental health problems is very concerning. The major barriers reported by the students in seeking help from teachers were the judgmental and dismissive approach. The findings throw light on the current level of awareness about mental health and mental health help-seeking, which can be utilized in framing mental health awareness programs for students as well as teachers.

Keywords: Mental Health Awareness, Adolescent Mental Health, Help Seeking Behavior, School Mental Health

Procedia PDF Downloads 273
41788 Study of a Few Additional Posterior Projection Data to 180° Acquisition for Myocardial SPECT

Authors: Yasuyuki Takahashi, Hirotaka Shimada, Takao Kanzaki

Abstract:

A Dual-detector SPECT system is widely by use of myocardial SPECT studies. With 180-degree (180°) acquisition, reconstructed images are distorted in the posterior wall of myocardium due to the lack of sufficient data of posterior projection. We hypothesized that quality of myocardial SPECT images can be improved by the addition of data acquisition of only a few posterior projections to ordinary 180° acquisition. The proposed acquisition method (180° plus acquisition methods) uses the dual-detector SPECT system with a pair of detector arranged in 90° perpendicular. Sampling angle was 5°, and the acquisition range was 180° from 45° right anterior oblique to 45° left posterior oblique. After the acquisition of 180°, the detector moved to additional acquisition position of reverse side once for 2 projections, twice for 4 projections, or 3 times for 6 projections. Since these acquisition methods cannot be done in the present system, actual data acquisition was done by 360° with a sampling angle of 5°, and projection data corresponding to above acquisition position were extracted for reconstruction. We underwent the phantom studies and a clinical study. SPECT images were compared by profile curve analysis and also quantitatively by contrast ratio. The distortion was improved by 180° plus method. Profile curve analysis showed increased of cardiac cavity. Analysis with contrast ratio revealed that SPECT images of the phantoms and the clinical study were improved from 180° acquisition by the present methods. The difference in the contrast was not clearly recognized between 180° plus 2 projections, 180° plus 4 projections, and 180° plus 6 projections. 180° plus 2 projections method may be feasible for myocardial SPECT because distortion of the image and the contrast were improved.

Keywords: 180° plus acquisition method, a few posterior projections, dual-detector SPECT system, myocardial SPECT

Procedia PDF Downloads 300
41787 Assessing Spatial Associations of Mortality Patterns in Municipalities of the Czech Republic

Authors: Jitka Rychtarikova

Abstract:

Regional differences in mortality in the Czech Republic (CR) may be moderate from a broader European perspective, but important discrepancies in life expectancy can be found between smaller territorial units. In this study territorial units are based on Administrative Districts of Municipalities with Extended Powers (MEP). This definition came into force January 1, 2003. There are 205 units and the city of Prague. MEP represents the smallest unit for which mortality patterns based on life tables can be investigated and the Czech Statistical Office has been calculating such life tables (every five-years) since 2004. MEP life tables from 2009-2013 for males and females allowed the investigation of three main life cycles with the use of temporary life expectancies between the exact ages of 0 and 35; 35 and 65; and the life expectancy at exact age 65. The results showed regional survival inequalities primarily in adult and older ages. Consequently, only mortality indicators for adult and elderly population were related to census 2011 unlinked data for the same age groups. The most relevant socio-economic factors taken from the census are: having a partner, educational level and unemployment rate. The unemployment rate was measured for adults aged 35-64 completed years. Exploratory spatial data analysis methods were used to detect regional patterns in spatially contiguous units of MEP. The presence of spatial non-stationarity (spatial autocorrelation) of mortality levels for male and female adults (35-64), and elderly males and females (65+) was tested using global Moran’s I. Spatial autocorrelation of mortality patterns was mapped using local Moran’s I with the intention to depict clusters of low or high mortality and spatial outliers for two age groups (35-64 and 65+). The highest Moran’s I was observed for male temporary life expectancy between exact ages 35 and 65 (0.52) and the lowest was among women with life expectancy of 65 (0.26). Generally, men showed stronger spatial autocorrelation compared to women. The relationship between mortality indicators such as life expectancies and socio-economic factors like the percentage of males/females having a partner; percentage of males/females with at least higher secondary education; and percentage of unemployed males/females from economically active population aged 35-64 years, was evaluated using multiple regression (OLS). The results were then compared to outputs from geographically weighted regression (GWR). In the Czech Republic, there are two broader territories North-West Bohemia (NWB) and North Moravia (NM), in which excess mortality is well established. Results of the t-test of spatial regression showed that for males aged 30-64 the association between mortality and unemployment (when adjusted for education and partnership) was stronger in NM compared to NWB, while educational level impacted the length of survival more in NWB. Geographic variation and relationships in mortality of the CR MEP will also be tested using the spatial Durbin approach. The calculations were conducted by means of ArcGIS 10.6 and SAS 9.4.

Keywords: Czech Republic, mortality, municipality, socio-economic factors, spatial analysis

Procedia PDF Downloads 123
41786 Fault Tree Analysis (FTA) of CNC Turning Center

Authors: R. B. Patil, B. S. Kothavale, L. Y. Waghmode

Abstract:

Today, the CNC turning center becomes an important machine tool for manufacturing industry worldwide. However, as the breakdown of a single CNC turning center may result in the production of an entire plant being halted. For this reason, operations and preventive maintenance have to be minimized to ensure availability of the system. Indeed, improving the availability of the CNC turning center as a whole, objectively leads to a substantial reduction in production loss, operating, maintenance and support cost. In this paper, fault tree analysis (FTA) method is used for reliability analysis of CNC turning center. The major faults associated with the system and the causes for the faults are presented graphically. Boolean algebra is used for evaluating fault tree (FT) diagram and for deriving governing reliability model for CNC turning center. Failure data over a period of six years has been collected and used for evaluating the model. Qualitative and quantitative analysis is also carried out to identify critical sub-systems and components of CNC turning center. It is found that, at the end of the warranty period (one year), the reliability of the CNC turning center as a whole is around 0.61628.

Keywords: fault tree analysis (FTA), reliability analysis, risk assessment, hazard analysis

Procedia PDF Downloads 419
41785 Using Artificial Intelligence Method to Explore the Important Factors in the Reuse of Telecare by the Elderly

Authors: Jui-Chen Huang

Abstract:

This research used artificial intelligence method to explore elderly’s opinions on the reuse of telecare, its effect on their service quality, satisfaction and the relationship between customer perceived value and intention to reuse. This study conducted a questionnaire survey on the elderly. A total of 124 valid copies of a questionnaire were obtained. It adopted Backpropagation Network (BPN) to propose an effective and feasible analysis method, which is different from the traditional method. Two third of the total samples (82 samples) were taken as the training data, and the one third of the samples (42 samples) were taken as the testing data. The training and testing data RMSE (root mean square error) are 0.022 and 0.009 in the BPN, respectively. As shown, the errors are acceptable. On the other hand, the training and testing data RMSE are 0.100 and 0.099 in the regression model, respectively. In addition, the results showed the service quality has the greatest effects on the intention to reuse, followed by the satisfaction, and perceived value. This result of the Backpropagation Network method is better than the regression analysis. This result can be used as a reference for future research.

Keywords: artificial intelligence, backpropagation network (BPN), elderly, reuse, telecare

Procedia PDF Downloads 216
41784 Measuring Satisfaction with Life Construct Among Public and Private University Students During COVID-19 Pandemic in Sabah, Malaysia

Authors: Mohd Dahlan Abdul Malek, Muhamad Idris, Adi Fahrudin, Ida Shafinaz Mohamed Kamil, Husmiati Yusuf, Edeymend Reny Japil, Wan Anor Wan Sulaiman, Lailawati Madlan, Alfred Chan, Nurfarhana Adillah Aftar, Mahirah Masdin

Abstract:

This research intended to develop a valid and reliable instrument of the Satisfaction with Life Scale (SWLS) to measure satisfaction with life (SWL) constructs among public and private university students in Sabah, Malaysia, through the exploratory factor analysis (EFA) procedure. The pilot study obtained a sample of 108 students from public and private education institutions in Sabah, Malaysia, through an online survey using a self-administered questionnaire. The researchers performed the EFA procedure on SWL construct using IBM SPSS 25. The Bartletts' Test of Sphericity is highly significant (Sig. = .000). Furthermore, the sampling adequacy by Kaiser-Meyer-Olkin (KMO = 0.839) is excellent. Using the extraction method of Principal Component Analysis (PCA) with Varimax Rotation, a component of the SWL construct is extracted with an eigenvalue of 3.101. The variance explained for this component is 62.030%. The construct of SWL has Cronbach's alpha value of .817. The development scale and validation confirmed that the instrument is consistent and stable with both private and public college and university student samples. It adds a remarkable contribution to the measurement of SWLS, mainly in the context of higher education institution students. The EFA outcomes formed a configuration that extracts a component of SWL, which can be measured by the original five items established in this research. This research reveals that the SWL construct is applicable to this study.

Keywords: satisfaction, university students, measurement, scale development

Procedia PDF Downloads 95
41783 Capturing Public Voices: The Role of Social Media in Heritage Management

Authors: Mahda Foroughi, Bruno de Anderade, Ana Pereira Roders

Abstract:

Social media platforms have been increasingly used by locals and tourists to express their opinions about buildings, cities, and built heritage in particular. Most recently, scholars have been using social media to conduct innovative research on built heritage and heritage management. Still, the application of artificial intelligence (AI) methods to analyze social media data for heritage management is seldom explored. This paper investigates the potential of short texts (sentences and hashtags) shared through social media as a data source and artificial intelligence methods for data analysis for revealing the cultural significance (values and attributes) of built heritage. The city of Yazd, Iran, was taken as a case study, with a particular focus on windcatchers, key attributes conveying outstanding universal values, as inscribed on the UNESCO World Heritage List. This paper has three subsequent phases: 1) state of the art on the intersection of public participation in heritage management and social media research; 2) methodology of data collection and data analysis related to coding people's voices from Instagram and Twitter into values of windcatchers over the last ten-years; 3) preliminary findings on the comparison between opinions of locals and tourists, sentiment analysis, and its association with the values and attributes of windcatchers. Results indicate that the age value is recognized as the most important value by all interest groups, while the political value is the least acknowledged. Besides, the negative sentiments are scarcely reflected (e.g., critiques) in social media. Results confirm the potential of social media for heritage management in terms of (de)coding and measuring the cultural significance of built heritage for windcatchers in Yazd. The methodology developed in this paper can be applied to other attributes in Yazd and also to other case studies.

Keywords: social media, artificial intelligence, public participation, cultural significance, heritage, sentiment analysis

Procedia PDF Downloads 121
41782 The Influence of National Culture on Consumer Buying Behaviour: An Exploratory Study of Nigerian and British Consumers

Authors: Mohamed Haffar, Lombe Ngome Enongene, Mohammed Hamdan, Gbolahan Gbadamosi

Abstract:

Despite the considerable body of literature investigating the influence of National Culture (NC) dimensions on consumer behaviour, there is a lack of studies comparing the influence of NC in Africa with Western European countries. This study is intended to fill the vacuum in knowledge by exploring how NC affects consumer buyer behavior in Nigeria and the United Kingdom. The primary data were collected through in depth, semi-structured interviews conducted with three groups of individuals: British students, Nigerian students in the United Kingdom, and Nigerian-based students. This approach and new frontier to analyze culture and consumer behaviour could help understand residual cultural threads of people (that are ingrained in their being) irrespective of exposure to other cultures. The findings of this study show that Nigerian and British consumers differ remarkably in cultural orientations such as symbols, values and psychological standpoints. This ultimately affects the choices made at every stage of the decision building process, and proves beneficial for international retail marketing.

Keywords: national culture, consumer behaviour, international business, Nigeria

Procedia PDF Downloads 282
41781 The Correlation between Emotional Intelligence and Locus of Control: Empirical Study on Lithuanian Youth

Authors: Dalia Antiniene, Rosita Lekaviciene

Abstract:

The qualitative methodology based study is designed to reveal a connection between emotional intelligence (EI) and locus of control (LC) within the population of Lithuanian youth. In the context of emotional problems, the locus of control reflects how one estimates the causes of his/her emotions: internals (internal locus of control) associate their emotions with their manner of thinking, whereas externals (external locus of control) consider emotions to be evoked by external circumstances. On the other hand, there is little empirical data about this connection, and the results in disposition are often contradictory. In the conducted study 1430 young people, aged 17 to 27, from various regions of Lithuania were surveyed. The subjects were selected by quota sampling, maintaining natural proportions of the general Lithuanian youth population. To assess emotional intelligence the EI-DARL test (i.e. self-report questionnaire consisting of 75 items) was implemented. The emotional intelligence test, created applying exploratory factor analysis, reveals four main dimensions of EI: understanding of one’s own emotions, regulation of one’s own emotions, understanding other’s emotions, and regulation of other’s emotions (subscale reliability coefficients fluctuate between 0,84 and 0,91). An original 16-item internality/externality scale was used to examine the locus of control (internal consistency of the Externality subscale - 0,75; Internality subscale - 0,65). The study has determined that the youth understands and regulates other people’s emotions better than their own. Using the K-mean cluster analysis method, it was established that there are three groups of subjects according to their EI level – people with low, medium and high EI. After comparing means of subjects’ favorability of statements on the Internality/Externality scale, a predominance of internal locus of control in the young population was established. The multiple regression models has shown that a rather strong statistically significant correlation exists between total EI, EI subscales and LC. People who tend to attribute responsibility for the outcome of their actions to their own abilities and efforts have higher EI and, conversely, the tendency to attribute responsibility to external forces is related more with lower EI. While pursuing their goals, young people with high internality have a predisposition to analyze perceived emotions and, therefore, gain emotional experience: they learn to control their natural reactions and to act adequately in a situation at hand. Thus the study unfolds, that a person’s locus of control and emotional intelligence are related phenomena and allows us to draw a conclusion, that a person’s internality/externality is a reliable predictor of total EI and its components.

Keywords: emotional intelligence, externality, internality, locus of control

Procedia PDF Downloads 227
41780 Performance Evaluation and Planning for Road Safety Measures Using Data Envelopment Analysis and Fuzzy Decision Making

Authors: Hamid Reza Behnood, Esmaeel Ayati, Tom Brijs, Mohammadali Pirayesh Neghab

Abstract:

Investment projects in road safety planning can benefit from an effectiveness evaluation regarding their expected safety outcomes. The objective of this study is to develop a decision support system (DSS) to support policymakers in taking the right choice in road safety planning based on the efficiency of previously implemented safety measures in a set of regions in Iran. The measures considered for each region in the study include performance indicators about (1) police operations, (2) treated black spots, (3) freeway and highway facility supplies, (4) speed control cameras, (5) emergency medical services, and (6) road lighting projects. To this end, inefficiency measure is calculated, defined by the proportion of fatality rates in relation to the combined measure of road safety performance indicators (i.e., road safety measures) which should be minimized. The relative inefficiency for each region is modeled by the Data Envelopment Analysis (DEA) technique. In a next step, a fuzzy decision-making system is constructed to convert the information obtained from the DEA analysis into a rule-based system that can be used by policy makers to evaluate the expected outcomes of certain alternative investment strategies in road safety.

Keywords: performance indicators, road safety, decision support system, data envelopment analysis, fuzzy reasoning

Procedia PDF Downloads 356