Search results for: cardiac myosin binding protein-C
445 Association between Copper Uptake and Decrease of Copper (hypocupremia) in Burn Patients-Infected Pseudomonas aeruginosa
Authors: Khaled Khleifat, Muayyad Abboud, Amjad Khleifat, Humodi Saeed
Abstract:
In this study, Pseudomonas aeruginosa was isolated from infected burn patients and characterized by standard biochemical tests. The in vitro copper uptake was compared between this isolated pathogenic strain and two non-pathogenic control strains of Gram positive bacteria Bacillusthuringiensis strain Israelisas well as Gram negative bacteria Enterobacter aerogenes. Maximum copper uptake of 470 ppm/g biomass was obtained by P. aeruginosa strain, while the control strains B. thuringiensis andEnterobacter aerogenes had copper uptake of 350 and 383 ppm/g biomass, respectively. However, the lowest copper uptake (60 ppm/g biomass) was observed with another control the saprophytic strain Pseudomonas (Shewanella) putrefaciens. A further investigation regarding the effect of copper toxicity on bacterial growth, gave an MIC score of 600 ppm for P. aeruginosa strain compared to 460 and 300 ppm for the two Gram positive and Gram negative control strains, respectively. In tandem with these in vitro findings, blood analysis on burn patients infected with P. aeruginosa has indicated a selective decrease of copper (hypocupremia) and ceruloplasmin plasma levels. The iron metabolism was also affected by this copper deprivation leading to a similar decrease in plasma levels of PCV, iron, total iron binding capacity, and transferrin. All these hematological changes were significantly different (P < 0.05) from the matched group of non-infected burn patients. The observed hypocupremia in infected burn patients was attributed to demanding scavenger ability by P. aeruginosa strain for the copper of plasma.Keywords: pseudomonas, Cu uptake, burn patients, biosorption
Procedia PDF Downloads 392444 Interaction between Kazal-Type Serine Proteinase Inhibitor SPIPm2 and Cyclophilin A from the Black Tiger Shrimp Penaeus monodon
Authors: Sirikwan Ponprateep, Anchalee Tassanakajon, Vichien Rimphanitchayakit
Abstract:
A Kazal-type serine proteinase inhibitor, SPIPm2, was abundantly expressed in the hemocytes and secreted into shrimp plasma has anti-viral property against white spot syndrome virus (WSSV). To discover the molecular mechanism of antiviral activity, the binding assay showed that SPIPm2 bind to the components of viral particle and shrimp hemocyte. From our previous report, viral target protein of SPIPm2 was identified, namely WSV477 using yeast two-hybrid screening. WSV477 is an early gene product of WSSV and involved in viral propagation. In this study, the co-immunoprecipitation technique and Tandem Mass Spectrometry (LC-MS/MS) was used to identify the target protein of SPIPm2 from shrimp hemocyte. The target protein of SPIPm2 was cyclophilin A. In vertebrate, cyclophilin A or peptidylprolyl isomerase A was reported to be the immune suppressor interacted with cyclosporin A involved in immune defense response. The recombinant cyclophilin A from Penaeus monodon (rPmCypA) was produced in E.coli system and purified using Ni-NTA column to confirm the protein-protein interaction. In vitro pull-down assay showed the interaction between rSPIPm2 and rPmCypA. To study the biological function of these proteins, the expression analysis of immune gene in shrimp defense pathways will be investigated after rPmCypA administration.Keywords: cyclophilin A, protein-protein interaction, Kazal-type serine proteinase inhibitor, Penaeus monodon
Procedia PDF Downloads 236443 The Effect of Jujube Extract and Resistance Training on the Reduction of Complications Caused by the Induction of Anabolic Steroid Boldenone on the Histopathological Changes of Pancreatic Tissue of Male Wistar Rats
Authors: Sayyed-javad Ziaolhagh, Ali-Reza Saadatifar
Abstract:
Introduction: Athletes frequently perform anabolic steroid resistance exercise, but the effects of medical doses and abuse along with resistance exercise on structural damage to the Pancreases and also jujube extract are unknown. The aim of this study was to investigate the effects of resistance training on body weight and hip fractures induced by boldenone injection in male rats. Materials and methods: In this experimental study, 30 male Wistar rats aged 8-12 weeks (weight 202±9.34 g) were randomly divided into five groups: control, boldenone, extract of iujuba+boldenone, boldenone+resistance training and boldenone+resistance training +extract of jujuba. The resistance training program included climbing the ladder for 8 weeks, 3 days a week, 1 session training in a day and each session consisted of the 3 sets and 5 repetitions. Injection was conducted in depth in the hamstring once a week on an appointed day. After anesthesia, autopsy was performed, and the cardiac tissue was isolated. Results: Results showed that boldenone caused tissue damage, congestion, and nuclei unclear and diffuse. In the group "resistance + Boldenone," The Pancreases tissue showed a high degree of hyperemia, and the muscle cells were somewhat abnormal. In boldenone + jujube, the appearance of the tissue was normal, and the rejuvenating effect was visible. Conclusion: Boldenone appears to cause structural damage to the Pancreases tissue. Strength training with Jujube Extract can reduce part of the pancreatic system disorders (necrosis and inflammation) caused by anabolic steroid use.Keywords: boldenone, Jujube extract, pancreases tissue, resistance training
Procedia PDF Downloads 70442 Annual Audit for the Year 2021 for Patients with Hyperparathyroidism: Not as Rare an Entity as We Believe
Authors: Antarip Bhattacharya, Dhritiman Maitra
Abstract:
Primary hyperparathyroidism (PHPT) is the most common cause of hypercalcemia due to autonomous production of parathormone (PTH) and the third most common endocrine disorder. Upto 2% of postmenopausal women could have this condition. Primary hyperparathyroidism is characterized by hypercalcemia with a high or insufficiently suppressed level of parathyroid hormone and is caused by a solitary parathyroid adenoma in 85-90% of patients. PHPT may also be caused by parathyroid hyperplasia (involving multiple glands) or parathyroid carcinoma. Associated morbidities and sequelae include decreased bone mineral density, fractures, kidney stones, hypertension, cardiac comorbidities and psychiatric disorder which entail huge costs for treatment. In the year 2021, by virtue of running a Breast and Endocrine Surgery clinic in a Tier 1 city at a tertiary care hospital, the opportunity to be associated with patients of hyperparathyroidism came our way. Here, we shall describe the spectrum of clinical presentations and customisation of treatment for parathyroid diseases with reference to the above patients. A retrospective analysis of the data of all patients presenting with symptoms of parathyroid diseases was made and classified according to the cause. 13 patients had presented with symptoms of hyperparathyroidism and each case presented with unique symptoms and necessitated detailed evaluation. The treatment or surgery offered to each patient was tailored to his/her individual disease and led to favourable outcomes. Diseases affecting parathyroid are not as rare as we believe. Each case merits detailed clinical evaluation, investigations and tailoring of suitable treatment with regard to medical management and extent of surgery. Intra-operative frozen section/iOPTH monitoring are really useful adjuncts for intra-operative decision making.Keywords: hyperparathyroidism, parathyroid adenoma, parathyroid surgery, PTH
Procedia PDF Downloads 125441 External Vacuum Dressing: Optimising Non-Operative Management of Flail Sternum Post CPR
Authors: Nicholas Bayfield, Mark Newman
Abstract:
Case Presentation: A 48-year-old male was brought in by ambulance after an out-of-hospital cardiac arrest, with 20 minutes of good-quality cardiopulmonary resuscitation in the community. Return of spontaneous circulation was achieved with defibrillation, revealing an inferior ST-elevation myocardial infarction. He was revascularized emergently in the cath lab and stabilised. Following the procedure, he was noted to have paradoxical respiratory movements of the sternum and high oxygen requirements. CT imaging demonstrated a flail chest with bilateral anterior rib 1-7 fractures as well as a large left-sided extra-pleural haematoma and small haemopneumothorax, secondary to CPR. The patient’s ventilation was stabilised with oxygen via a high-flow humidifier. Pain relief was provided. The anatomy of his rib fractures was not easily amenable to operative fixation. In addition, he was considered to be a high-risk operative candidate due to his recent arrest. He was managed thus non-operatively with an external vacuum dressing applied to the anterior chest wall to minimise respiratory compromise and minimise pain from the motion around the rib fracture sites. Non-operative management was successful, and the patient was reviewed one month later. The paradoxical sternal movement had abated. Discussion: External vacuum dressing has been trialled for non-operative management of rib fractures with varying success. It provides an external brace to minimise fracture site movement during respiration and coughing, thus minimising pain. This modality should be considered a low-cost, high-reward adjunct to non-operative management of bony thoracic trauma.Keywords: thoracic surgery, thoracic trauma, rib fractures, negative pressure dressing
Procedia PDF Downloads 154440 Correlation between Peripheral Arterial Disease and Coronary Artery Disease in Bangladeshi Population: A Five Years Retrospective Study
Authors: Syed Dawood M. Taimur
Abstract:
Background: Peripheral arterial disease (PAD) is under diagnosed in primary care practices, yet the extent of unrecognized PAD in patients with coronary artery disease (CAD) is unknown. Objective: To assess the prevalence of previously unrecognized PAD in patients undergoing coronary angiogram and to determine the relationship between the presence of PAD and severity of CAD. Material & Methods: This five years retrospective study was conducted at an invasive lab of the department of Cardiology, Ibrahim Cardiac Hospital & Research Institute from January 2010 to December 2014. Total 77 patients were included in this study. Study variables were age, sex, risk factors like hypertension, diabetes mellitus, dyslipidaemia, smoking habit and positive family history for ischemic heart disease, coronary artery and peripheral artery profile. Results: Mean age was 56.83±13.64 years, Male mean age was 53.98±15.08 years and female mean age was 54.5±1.73years. Hypertension was detected in 55.8%, diabetes in 87%, dyslipidaemia in 81.8%, smoking habits in 79.2% and 58.4% had a positive family history. After catheterization 88.3% had peripheral arterial disease and 71.4% had coronary artery disease. Out of 77 patients, 52 had both coronary and peripheral arterial disease which was statistically significant (p < .014). Coronary angiogram revealed 28.6% (22) patients had triple vessel disease, 23.3% (18) had single vessel disease, 19.5% (15) had double vessel disease and 28.6% (22) were normal coronary arteries. The peripheral angiogram revealed 54.5% had superficial femoral artery disease, 26% had anterior tibial artery disease, 27.3% had posterior tibial artery disease, 20.8% had common iliac artery disease, 15.6% had common femoral artery disease and 2.6% had renal artery disease. Conclusion: There is a strong and definite correlation between coronary and peripheral arterial disease. We found that cardiovascular risk factors were in fact risk factors for both PAD and CAD.Keywords: coronary artery disease (CAD), peripheral artery disease(PVD), risk, factors, correlation, cathetarization
Procedia PDF Downloads 426439 Clinical and Radiological Outcome in 300 Patients with Non-Aneurysmal Sah
Authors: Ranjith Menon, Abathar Aladi, Hans-Christean Nahser, Maneesh Bhojak, Sacha Nevin, Paul Eldridge
Abstract:
Background: Spontaneous subarachnoid haemorrhage (SAH) accounts for approximately 5% of all strokes. Patients with spontaneous SAH (as shown by CT or lumbar puncture) undergo investigations to identify or exclude an underlying structural cause, typically cerebral aneurysm. However in 10 - 20% of cases, no structural cause is found. This includes more than one imaging modality (intracranial MRA, CTA, 4DCTA and/or DSA) and in some spinal MRI. Objective: To determine; 1) If an underlying structural or vascular cause can be identified in non-aneurysmal SAH patients by comparing different imaging modalities at presentation and at follow-up. 2) If MRI spine in patients with non-aneurysmal SAH reveals an underlying SAH cause. 3)The functional outcome at discharge. Results: We performed a retrospective analysis of all non-traumatic SAH patients admitted to the Walton centre from January 2009 to December 2015. There were 1457 patients with non-traumatic SAH admitted to the Walton centre of whom 21.8% (n=300) patients were diagnosed with non-aneurysmal SAH. Males were 65.6% and females were 43.3%. The presenting symptoms were sudden onset headache (93.6%), the focal neurological deficit (12%), loss of consciousness (10.6%) and others (6%). About 285 patients received 2 modalities of imaging (CTA & DSA), 192 received 3 modalities of imaging (CTA, MRA & DSA) and 137 received MRI spine (51/137 whole spine). The modified Rankin Score at discharge were: mRS 0 = 292 (97.33%), mRS 1-2 = 6, mRS 6 = 1 (cardiac arrest in IHD patient) and unknown in 1. Follow-up imaging at 3 to 6 months in 190 (63.3%) patients did not identify an underlying cause. Conclusion: This retrospective analysis concludes that non-aneurysmal SAH has a good functional outcome. A single imaging modality (CTA (4DCTA) or MRA or DSA) was adequate to exclude an underlying cause of SAH and a delayed imaging failed to identify a cause. Routinely performing MRI spine in this group of patients appears not to be necessary according to this evidence.Keywords: stroke, non-aneurysmal subarachnoid haemorrhage, neuroimaging, modified rankin score
Procedia PDF Downloads 268438 Left Ventricular Adaptations of Elite Volleyball Players Based on the Playing Position
Authors: Shihab Aldin Al Riyami, Khosrow Ebrahim, Sajad Ahmadizad
Abstract:
Hemodynamic changes and ventricular loading during exercise lead to left ventricular (LV) hypertrophy. In athletes, volume load induces enlargement of the LV internal diameter and a proportional increase of wall thickness; while, pressure load would induce thickening of the ventricular wall. These adaptations are not similar in all athletes and are related to the types of sport. Volleyball players have different types of activity and roles based on their playing. Therefore, their physiological adaptations and requirements are different. The aim of the current study was to investigate the LV adaptationsinelite volleyball players based on their playing position. Sixty male elite volleyball players (age, 30.55±3.64 years)from Brazil, Serbia, Poland, Iran, Colombia, Cameroon, Japan, Egypt, Qatar, and Tunisia were investigated (from all five volleyball play positions). All participants had the experience of at least 3 years of participation at a professional level and international tournaments. LV characteristics were evaluated and measured using the echocardiography technique. Statistical analyses revealed significant differences (P<0.05)among the five groups of players forLV internal dimension (LVID), posterior wall thickness (PWT), and intact ventricular septum (IVS). Post-hoc analysis showed that opposite position players had significant higher value of LVID, PWT, and IVS when compared with other players, including outside hitter, middle blocker, setter, and libero (p<0.05). Additionally, in libero players, PWT was significantly lower when compared with other players (p<0.05). Based on the findings of the present study, it is concluded that LV adaptations in volleyball players are related to their playing position and that the opposite players had the highest LV adaptations when compared to other positions.Keywords: athletes, cardiac adaptations, echocardio graphy, heart, sport
Procedia PDF Downloads 273437 Bio Composites for Substituting Synthetic Packaging Materials
Authors: Menonjyoti Kalita, Pradip Baishya
Abstract:
In recent times, the world has been facing serious environmental concerns and issues, such as sustainability and cost, due to the overproduction of synthetic materials and their participation in degrading the environment by means of industrial waste and non-biodegradable characteristics. As such, biocomposites come in handy to ease such troubles. Bio-based composites are promising materials for future applications for substituting synthetic packaging materials. The challenge of making packaging materials lighter, safer and cheaper leads to investigating advanced materials with desired properties. Also, awareness of environmental issues forces researchers and manufacturers to spend effort on composite and bio-composite materials fields. This paper explores and tests some nature-friendly materials has been done which can replace low-density plastics. The materials selected included sugarcane bagasse, areca palm, and bamboo leaves. Sugarcane bagasse bamboo leaves and areca palm sheath are the primary material or natural fibre for testing. These products were processed, and the tensile strength of the processed parts was tested in Micro UTM; it was found that areca palm can be used as a good building material in replacement to polypropylene and even could be used in the production of furniture with the help of epoxy resin. And for bamboo leaves, it was found that bamboo and cotton, when blended in a 50:50 ratio, it has great tensile strength. For areca, it was found that areca fibres can be a good substitute for polypropylene, which can be used in building construction as binding material and also other products.Keywords: biodegradable characteristics, bio-composites, areca palm sheath, polypropylene, micro UTM
Procedia PDF Downloads 90436 Evaluation and Association of Thyroid Function Tests with Liver Function Parameters LDL and LDH Level Before and after I131 Therapy
Authors: Sabika Rafiq, Rubaida Mehmood, Sajid Hussain, Atia Iqbal
Abstract:
Background and objectives: The pathogenesis of liver function abnormalities and cardiac dysfunction in hyperthyroid patients after I131 treatment is still unclear. This study aimed to determine the effects of radioiodine I131 on liver function parameters, lactate dehydrogenase (LDH) and low-density lipoproteins (LDL) before and after I131 therapy hyperthyroidism patients. Material & Methods: A total of 52 patients of hyperthyroidism recommended for I131were involved in this study with ages ranging from 12–65 years (mean age=38.6±14.8 & BMI=11.5±3.7). The significance of the differences between the results of 1st, 2nd and 3rd-time serum analysis was assessed by unpaired student’s t-test. Associations between the parameters were assessed by Spearman correlation analysis. Results: Significant variations were observed for thyroid profile free FT3 (p=0.04), FT4 (p=0.01), TSH (p=0.005) during the follow-up treatment. Before taking I131 (serum analyzed at 1st time), negative correlation of FT3 with AST (r=-0.458, p=0.032) and LDL (r=-0.454, p=0.039) were observed. During 2nd time (after stopping carbimazole), no correlation was assessed. Two months after the administration of I131 drops, a significant negative association of FT3 (r=-0.62, p=0.04) and FT4(r=-0.61, p=0.02) with ALB were observed. FT3(r=-0.82, p=0.00) & FT4 (r=-0.71, p=0.00) also showed negative correlation with LDL after I131 therapy. Whereas TSH showed significant positive association with ALB (r=0.61, p=0.01) and LDL (r=0.70, p=0.00) respectively. Conclusion: Current findings suggested that the association of TFTs with biochemical parameters in patients with goiter recommended for iodine therapy is an important diagnostic and therapeutic tool. The significant changes increased in transaminases and low-density lipoprotein levels after taking I131drops are alarming signs for heart and liver function abnormalities and warrant physicians' attention on an urgent basis.Keywords: hyperthyroidism, carbimazole, radioiodine I131, liver functions, low-density lipoprotein
Procedia PDF Downloads 155435 In Situ Volume Imaging of Cleared Mice Seminiferous Tubules Opens New Window to Study Spermatogenic Process in 3D
Authors: Lukas Ded
Abstract:
Studying the tissue structure and histogenesis in the natural, 3D context is challenging but highly beneficial process. Contrary to classical approach of the physical tissue sectioning and subsequent imaging, it enables to study the relationships of individual cellular and histological structures in their native context. Recent developments in the tissue clearing approaches and microscopic volume imaging/data processing enable the application of these methods also in the areas of developmental and reproductive biology. Here, using the CLARITY tissue procedure and 3D confocal volume imaging we optimized the protocol for clearing, staining and imaging of the mice seminiferous tubules isolated from the testes without cardiac perfusion procedure. Our approach enables the high magnification and fine resolution axial imaging of the whole diameter of the seminiferous tubules with possible unlimited lateral length imaging. Hence, the large continuous pieces of the seminiferous tubule can be scanned and digitally reconstructed for the study of the single tubule seminiferous stages using nuclear dyes. Furthermore, the application of the antibodies and various molecular dyes can be used for molecular labeling of individual cellular and subcellular structures and resulting 3D images can highly increase our understanding of the spatiotemporal aspects of the seminiferous tubules development and sperm ultrastructure formation. Finally, our newly developed algorithms for 3D data processing enable the massive parallel processing of the large amount of individual cell and tissue fluorescent signatures and building the robust spermatogenic models under physiological and pathological conditions.Keywords: CLARITY, spermatogenesis, testis, tissue clearing, volume imaging
Procedia PDF Downloads 136434 Geopolymer Concrete: A Review of Properties, Applications and Limitations
Authors: Abbas Ahmed Albu Shaqraa
Abstract:
The concept of a safe environment and low greenhouse gas emissions is a common concern especially in the construction industry. The produced carbon dioxide (CO2) emissions are nearly a ton in producing only one ton of Portland cement, which is the primary ingredient of concrete. Current studies had investigated the utilization of several waste materials in producing a cement free concrete. The geopolymer concrete is a green material that results from the reaction of aluminosilicate material with an alkaline liquid. A summary of several recent researches in geopolymer concrete will be presented in this manuscript. In addition, the offered presented review considers the use of several waste materials including fly ash, granulated blast furnace slag, cement kiln dust, kaolin, metakaolin, and limestone powder as binding materials in making geopolymer concrete. Moreover, the mechanical, chemical and thermal properties of geopolymer concrete will be reviewed. In addition, the geopolymer concrete applications and limitations will be discussed as well. The results showed a high early compressive strength gain in geopolymer concrete when dry- heating or steam curing was performed. Also, it was stated that the outstanding acidic resistance of the geopolymer concrete made it possible to be used where the ordinary Portland cement concrete was doubtable. Thus, the commercial geopolymer concrete pipes were favored for sewer system in case of high acidic conditions. Furthermore, it was reported that the geopolymer concrete could stand up to 1200 °C in fire without losing its strength integrity whereas the Portland cement concrete was losing its function upon heating to some 100s °C only. However, the geopolymer concrete still considered as an emerging field and occupied mainly by the precast industries.Keywords: geopolymer concrete, Portland cement concrete, alkaline liquid, compressive strength
Procedia PDF Downloads 221433 The Right to Development as Constitutive and Prescriptive Right: The Lower Omo Valley Case of Ethiopia
Authors: Kebene K. Wodajo
Abstract:
The right to development (RTD) has gone through different phases of metamorphoses, from the right to economic growth to full human development. Despite the fact that Africa has taken the lead in articulating and recognizing the RTD in a binding multilateral human rights treaty, realization of the right poses a challenge at the operational level. The challenge is worse in Sub-Saharan Africa, mainly because governments often tend to set economic growth as their ultimate goal, with very little consideration to the local peoples’ welfare in their territory. Ethiopia is not an exception to this. While recording a fast economic growth, yet this has been accompanied by increasing severity of multidimensional poverty. This paper explores the place of the ‘people’ in the development trajectory Ethiopia is pursuing and if and how a right-based approach to development could be brought to practice beyond the rhetoric. By inquiring into the place of the ‘people’, the paper attempts to show whether the people are at the center or at the periphery, beneficiary or victims of the ongoing development. In doing so, it divulges the gulf between the rhetoric and the reality of development practice. By asking/discussing if and how a right-based approach to development could bridge the gap, the paper shows how this approach could translate ‘people’s’ need into right, and recognize them as active subjects and stakeholders of the process of development. As an instance of showing the gap, the paper takes the Lower Omo valley sugar plantation project as a case in point. Through analysis the paper demonstrates that the development trajectory being followed by Ethiopia falls short of fitting into the human development discourse of UN Declaration on the Right to Development (DRD), the African Charter on People and Human Rights (the Charter) and the Ethiopian constitution. The paper argues that Ethiopia’s development efforts must take account of both the constitutive and prescriptive nature of the RTD if social equity is to be met.Keywords: development, Ethiopia, lower Omo valley, right-based approach, right to development, people, people’s right
Procedia PDF Downloads 323432 Green approach of Anticorrosion Coating of Steel Based on Polybenzoxazine/Henna Nanocomposites
Authors: Salwa M. Elmesallamy, Ahmed A. Farag, Magd M. Badr, Dalia S. Fathy, Ahmed Bakry, Mona A. El-Etre
Abstract:
The term green environment is an international trend. It is become imperative to treat the corrosion of steel with a green coating to protect the environment. From the potential adverse effects of the traditional materials.A series of polybenzoxazine/henna composites (PBZ/henna), with different weight percent (3,5, and 7 wt % (of henna), were prepared for corrosion protection of carbon steel. The structures of the prepared composites were verified using FTIR analysis. The mechanical properties of the resins, such as adhesion, hardness, binding, and tensile strength, were also measured. It was found that the tensile strength increases by henna loading up to 25% higher than the tidy resin. The thermal stability was investigated by thermogravimetric analysis (TGA) the loading of lawsone (henna) molecules into the PBZ matrix increases the thermal stability of the composite. UV stability was tested by the UV weathering accelerator to examine the possibility that henna can also act as an aging UV stabilizer. The effect of henna content on the corrosion resistance of composite coatings was tested using potentiostatic polarization and electrochemical spectroscopy. The presence of henna in the coating matrix enhances the protection efficiency of polybenzoxazine coats. Increasing henna concentration increases the protection efficiency of composites. The quantum chemical calculations for polybenzoxazine/henna composites have resulted that the highest corrosion inhibition efficiency, has the highest EHOMO and lowest ELUMO; which is in good agreement with results obtained from experiments.Keywords: polybenzoxazine, corrosion, green chemistry, carbon steel
Procedia PDF Downloads 95431 Mitigating the Aggregation of Human Islet Amyloid Polypeptide with Nanomaterials
Authors: Ava Faridi, Pouya Faridi, Aleksandr Kakinen, Ibrahim Javed, Thomas P. Davis, Pu Chun Ke
Abstract:
Human islet amyloid polypeptide (IAPP) is a hormone associated with glycemic control and type 2 diabetes. Biophysically, the chirality of IAPP fibrils has been little explored with respect to the aggregation and toxicity of the peptide. Biochemically, it remains unclear as for how protein expression in pancreatic beta cells may be altered by cell exposure to the peptide, and how such changes may be mitigated by nanoparticle inhibitors for IAPP aggregation. In this study, we first demonstrated the elimination of the IAPP nucleation phase and shortening of its elongation phase by silica nanoribbons. This accelerated IAPP fibrillization translated to reduced toxicity, especially for the right-handed silica nanoribbons, as revealed by cell viability, helium ion microscopy, as well as zebrafish embryo survival, developmental and behavioral assays. We then examined the proteomes of βTC6 pancreatic beta cells exposed to the three main aggregation states of monomeric, oligomeric and amyloid fibrillar IAPP, and compared that with cellular protein expression modulated by graphene quantum dots (GQDs). A total of 29 proteins were significantly regulated by different forms of IAPP, and the majority of these proteins were nucleotide-binding proteins. A regulatory capacity of GQDs against aberrant protein expression was confirmed. These studies have demonstrated the great potential of employing nanomaterials targeting the mesoscopic enantioselectivity and protein expression dysregulation in pancreatic beta cells.Keywords: graphene quantum dots, IAPP, silica nanoribbons, protein expression, toxicity
Procedia PDF Downloads 142430 Lessons Learnt from a Patient with Pseudohyperkalaemia Secondary to Polycythaemia Rubra Vera in a Neuro-ICU Patient Resulting in Dangerous Interventions: Lessons Learnt on Patient Safety Improvement
Authors: Dinoo Kirthinanda, Sujani Wijeratne
Abstract:
Pseudohyperkalaemia is a common benign in vitro phenomenon caused by the release of potassium ions (K+) from cells during specimen processing. Analysis of haemolysed blood samples for predominantly intracellular electrolytes may lead to re-investigation and potentially harmful interventions. We report a case of a 52-year male with myeloproliferative disease manifested as Polycythaemia Rubra Vera, Hypertension and hypertensive nephropathy with stage 3 chronic kidney disease admitted to Neuro-intensive care unit (NICU) with an intra-cerebral haemorrhage secondary to hypertensive bleed. His initial blood investigations showed hyperkalemia with serum K+ 6.2 mmol/L yet the bedside arterial blood gas analysis yielded K+ of 4.6 mmol/L. The patient was however given hyperkalemia regime twice based on venous electrolyte analysis. The discrepancy between the bedside electrolyte analysis using arterial blood and venous blood prompted further evaluation. The 12 lead Electrocardiogram showed U waves and sinus bradycardia corresponding to the serum K+ of 2.8 mmol/L on arterial blood gas analysis. Immediate K+ replacement ensured the patient did not develop life-threatening cardiac complications. Pseudohyperkalaemia may pose diagnostic challenges in the absence of detectable haemolysis and should be suspected in susceptible patients with normal Electrocardiogram and Glomerular Filtration Rate to avoid potentially life-threatening interventions. When in doubt, rapid analysis of arterial blood gas may be useful for accurate quantification of potassium.Keywords: patient safety, pseudohyperkalaemia, haemolysis, myeloproliferative disorder
Procedia PDF Downloads 152429 Advanced Techniques in Robotic Mitral Valve Repair
Authors: Abraham J. Rizkalla, Tristan D. Yan
Abstract:
Purpose: Durable mitral valve repair is preferred to a replacement, avoiding the need for anticoagulation or re-intervention, with a reduced risk of endocarditis. Robotic mitral repair has been gaining favour globally as a safe, effective, and reproducible method of minimally invasive valve repair. In this work, we showcase the use of the Davinci© Xi robotic platform to perform several advanced techniques, working synergistically to achieve successful mitral repair in advanced mitral disease. Techniques: We present the case of a Barlow type mitral valve disease with a tall and redundant posterior leaflet resulting in severe mitral regurgitation and systolic anterior motion. Firstly, quadrangular resection of P2 is performed to remove the excess and redundant leaflet. Secondly, a sliding leaflet plasty of P1 and P3 is used to reconstruct the posterior leaflet. To anchor the newly formed posterior leaflet to the papillary muscle, CV-4 Goretex neochordae are fashioned using the innovative string, ruler, and bulldog technique. Finally, mitral valve annuloplasty and closure of a patent foramen ovale complete the repair. Results: There was no significant residual mitral regurgitation and complete resolution of the systolic anterior motion of the mitral valve on post operative transoesophageal echocardiography. Conclusion: This work highlights the robotic approach to complex repair techniques for advanced mitral valve disease. Familiarity with resection and sliding plasty, neochord implantation, and annuloplasty allows the modern cardiac surgeon to achieve a minimally-invasive and durable mitral valve repair when faced with complex mitral valve pathology.Keywords: robotic mitral valve repair, Barlow's valve, sliding plasty, neochord, annuloplasty, quadrangular resection
Procedia PDF Downloads 86428 Magnetic Silica Nanoparticles as Viable Support for the Immobilization of Oxidative Enzymes
Authors: Y. Moldes-Diz, M. Gamallo, G. Eibes, C. Vazquez-Vazquez, G. Feijoo, J. M. Lema, M. T. Moreira
Abstract:
Laccases (benzenediol oxygen oxidoreductases, EC 1.10.3.2) are excellent biocatalysts for biotechnological and environmental applications because of their high activity, selectivity, and specificity. Specifically, these characteristics allow them to perform the oxidation of recalcitrant compounds with simple requirements for the catalysis (presence of molecular oxygen). Nevertheless, the low stability under unfavorable conditions (pH, inactivating agents or temperature) and high production costs still limits their use for practical applications. Immobilization of enzymes has proven particularly valuable to avoid some of the aforementioned drawbacks. Magnetic nanoparticles (MNPs) have received increasing attention as carriers for enzyme immobilization since they can potentially provide an easy recovery of the biocatalyst from the reaction medium under an external magnetic field. In the present work, silica-coated magnetic nanoparticles (Fe3O4@SiO2) were prepared, characterized and used for laccase immobilization by covalent binding. The synthesis of Fe3O4@SiO2 was performed in a two-step procedure: co-precipitation and reverse microemulsion. The influence of immobilization conditions: concentrations of the functionalization agent (3-aminopropyl-triethoxy-silane) and the cross-linker (glutaraldehyde) as well as the influence of pH, T or inactivating agents were evaluated. In general, immobilized laccase showed superior stability compared to that of free enzyme. The reusability of the biocatalyst was demonstrated in successive batch reactions, where enzyme activity was maintained above 65% after 8 cycles of oxidation of the substrate 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate).Keywords: silica-coated magnetic nanoparticles, laccase, immobilization, regeneration
Procedia PDF Downloads 218427 Structural Evidence of the Conversion of Nitric Oxide (NO) to Nitrite Ion (NO2‾) by Lactoperoxidase (LPO): Structure of the Complex of LPO with NO2‾ at 1.89å Resolution
Authors: V. Viswanathan, Md. Irshad Ahmad, Prashant K. Singh, Nayeem Ahmad, Pradeep Sharma, Sujata Sharma, Tej P Singh
Abstract:
Lactoperoxidase (LPO) is a heme containing mammalian enzyme which uses hydrogen peroxide (H2O2) to catalyze the conversion of substrates into oxidized products. LPO is found in body fluids and tissues such as milk, saliva, tears, mucosa and other body secretions. The previous structural studies have shown that LPO converts substrates, thiocyanate (SCN‾) and iodide (I‾) ions into oxidized products, hypothiocyanite (OSCN‾) and hypoiodite (IO‾) ions, respectively. We report here a new structure of the complex of LPO with an oxidized product, nitrite (NO2‾). This product was generated from NO using the two step reaction of LPO by adding hydrogen peroxide (H2O2) in the solution of LPO in 0.1M phosphate buffer at pH 6.8 as the first step. In the second step, NO gas was added to the above mixture. This was crystallized using 20% (w/v) PEG-3350 and 0.2M ammonium iodide at pH 6.8. The structure determination showed the presence of NO2‾ ion in the distal heme cavity of the substrate binding site of LPO. The structure also showed that the propionate group, which is linked to pyrrole ring D of the heme moiety, was disordered. Similarly, the side chain of Asp108, which is covalently linked to heme moiety, was also split into two components. As a result of these changes, the conformation of the side chain of Arg255 was altered, allowing it to form new interactions with the disordered carboxylic group of propionate moiety. These structural changes are indicative of an intermediate state in the catalytic reaction pathway of LPO.Keywords: lactoperoxidase, structure, nitric oxide, nitrite ion, intermediate, complex
Procedia PDF Downloads 105426 Relationship Between tcdA and tcdB Genes of Clostridium difficile with Duration of Diarrhea in Elderly Patients
Authors: Ni Luh Putu Harta Wedari
Abstract:
Background: Clostridium difficile has two main virulence factors, namely TcdA and TcdB. TcdA encoded by the tcdA gene acts as an enterotoxin, pro-inflammatory and fluid accumulation, while TcdB encoded by the tcdB gene is cytotoxic, causes disruption of the actin cytoskeleton, and causes disruption of tight junctions in colon cells. This study aims to explore the relationship between the tcdA and tcdB genes and the duration of diarrhea in elderly patients. Method: This research was an observational analytic with a prospective cross-sectional with samples of elderly diarrhea patients who met the inclusion criteria in Denpasar City health service facilities from 1 December 2022 until 30 June 2023, and then their feces were analyzed using the real-time PCR method. Results: In this study, 40 elderly diarrhea patients met the inclusion criteria and in accordance with the minimum sample size, 28 (70%) men and 12 (30%) women. 5 patients (12.5%) had a history of azithromycin, 4 (10%) levofloxacin, 17 (42.5%) ciprofloxacin, 8 (20%) metronidazole, 1 (2.5%) cefoperazone, 5 (12, 5%) doxycycline. Comorbids, namely 13 (32.5%) type II diabetes mellitus, 4 (10%) chronic kidney disease, 10 (25%) malignancies, 7 (17.5%) urinary tract infections, 3 (7.5%) %) immunocompromised, 2 (5%) cardiac heart failure, and 1 (2.5%) acute on chronic kidney disease. The overall diarrhea duration average was 5 days. 8 samples (20%) were positive for 16s rRNA, and there was no significant difference in diarrhea duration with negative samples (p=0.166). The relationship between the tcdA gene and the duration of diarrhea could not be performed because all samples were negative. Likewise, relationship analysis between the coexistence of tcdA and tcdB could not be performed. There was no significant difference between tcdB positive 3 (7.5%) and negative with diarrhea duration (p=0.739). Conclusion: There is no significant relationship between the presence of the 16s rRNA and tcdB C. difficile genes with the duration of diarrhea in elderly patients.Keywords: clostridium, difficile, diarrhea, elderly, tcdA, tcdB
Procedia PDF Downloads 86425 Toehold Mediated Shape Transition of Nucleic Acid Nanoparticles
Authors: Emil F. Khisamutdinov
Abstract:
Development of functional materials undergoing structural transformations in response to an external stimulus such as environmental changes (pH, temperature, etc.), the presence of particular proteins, or short oligonucleotides are of great interest for a variety of applications ranging from medicine to electronics. The dynamic operations of most nucleic acid (NA) devices, including circuits, nano-machines, and biosensors, rely on networks of NA strand displacement processes in which an external or stimulus strand displaces a target strand from a DNA or RNA duplex. The rate of strand displacement can be greatly increased by the use of “toeholds,” single-stranded regions of the target complex to which the invading strand can bind to initiate the reaction, forming additional base pairs that provide a thermodynamic driving force for transformation. Herein, we developed a highly robust nanoparticle shape transition, sequentially transforming DNA polygons from one shape to another using the toehold-mediated DNA strand displacement technique. The shape transformation was confirmed by agarose gel electrophoresis and atomic force microscopy. Furthermore, we demonstrate that our approach is applicable for RNA shape transformation from triangle to square, which can be detected by fluorescence emission from malachite green binding RNA aptamer. Using gel-shift and fluorescence assays, we demonstrated efficient transformation occurs at isothermal conditions (37°C) that can be implemented within living cells as reporter molecules. This work is intended to provide a simple, cost-effective, and straightforward model for the development of biosensors and regulatory devices in nucleic acid nanotechnology.Keywords: RNA nanotechnology, bionanotechnology, toehold mediated DNA switch, RNA split fluorogenic aptamers
Procedia PDF Downloads 79424 Organotin (IV) Based Complexes as Promiscuous Antibacterials: Synthesis in vitro, in Silico Pharmacokinetic, and Docking Studies
Authors: Wajid Rehman, Sirajul Haq, Bakhtiar Muhammad, Syed Fahad Hassan, Amin Badshah, Muhammad Waseem, Fazal Rahim, Obaid-Ur-Rahman Abid, Farzana Latif Ansari, Umer Rashid
Abstract:
Five novel triorganotin (IV) compounds have been synthesized and characterized. The tin atom is penta-coordinated to assume trigonal-bipyramidal geometry. Using in silico derived parameters; the objective of our study is to design and synthesize promiscuous antibacterials potent enough to combat resistance. Among various synthesized organotin (IV) complexes, compound 5 was found as potent antibacterial agent against various bacterial strains. Further lead optimization of drug-like properties was evaluated through in silico predictions. Data mining and computational analysis were utilized to derive compound promiscuity phenomenon to avoid drug attrition rate in designing antibacterials. Xanthine oxidase and human glucose- 6-phosphatase were found as only true positive off-target hits by ChEMBL database and others utilizing similarity ensemble approach. Propensity towards a-3 receptor, human macrophage migration factor and thiazolidinedione were found as false positive off targets with E-value 1/4> 10^-4 for compound 1, 3, and 4. Further, displaying positive drug-drug interaction of compound 1 as uricosuric was validated by all databases and docked protein targets with sequence similarity and compositional matrix alignment via BLAST software. Promiscuity of the compound 5 was further confirmed by in silico binding to different antibacterial targets.Keywords: antibacterial activity, drug promiscuity, ADMET prediction, metallo-pharmaceutical, antimicrobial resistance
Procedia PDF Downloads 503423 Mapping Structurally Significant Areas of G-CSF during Thermal Degradation with NMR
Authors: Mark-Adam Kellerman
Abstract:
Proteins are capable of exploring vast mutational spaces. This makes it difficult for protein engineers to devise rational methods to improve stability and function via mutagenesis. Deciding which residues to mutate requires knowledge of the characteristics they elicit. We probed the characteristics of residues in granulocyte-colony stimulating factor (G-CSF) using a thermal melt (from 295K to 323K) to denature it in a 700 MHz Bruker spectrometer. These characteristics included dynamics, micro-environmental changes experienced/ induced during denaturing and structure-function relationships. 15N-1H HSQC experiments were performed at 2K increments along with this thermal melt. We observed that dynamic residues that also undergo a lot of change in their microenvironment were predominantly in unstructured regions. Moreover, we were able to identify four residues (G4, A6, T133 and Q134) that we class as high priority targets for mutagenesis, given that they all appear in both the top 10% of measures for environmental changes and dynamics (∑Δ and ∆PI). We were also able to probe these NMR observables and combine them with molecular dynamics (MD) to elucidate what appears to be an opening motion of G-CSFs binding site III. V48 appears to be pivotal to this opening motion, which also seemingly distorts the loop region between helices A and B. This observation is in agreement with previous findings that the conformation of this loop region becomes altered in an aggregation-prone state of G-CSF. Hence, we present here an approach to profile the characteristics of residues in order to highlight their potential as rational mutagenesis targets and their roles in important conformational changes. These findings present not only an opportunity to effectively make biobetters, but also open up the possibility to further understand epistasis and machine learn residue behaviours.Keywords: protein engineering, rational mutagenesis, NMR, molecular dynamics
Procedia PDF Downloads 255422 Surface Modified Quantum Dots for Nanophotonics, Stereolithography and Hybrid Systems for Biomedical Studies
Authors: Redouane Krini, Lutz Nuhn, Hicham El Mard Cheol Woo Ha, Yoondeok Han, Kwang-Sup Lee, Dong-Yol Yang, Jinsoo Joo, Rudolf Zentel
Abstract:
To use Quantum Dots (QDs) in the two photon initiated polymerization technique (TPIP) for 3D patternings, QDs were modified on the surface with photosensitive end groups which are able to undergo a photopolymerization. We were able to fabricate fluorescent 3D lattice structures using photopatternable QDs by TPIP for photonic devices such as photonic crystals and metamaterials. The QDs in different diameter have different emission colors and through mixing of RGB QDs white light fluorescent from the polymeric structures has been created. Metamaterials are capable for unique interaction with the electrical and magnetic components of the electromagnetic radiation and for manipulating light it is crucial to have a negative refractive index. In combination with QDs via TPIP technique polymeric structures can be designed with properties which cannot be found in nature. This makes these artificial materials gaining a huge importance for real-life applications in photonic and optoelectronic. Understanding of interactions between nanoparticles and biological systems is of a huge interest in the biomedical research field. We developed a synthetic strategy of polymer functionalized nanoparticles for biomedical studies to obtain hybrid systems of QDs and copolymers with a strong binding network in an inner shell and which can be modified in the end through their poly(ethylene glycol) functionalized outer shell. These hybrid systems can be used as models for investigation of cell penetration and drug delivery by using measurements combination between CryoTEM and fluorescence studies.Keywords: biomedical study models, lithography, photo induced polymerization, quantum dots
Procedia PDF Downloads 526421 The Fabrication of Stress Sensing Based on Artificial Antibodies to Cortisol by Molecular Imprinted Polymer
Authors: Supannika Klangphukhiew, Roongnapa Srichana, Rina Patramanon
Abstract:
Cortisol has been used as a well-known commercial stress biomarker. A homeostasis response to psychological stress is indicated by an increased level of cortisol produced in hypothalamus-pituitary-adrenal (HPA) axis. Chronic psychological stress contributing to the high level of cortisol relates to several health problems. In this study, the cortisol biosensor was fabricated that mimicked the natural receptors. The artificial antibodies were prepared using molecular imprinted polymer technique that can imitate the performance of natural anti-cortisol antibody with high stability. Cortisol-molecular imprinted polymer (cortisol-MIP) was obtained using the multi-step swelling and polymerization protocol with cortisol as a target molecule combining methacrylic acid:acrylamide (2:1) with bisacryloyl-1,2-dihydroxy-1,2-ethylenediamine and ethylenedioxy-N-methylamphetamine as cross-linkers. Cortisol-MIP was integrated to the sensor. It was coated on the disposable screen-printed carbon electrode (SPCE) for portable electrochemical analysis. The physical properties of Cortisol-MIP were characterized by means of electron microscope techniques. The binding characteristics were evaluated via covalent patterns changing in FTIR spectra which were related to voltammetry response. The performance of cortisol-MIP modified SPCE was investigated in terms of detection range, high selectivity with a detection limit of 1.28 ng/ml. The disposable cortisol biosensor represented an application of MIP technique to recognize steroids according to their structures with feasibility and cost-effectiveness that can be developed to use in point-of-care.Keywords: stress biomarker, cortisol, molecular imprinted polymer, screen-printed carbon electrode
Procedia PDF Downloads 273420 Prediction of Solanum Lycopersicum Genome Encoded microRNAs Targeting Tomato Spotted Wilt Virus
Authors: Muhammad Shahzad Iqbal, Zobia Sarwar, Salah-ud-Din
Abstract:
Tomato spotted wilt virus (TSWV) belongs to the genus Tospoviruses (family Bunyaviridae). It is one of the most devastating pathogens of tomato (Solanum Lycopersicum) and heavily damages the crop yield each year around the globe. In this study, we retrieved 329 mature miRNA sequences from two microRNA databases (miRBase and miRSoldb) and checked the putative target sites in the downloaded-genome sequence of TSWV. A consensus of three miRNA target prediction tools (RNA22, miRanda and psRNATarget) was used to screen the false-positive microRNAs targeting sites in the TSWV genome. These tools calculated different target sites by calculating minimum free energy (mfe), site-complementarity, minimum folding energy and other microRNA-mRNA binding factors. R language was used to plot the predicted target-site data. All the genes having possible target sites for different miRNAs were screened by building a consensus table. Out of these 329 mature miRNAs predicted by three algorithms, only eight miRNAs met all the criteria/threshold specifications. MC-Fold and MC-Sym were used to predict three-dimensional structures of miRNAs and further analyzed in USCF chimera to visualize the structural and conformational changes before and after microRNA-mRNA interactions. The results of the current study show that the predicted eight miRNAs could further be evaluated by in vitro experiments to develop TSWV-resistant transgenic tomato plants in the future.Keywords: tomato spotted wild virus (TSWV), Solanum lycopersicum, plant virus, miRNAs, microRNA target prediction, mRNA
Procedia PDF Downloads 155419 Positive effect of Cu2+ and Ca2+ on the Thermostability of Bambara Groundnut Peroxidase A6, and its Catalytic Efficiency Toward the Oxidation of 3,3,5,5 -Tetramethyl Benzidine
Authors: Yves Mann Elate Lea Mbassi, Marie Solange Evehe Bebandoue, Wilfred Fon Mbacham
Abstract:
Improving the catalytic performance of enzymes has been a long-standing theme of analytical biochemistry research. Induction of peroxidase activity by metals is a common reaction in higher plants. We thought that this increase in peroxidase activity may be due, on the one hand, to the stimulation of the gene expression of these enzymes but also to a modification of their chemical reactivity following the binding of some metal ions on their active site. We tested the effect of some metal salts (MgCl₂, MnCl₂, ZnCl₂, CaCl₂ and CuSO₄) on the activity and thermostability of peroxidase A6, a thermostable peroxidase that we discovered and purified in a previous study. The chromogenic substrate used was 3,3′,5,5′-tetramethylbenzidine. Of all the metals tested for their effect on A6, only magnesium and copper had a significant effect on the activity of the enzyme at room temperature. The Mann-Whitney test shows a slight inhibitory effect of activity by the magnesium salt (P = 0.043), while the activity of the enzyme is 5 times higher in the presence of the copper salt (P = 0.002). Moreover, the thermostability of peroxidase A6 is increased when calcium and copper salts are present. The activity in the presence of CaCl₂ is 8 times higher than the residual activity of the enzyme alone after incubation at 80°C for 10 min and 35 times higher in the presence of CuSO4 under the same conditions. In addition, manganese and zinc salts slightly reduce the thermostability of the enzyme. The activity and structural stability of peroxidase A6 can clearly be activated by Cu₂+, which therefore enhance the oxidation of 3,3′,5,5′-tetramethylbenzidine, which was used in this study as a chromogenic substrate. Ca₂+ likely has a more stabilizing function for the catalytic site.Keywords: peroxidase activity, copper ions, calcium ions, thermostability
Procedia PDF Downloads 73418 Assessment of Isatin as Surface Recognition Group: Design, Synthesis and Anticancer Evaluation of Hydroxamates as Novel Histone Deacetylase Inhibitors
Authors: Harish Rajak, Kamlesh Raghuwanshi
Abstract:
Histone deacetylase (HDAC) are promising target for cancer treatment. The panobinostat (Farydak; Novartis; approved by USFDA in 2015) and chidamide (Epidaza; Chipscreen Biosciences; approved by China FDA in 2014) are the novel HDAC inhibitors ratified for the treatment of patients with multiple myeloma and peripheral T cell lymphoma, respectively. On the other hand, two other HDAC inhibitors, Vorinostat (SAHA; approved by USFDA in 2006) and Romidepsin (FK228; approved by USFDA in 2009) are already in market for the treatment of cutaneous T-cell lymphoma. Several hydroxamic acid based HDAC inhibitors i.e., belinostat, givinostat, PCI24781 and JNJ26481585 are in clinical trials. HDAC inhibitors consist of three pharmacophoric features - an aromatic cap group, zinc binding group (ZBG) and a linker chain connecting cap group to ZBG. Herein, we report synthesis, characterization and biological evaluation of HDAC inhibitors possessing substituted isatin moiety as cap group which recognize the surface of active enzyme pocket and thiosemicarbazide moiety incorporated as linker group responsible for connecting cap group to ZBG (hydroxamic acid). Several analogues were found to inhibit HDAC and cellular proliferation of Hela cervical cancer cells with GI50 values in the micro molar range. Some of the compounds exhibited promising results in vitro antiproliferative studies. Attempts were also made to establish the structure activity relationship among synthesized HDAC inhibitors.Keywords: HDAC inhibitors, hydroxamic acid derivatives, isatin derivatives, antiproliferative activity, docking
Procedia PDF Downloads 307417 Development of a Direct Immunoassay for Human Ferritin Using Diffraction-Based Sensing Method
Authors: Joel Ballesteros, Harriet Jane Caleja, Florian Del Mundo, Cherrie Pascual
Abstract:
Diffraction-based sensing was utilized in the quantification of human ferritin in blood serum to provide an alternative to label-based immunoassays currently used in clinical diagnostics and researches. The diffraction intensity was measured by the diffractive optics technology or dotLab™ system. Two methods were evaluated in this study: direct immunoassay and direct sandwich immunoassay. In the direct immunoassay, human ferritin was captured by human ferritin antibodies immobilized on an avidin-coated sensor while the direct sandwich immunoassay had an additional step for the binding of a detector human ferritin antibody on the analyte complex. Both methods were repeatable with coefficient of variation values below 15%. The direct sandwich immunoassay had a linear response from 10 to 500 ng/mL which is wider than the 100-500 ng/mL of the direct immunoassay. The direct sandwich immunoassay also has a higher calibration sensitivity with value 0.002 Diffractive Intensity (ng mL-1)-1) compared to the 0.004 Diffractive Intensity (ng mL-1)-1 of the direct immunoassay. The limit of detection and limit of quantification values of the direct immunoassay were found to be 29 ng/mL and 98 ng/mL, respectively, while the direct sandwich immunoassay has a limit of detection (LOD) of 2.5 ng/mL and a limit of quantification (LOQ) of 8.2 ng/mL. In terms of accuracy, the direct immunoassay had a percent recovery of 88.8-93.0% in PBS while the direct sandwich immunoassay had 94.1 to 97.2%. Based on the results, the direct sandwich immunoassay is a better diffraction-based immunoassay in terms of accuracy, LOD, LOQ, linear range, and sensitivity. The direct sandwich immunoassay was utilized in the determination of human ferritin in blood serum and the results are validated by Chemiluminescent Magnetic Immunoassay (CMIA). The calculated Pearson correlation coefficient was 0.995 and the p-values of the paired-sample t-test were less than 0.5 which show that the results of the direct sandwich immunoassay was comparable to that of CMIA and could be utilized as an alternative analytical method.Keywords: biosensor, diffraction, ferritin, immunoassay
Procedia PDF Downloads 354416 Network Pharmacological Evaluation of Holy Basil Bioactive Phytochemicals for Identifying Novel Potential Inhibitors Against Neurodegenerative Disorder
Authors: Bhuvanesh Baniya
Abstract:
Alzheimer disease is illnesses that are responsible for neuronal cell death and resulting in lifelong cognitive problems. Due to their unclear mechanism, there are no effective drugs available for the treatment. For a long time, herbal drugs have been used as a role model in the field of the drug discovery process. Holy basil in the Indian medicinal system (Ayurveda) is used for several neuronal disorders like insomnia and memory loss for decades. This study aims to identify active components of holy basil as potential inhibitors for the treatment of Alzheimer disease. To fulfill this objective, the Network pharmacology approach, gene ontology, pharmacokinetics analysis, molecular docking, and molecular dynamics simulation (MDS) studies were performed. A total of 7 active components in holy basil, 12 predicted neurodegenerative targets of holy basil, and 8063 Alzheimer-related targets were identified from different databases. The network analysis showed that the top ten targets APP, EGFR, MAPK1, ESR1, HSPA4, PRKCD, MAPK3, ABL1, JUN, and GSK3B were found as significant target related to Alzheimer disease. On the basis of gene ontology and topology analysis results, APP was found as a significant target related to Alzheimer’s disease pathways. Further, the molecular docking results to found that various compounds showed the best binding affinities. Further, MDS top results suggested could be used as potential inhibitors against APP protein and could be useful for the treatment of Alzheimer’s disease.Keywords: holy basil, network pharmacology, neurodegeneration, active phytochemicals, molecular docking and simulation
Procedia PDF Downloads 100