Search results for: ultrasound.
414 Fine Needle Aspiration Biopsy of Thyroid Nodules
Authors: Ilirian Laçi, Alketa Spahiu
Abstract:
Big strums of thyroid glandule observed by a simple viewing can be witnessed in everyday life. Medical cabinets evidence patients withpalpablenodes of thyroid glandule, mainly nodes of the size of 10 millimeters. Further, more cases which have resulted in negative under palpation have resulted in positive at ultrasound examination. Therefore, the use of ultrasound for diagnosing has increased the number of patients with nodes of thyroid glandule in the last couple of decades in all countries, Albania included. Thus, there has been evidence of an increased number of patients affected by this pathology, where female patients dominate. Demographically, the capital shows high numbers due to the high population, but of interest is the high incidence of those areas distanced from the sea. While regarding related pathologies, no significant link was evidenced, an element of ancestry was evident in the nodes of the thyroid glandule. When we talk of nodes of the thyroid glandule, we should consider hyperplasia, neoplasia, and inflammatory diseases that cause nodes of the thyroid glandule. This increase parallels the world’s increase of the incidence of thyroid glandule, with malign cases, which are at about 5% and are not depended on size. Given the numbers, with most thyroid glandule nodes being benign, the main objective of the examination of the nodes was the determination of benign and malign cases to avoid undue surgery. Subject of this study were 212 patients that underwent fine-needle aspiration (FNA) under ultrasound guidance at the Medical University Center of Tirana. All the patients came to the Mother Teresa University Hospital from public and private hospitals and other polyclinics. These patients had an ultrasound examination before visiting the Center of Nuclear Medicine for a scintigraph of thyroid glandule in the period September 2016 and September 2017. To correlate, all patients had been examined via ultrasound of the thyroid glandule prior to the scintigraph. The ultrasound included evaluation of the number of nodes, their size, their solid, cystic, or solid-cystic structure, echogenicity according to the gray scale, the presence of calcification, the presence of lymph nodes, the presence of adenopathy, and the correlation of the cytology results from the Laboratory of Pathological Anatomy of Medical University Center of Tirana.Keywords: thyroid nodes, fine needle aspiration, ultrasound, scintigraphy
Procedia PDF Downloads 102413 Effect of Depth on Texture Features of Ultrasound Images
Authors: M. A. Alqahtani, D. P. Coleman, N. D. Pugh, L. D. M. Nokes
Abstract:
In diagnostic ultrasound, the echo graphic B-scan texture is an important area of investigation since it can be analyzed to characterize the histological state of internal tissues. An important factor requiring consideration when evaluating ultrasonic tissue texture is the depth. The effect of attenuation with depth of ultrasound, the size of the region of interest, gain, and dynamic range are important variables to consider as they can influence the analysis of texture features. These sources of variability have to be considered carefully when evaluating image texture as different settings might influence the resultant image. The aim of this study is to investigate the effect of depth on the texture features in-vivo using a 3D ultrasound probe. The left leg medial head of the gastrocnemius muscle of 10 healthy subjects were scanned. Two regions A and B were defined at different depth within the gastrocnemius muscle boundary. The size of both ROI’s was 280*20 pixels and the distance between region A and B was kept constant at 5 mm. Texture parameters include gray level, variance, skewness, kurtosis, co-occurrence matrix; run length matrix, gradient, autoregressive (AR) model and wavelet transform were extracted from the images. The paired t –test was used to test the depth effect for the normally distributed data and the Wilcoxon–Mann-Whitney test was used for the non-normally distributed data. The gray level, variance, and run length matrix were significantly lowered when the depth increased. The other texture parameters showed similar values at different depth. All the texture parameters showed no significant difference between depths A and B (p > 0.05) except for gray level, variance and run length matrix (p < 0.05). This indicates that gray level, variance, and run length matrix are depth dependent.Keywords: ultrasound image, texture parameters, computational biology, biomedical engineering
Procedia PDF Downloads 295412 Numerical and Experimental Study of Heat Transfer Enhancement with Metal Foams and Ultrasounds
Authors: L. Slimani, A. Bousri, A. Hamadouche, H. Ben Hamed
Abstract:
The aim of this experimental and numerical study is to analyze the effects of acoustic streaming generated by 40 kHz ultrasonic waves on heat transfer in forced convection, with and without 40 PPI aluminum metal foam. Preliminary dynamic and thermal studies were done with COMSOL Multiphase, to see heat transfer enhancement degree by inserting a 40PPI metal foam (10 × 2 × 3 cm) on a heat sink, after having determined experimentally its permeability and Forchheimer's coefficient. The results obtained numerically are in accordance with those obtained experimentally, with an enhancement factor of 205% for a velocity of 0.4 m/s compared to an empty channel. The influence of 40 kHz ultrasound on heat transfer was also tested with and without metallic foam. Results show a remarkable increase in Nusselt number in an empty channel with an enhancement factor of 37,5%, while no influence of ultrasound on heat transfer in metal foam presence.Keywords: acoustic streaming, enhancing heat transfer, laminar flow, metal foam, ultrasound
Procedia PDF Downloads 138411 Ultrasound Mechanical Index as a Parameter Affecting of the Ability of Proliferation of Cells
Authors: Z. Hormozi Moghaddam, M. Mokhtari-Dizaji, M. Movahedin, M. E. Ravari
Abstract:
Mechanical index (MI) is used for quantifying acoustic cavitation and the relationship between acoustic pressure and the frequency. In this study, modeling of the MI was applied to provide treatment protocol and to understand the effective physical processes on reproducibility of stem cells. The acoustic pressure and MI equations are modeled and solved to estimate optimal MI for 28, 40, 150 kHz and 1 MHz frequencies. Radial and axial acoustic pressure distribution was extracted. To validate the results of the modeling, the acoustic pressure in the water and near field depth was measured by a piston hydrophone. Results of modeling and experiments show that the model is consistent well to experimental results with 0.91 and 0.90 correlation of coefficient (p<0.05) for 1 MHz and 40 kHz. Low intensity ultrasound with 0.40 MI is more effective on the proliferation rate of the spermatogonial stem cells during the seven days of culture, in contrast, high MI has a harmful effect on the spermatogonial stem cells. This model provides proper treatment planning in vitro and in vivo by estimating the cavitation phenomenon.Keywords: ultrasound, mechanical index, modeling, stem cell
Procedia PDF Downloads 334410 Microwave and Ultrasound Assisted Extraction of Pectin from Mandarin and Lemon Peel: Comparisons between Sources and Methods
Authors: Pınar Karbuz, A. Seyhun Kıpcak, Mehmet B. Piskin, Emek Derun, Nurcan Tugrul
Abstract:
Pectin is a complex colloidal polysaccharide, found on the cell walls of all young plants such as fruit and vegetables. It acts as a thickening, stabilizing and gelling agent in foods. Pectin was extracted from mandarin and lemon peels using ultrasound and microwave assisted extraction methods to compare with these two different sources and methods of pectin production. In this work, the effect of microwave power (360, 600 W) and irradiation time (1, 2, 3 min) on the yield of extracted pectin from mandarin and lemon peels for microwave assisted extraction (MAE) were investigated. For ultrasound assisted extraction (UAE), parameters were determined as temperature (60, 75 °C) and sonication time (15, 30, 45 min) and hydrochloric acid (HCl) was used as an extracting agent for both extraction methods. The highest yields of extracted pectin from lemon peels were found to be 8.16 % (w/w) for 75 °C, 45 min by UAE and 8.58 % (w/w) for 360 W, 1 min by MAE. Additionally, the highest yields of extracted pectin from mandarin peels were found to be 11.29 % (w/w) for 75 °C, 45 min by UAE and 16.44 % (w/w) for 600 W, 1 min by MAE. The results showed that the use of microwave assisted extraction promoted a better yield when compared to the two extraction methods. On the other hand, according to the results of experiments, mandarin peels contain more pectin than lemon peels when the compared to the pectin product values of two sources. Therefore, these results suggested that MAE could be used as an efficient and rapid method for extraction of pectin and mandarin peels should be preferred as sources of pectin production compared to lemon peels.Keywords: mandarin peel, lemon peel, pectin, ultrasound, microwave, extraction
Procedia PDF Downloads 234409 Unlocking the Potential of Neglected Cereal Resources Waste: Exploring Functional Properties of Algerian Pearl Millet Starch via Wet Milling and Ultrasound Techniques
Authors: Sarra Bouhallel, Sara Legbedj, Rima Messaoud, Sofia Saffarbatti
Abstract:
In the context of global waste management and sustainable resource utilization, millets emerge as a vital yet underutilized cereal resource. Despite their exceptional nutritional profile and resilience to harsh environmental conditions, their potential remains largely untapped. This study aims to contribute to the valorization of seven Algerian pearl millet landraces (Pennisetum glaucum (L.) R. Br) from the southern region by focusing on the characterization of their starches. Utilizing both conventional wet milling, incorporating sodium azide as a microbial growth inhibitor, and a novel green technology—Ultrasound-assisted isolation, we explore avenues for enhancing the functional properties of these starches. Analysis of key functional properties such as swelling power and water solubility index reveals significant enhancements, particularly during heat treatment near the gelatinization temperature [70 - 80 °C]. Furthermore, our investigation into the influence of pre-treatment methods on isolated starches highlights the potential of Ultrasound-assisted isolation in reducing absorbency and water solubility compared to conventional methods. Through rigorous data analysis using SPSS software (Version 23), we ascertain the efficiency of Ultrasound-assisted isolation, underscoring its promising role in the valorization of pearl millet waste. This research not only sheds light on the functional properties of pearl millet starch but also underscores the imperative of sustainable waste management in harnessing the full potential of underutilized cereal resources.Keywords: isolation, solubility, starch, swelling, ultrasound
Procedia PDF Downloads 65408 Automatic Differential Diagnosis of Melanocytic Skin Tumours Using Ultrasound and Spectrophotometric Data
Authors: Kristina Sakalauskiene, Renaldas Raisutis, Gintare Linkeviciute, Skaidra Valiukeviciene
Abstract:
Cutaneous melanoma is a melanocytic skin tumour, which has a very poor prognosis while is highly resistant to treatment and tends to metastasize. Thickness of melanoma is one of the most important biomarker for stage of disease, prognosis and surgery planning. In this study, we hypothesized that the automatic analysis of spectrophotometric images and high-frequency ultrasonic 2D data can improve differential diagnosis of cutaneous melanoma and provide additional information about tumour penetration depth. This paper presents the novel complex automatic system for non-invasive melanocytic skin tumour differential diagnosis and penetration depth evaluation. The system is composed of region of interest segmentation in spectrophotometric images and high-frequency ultrasound data, quantitative parameter evaluation, informative feature extraction and classification with linear regression classifier. The segmentation of melanocytic skin tumour region in ultrasound image is based on parametric integrated backscattering coefficient calculation. The segmentation of optical image is based on Otsu thresholding. In total 29 quantitative tissue characterization parameters were evaluated by using ultrasound data (11 acoustical, 4 shape and 15 textural parameters) and 55 quantitative features of dermatoscopic and spectrophotometric images (using total melanin, dermal melanin, blood and collagen SIAgraphs acquired using spectrophotometric imaging device SIAscope). In total 102 melanocytic skin lesions (including 43 cutaneous melanomas) were examined by using SIAscope and ultrasound system with 22 MHz center frequency single element transducer. The diagnosis and Breslow thickness (pT) of each MST were evaluated during routine histological examination after excision and used as a reference. The results of this study have shown that automatic analysis of spectrophotometric and high frequency ultrasound data can improve non-invasive classification accuracy of early-stage cutaneous melanoma and provide supplementary information about tumour penetration depth.Keywords: cutaneous melanoma, differential diagnosis, high-frequency ultrasound, melanocytic skin tumours, spectrophotometric imaging
Procedia PDF Downloads 270407 Role of Preoperative and Postoperative Endovaginal Ultrasound and 24-Hour Pad Test in Evaluation of Efficacy of Various Treatment Modalities for Stress Urinary Incontinence
Authors: J. B. Sharma, Vivek Kakkar, Sunesh Kumar, K. K. Roy, Rajesh Kumari, Kavita Pandey, Smriti Hari
Abstract:
Background: Stress urinary incontinence (SUI) is a common problem affecting the quality of life of women. Methods: It is a prospective study conducted over 40 women of SUI by endovaginal ultrasound on rest and Valsalva preoperatively and six months postoperatively for levator hiatus, pubovisceral thickness, urethral length, and bladder neck position. A 24-hour pad test was also performed on all women at the same time for grading of SUI. Treatment given was medical in 4 (10%), Burch colposuspension in 18 (45%), and tension-free obturator tape in 18 (45%). Results: Mean age, parity, and body mass index in the study were 41.60 years, 2.73, and 24.2 kg/m², respectively. All 40 (100%) patients had SUI, with the mean duration of symptoms being 4.04 years. On the 24-hour pad test, mild SUI was in 4 (10%), moderate SUI in 33 (82.5%), and severe SUI in 3 (7.5%), with mean preoperative 24-hour pad test being 36.69 gm which significantly reduced to 9.79 gm postoperatively (p 0.001). There was a significant change in levator hiatus and pubovisceral thickness with the treatment of SUI. Overall urethral length increased, but there was a significant decrease in urethral length on Valsalva after the treatment (0.40 versus 0.28 cm, p 0.04) and a significant reduction in bladder neck descent after Valsalva after treatment (0.41 cm versus 0.27 cm, p 0.001). Conclusion: Endovaginal ultrasound and 24-hour pad test are useful diagnostic modalities for SUI diagnosis and to see the impact of treatment.Keywords: stress urinary incontinence, endovaginal ultrasound, 24-hours pad test, pubovisceral muscle thickness
Procedia PDF Downloads 93406 Evaluation of Prevalence of the Types of Thyroid Disorders Using Ultrasound and Pathology of One-Humped Camel in Iran: Camelus dromedarius
Authors: M. Yadegari
Abstract:
The thyroid gland is the largest classic endocrine organ that effects many organs of the body and plays a significant role in the process of Metabolism in animals. The aim of this study was to investigate the prevalence of thyroid disorders diagnosed by ultrasound and microscopic Lesions of the thyroid during the slaughter of apparently healthy One Humped Camels (Camelus dromedarius) in Iran. Randomly, 520 male camels (With an age range of 4 to 8 years), were studied in 2012 to 2013. The Camels’ thyroid glands were evaluated by sonographic examination. In both longitudinal and transverse view and then tissue sections were provide and stained with H & E and finally examined by light microscopy. The results obtained indicated the following: hyperplastic goiter (21%), degenerative changes (12%), follicular cysts (8%), follicular atrophy (4%), nodular hyperplasia (3%), adenoma (1%), carcinoma (1%) and simple goiter colloid (1%). Ultrasound evaluation of thyroid gland in adenoma and carcinoma showed enlargement and irregular of the gland, decreased echogenicity, and the heterogeneous thyroid parenchyma. Also, in follicular cysts were observed in the enlarged gland with no echo structures of different sizes and decreased echogenicity as a local or general. In nodular hyperplasia, increase echogenicity and heterogeneous parenchymal were seen. These findings suggest the use of Ultrasound as a screening test in the diagnosis of complications of thyroid disorders. Pathology also to be used for the diagnosis of thyroid problems and other side effects.Keywords: thyroid gland, one humped camel, sonography, pathology
Procedia PDF Downloads 508405 Mathematical Modelling of Ultrasound Pre-Treatment in Microwave Dried Strawberry (Fragaria L.) Slices
Authors: Hilal Uslu, Salih Eroglu, Betul Ozkan, Ozcan Bulantekin, Alper Kuscu
Abstract:
In this study, the strawberry (Fragaria L.) fruits, which were pretreated with ultrasound (US), were worked on in the microwave by using 90W power. Then mathematical modelling was applied to dried fruits by using different experimental thin layer models. The sliced fruits were subjected to ultrasound treatment at a frequency of 40 kHz for 10, 20, and 30 minutes, in an ultrasonic water bath, with a ratio of 1:4 to fruit/water. They are then dried in the microwave (90W). The drying process continued until the product moisture was below 10%. By analyzing the moisture change of the products at a certain time, eight different thin-layer drying models, (Newton, page, modified page, Midilli, Henderson and Pabis, logarithmic, two-term, Wang and Singh) were tested for verification of experimental data. MATLAB R2015a statistical program was used for the modelling, and the best suitable model was determined with R²adj (coefficient of determination of compatibility), and root mean square error (RMSE) values. According to analysis, the drying model that best describes the drying behavior for both drying conditions was determined as the Midilli model by high R²adj and low RMSE values. Control, 10, 20, and 30 min US for groups R²adj and RMSE values was established as respectively; 0,9997- 0,005298; 0,9998- 0,004735; 0,9995- 0,007031; 0,9917-0,02773. In addition, effective diffusion coefficients were calculated for each group and were determined as 3,80x 10⁻⁸, 3,71 x 10⁻⁸, 3,26 x10⁻⁸ ve 3,5 x 10⁻⁸ m/s, respectively.Keywords: mathematical modelling, microwave drying, strawberry, ultrasound
Procedia PDF Downloads 153404 The Effects of Ultrasound on the Extraction of Ficus deltoidea Leaves
Authors: Nur Aimi Syairah Mohd Abdul Alim, Azilah Ajit, A. Z. Sulaiman
Abstract:
The present study aimed to investigate the effects of ultrasound-assisted extraction (UAE) on the extraction of Vitexin and Iso-Vitexin from Ficus deltoidea plants. In recent years, ultrasound technology has been found to be a potential herbal extraction technique. The passage of ultrasound energy in a liquid medium generates mechanical agitation and other physical effects due to acoustic cavitation. The main goal is to optimised ultrasonic-assisted extraction condition providing the highest extraction yield with the most desirable antioxidant activity and stability. Thus, a series of experiments has been developed to investigate the effect of ultrasound energy on the vegetal material and the implemented parameters by using HPLC-photodiode array detection. The influences of several experimental parameters on the ultrasonic extraction of Ficus deltoidea leaves were investigated: extraction time (1-8 h), solvent-to-water ratio (1:10 to 1:50), temperature (50–100 °C), duty cycle (10–continuous sonication) and intensity. The extracts at the optimized condition were compared with those obtained by conventional boiling extraction, in terms of bioactive constituents yield and chemical composition. The compounds of interest identified in the extracts were Vitexin and Isovitexin, which possess anti-diabetic, anti-oxidant and anti-cancer properties. Results showed that the main variables affecting the extraction process were temperature and time. Though in less extent, solvent-to-water ratio, duty cycle and intensity are also demonstrated to be important parameters. The experimental values under optimal conditions were in good consistent with the predicted values, which suggested that ultrasonic-assisted extraction (UAE) is more efficient process as compared to conventional boiling extraction. It recommended that ultrasound extraction of Ficus deltoidea plants are feasible to replace the traditional time-consuming and low efficiency preparation procedure in the future modernized and commercialized manufacture of this highly valuable herbal medicine.Keywords: Ficus, ultrasounds, vitexin, isovitexin
Procedia PDF Downloads 416403 Ultrasound-Mediated Separation of Ethanol, Methanol, and Butanol from Their Aqueous Solutions
Authors: Ozan Kahraman, Hao Feng
Abstract:
Ultrasonic atomization (UA) is a useful technique for producing a liquid spray for various processes, such as spray drying. Ultrasound generates small droplets (a few microns in diameter) by disintegration of the liquid via cavitation and/or capillary waves, with low range velocity and narrow droplet size distribution. In recent years, UA has been investigated as an alternative for enabling or enhancing ultrasound-mediated unit operations, such as evaporation, separation, and purification. The previous studies on the UA separation of a solvent from a bulk solution were limited to ethanol-water systems. More investigations into ultrasound-mediated separation for other liquid systems are needed to elucidate the separation mechanism. This study was undertaken to investigate the effects of the operational parameters on the ultrasound-mediated separation of three miscible liquid pairs: ethanol-, methanol-, and butanol-water. A 2.4 MHz ultrasonic mister with a diameter of 18 mm and rating power of 24 W was installed on the bottom of a custom-designed cylindrical separation unit. Air was supplied to the unit (3 to 4 L/min.) as a carrier gas to collect the mist. The effects of the initial alcohol concentration, viscosity, and temperature (10, 30 and 50°C) on the atomization rates were evaluated. The alcohol concentration in the collected mist was measured with high performance liquid chromatography and a refractometer. The viscosity of the solutions was determined using a Brookfield digital viscometer. The alcohol concentration of the atomized mist was dependent on the feed concentration, feed rate, viscosity, and temperature. Increasing the temperature of the alcohol-water mixtures from 10 to 50°C increased the vapor pressure of both the alcohols and water, resulting in an increase in the atomization rates but a decrease in the separation efficiency. The alcohol concentration in the mist was higher than that of the alcohol-water equilibrium at all three temperatures. More importantly, for ethanol, the ethanol concentration in the mist went beyond the azeotropic point, which cannot be achieved by conventional distillation. Ultrasound-mediated separation is a promising non-equilibrium method for separating and purifying alcohols, which may result in significant energy reductions and process intensification.Keywords: azeotropic mixtures, distillation, evaporation, purification, seperation, ultrasonic atomization
Procedia PDF Downloads 180402 Added Value of 3D Ultrasound Image Guided Hepatic Interventions by X Matrix Technology
Authors: Ahmed Abdel Sattar Khalil, Hazem Omar
Abstract:
Background: Image-guided hepatic interventions are integral to the management of infective and neoplastic liver lesions. Over the past decades, 2D ultrasound was used for guidance of hepatic interventions; with the recent advances in ultrasound technology, 3D ultrasound was used to guide hepatic interventions. The aim of this study was to illustrate the added value of 3D image guided hepatic interventions by x matrix technology. Patients and Methods: This prospective study was performed on 100 patients who were divided into two groups; group A included 50 patients who were managed by 2D ultrasonography probe guidance, and group B included 50 patients who were managed by 3D X matrix ultrasonography probe guidance. Thermal ablation was done for 70 patients, 40 RFA (20 by the 2D probe and 20 by the 3D x matrix probe), and 30 MWA (15 by the 2D probe and 15 by the 3D x matrix probe). Chemical ablation (PEI) was done on 20 patients (10 by the 2D probe and 10 by the 3D x matrix probe). Drainage of hepatic collections and biopsy from undiagnosed hepatic focal lesions was done on 10 patients (5 by the 2D probe and 5 by the 3D x matrix probe). Results: The efficacy of ultrasonography-guided hepatic interventions by 3D x matrix probe was higher than the 2D probe but not significantly higher, with a p-value of 0.705, 0.5428 for RFA, MWA respectively, 0.5312 for PEI, 0.2918 for drainage of hepatic collections and biopsy. The complications related to the use of the 3D X matrix probe were significantly lower than the 2D probe, with a p-value of 0.003. The timing of the procedure was shorter by the usage of 3D x matrix probe in comparison to the 2D probe with a p-value of 0.08,0.34 for RFA and PEI and significantly shorter for MWA, and drainage of hepatic collection, biopsy with a P-value of 0.02,0.001 respectively. Conclusions: 3D ultrasonography-guided hepatic interventions by  x matrix probe have better efficacy, less complication, and shorter time of procedure than the 2D ultrasonography-guided hepatic interventions.Keywords: 3D, X matrix, 2D, ultrasonography, MWA, RFA, PEI, drainage of hepatic collections, biopsy
Procedia PDF Downloads 95401 Preparing a Library of Abnormal Masses for Designing a Long-Lasting Anatomical Breast Phantom for Ultrasonography Training
Authors: Nasibullina A., Leonov D.
Abstract:
The ultrasonography method is actively used for the early diagnosis of various le-sions in the human body, including the mammary gland. The incidence of breast cancer has increased by more than 20%, and mortality by 14% since 2008. The correctness of the diagnosis often directly depends on the qualifications and expe-rience of a diagnostic medical sonographer. That is why special attention should be paid to the practical training of future specialists. Anatomical phantoms are ex-cellent teaching tools because they accurately imitate the characteristics of real hu-man tissues and organs. The purpose of this work is to create a breast phantom for practicing ultrasound diagnostic skills in grayscale and elastography imaging, as well as ultrasound-guided biopsy sampling. We used silicone-like compounds ranging from 3 to 17 on the Shore scale hardness units to simulate soft tissue and lesions. Impurities with experimentally selected concentrations were added to give the phantom the necessary attenuation and reflection parameters. We used 3D modeling programs and 3D printing with PLA plastic to create the casting mold. We developed a breast phantom with inclusions of varying shape, elasticity and echogenicity. After testing the created phantom in B-mode and elastography mode, we performed a survey asking 19 participants how realistic the sonograms of the phantom were. The results showed that the closest to real was the model of the cyst with 9.5 on the 0-10 similarity scale. Thus, the developed breast phantom can be used for ultrasonography, elastography, and ultrasound-guided biopsy training.Keywords: breast ultrasound, mammary gland, mammography, training phantom, tissue-mimicking materials
Procedia PDF Downloads 93400 Green Extraction of Patchoulol from Patchouli Leaves Using Ultrasound-Assisted Ionic Liquids
Authors: G. C. Jadeja, M. A. Desai, D. R. Bhatt, J. K. Parikh
Abstract:
Green extraction techniques are fast paving ways into various industrial sectors due to the stringent governmental regulations leading to the banning of toxic chemicals’ usage and also due to the increasing health/environmental awareness. The present work describes the ionic liquids based sonication method for selectively extracting patchoulol from the leaves of patchouli. 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4) and N,N,N,N’,N’,N’-Hexaethyl-butane-1,4-diammonium dibromide (dicationic ionic liquid - DIL) were selected for extraction. Ultrasound assisted ionic liquid extraction was employed considering concentration of ionic liquid (4–8 %, w/w), ultrasound power (50–150 W for [Bmim]BF4 and 20–80 W for DIL), temperature (30–50 oC) and extraction time (30–50 min) as major parameters influencing the yield of patchoulol. Using the Taguchi method, the parameters were optimized and analysis of variance (ANOVA) was performed to find the most influential factor in the selected extraction method. In case of [Bmim]BF4, the optimum conditions were found to be: 4 % (w/w) ionic liquid concentration, 50 W power, 30 oC temperature and extraction time of 30 min. The yield obtained under the optimum conditions was 3.99 mg/g. In case of DIL, the optimum conditions were obtained as 6 % (w/w) ionic liquid concentration, 80 W power, 30 oC temperature and extraction time of 40 min, for which the yield obtained was 4.03 mg/g. Temperature was found to be the most significant factor in both the cases. Extraction time was the insignificant parameter while extracting the product using [Bmim]BF4 and in case of DIL, power was found to be the least significant factor affecting the process. Thus, a green method of recovering patchoulol is proposed.Keywords: green extraction, ultrasound, patchoulol, ionic liquids
Procedia PDF Downloads 362399 Beam Coding with Orthogonal Complementary Golay Codes for Signal to Noise Ratio Improvement in Ultrasound Mammography
Authors: Y. Kumru, K. Enhos, H. Köymen
Abstract:
In this paper, we report the experimental results on using complementary Golay coded signals at 7.5 MHz to detect breast microcalcifications of 50 µm size. Simulations using complementary Golay coded signals show perfect consistence with the experimental results, confirming the improved signal to noise ratio for complementary Golay coded signals. For improving the success on detecting the microcalcifications, orthogonal complementary Golay sequences having cross-correlation for minimum interference are used as coded signals and compared to tone burst pulse of equal energy in terms of resolution under weak signal conditions. The measurements are conducted using an experimental ultrasound research scanner, Digital Phased Array System (DiPhAS) having 256 channels, a phased array transducer with 7.5 MHz center frequency and the results obtained through experiments are validated by Field-II simulation software. In addition, to investigate the superiority of coded signals in terms of resolution, multipurpose tissue equivalent phantom containing series of monofilament nylon targets, 240 µm in diameter, and cyst-like objects with attenuation of 0.5 dB/[MHz x cm] is used in the experiments. We obtained ultrasound images of monofilament nylon targets for the evaluation of resolution. Simulation and experimental results show that it is possible to differentiate closely positioned small targets with increased success by using coded excitation in very weak signal conditions.Keywords: coded excitation, complementary golay codes, DiPhAS, medical ultrasound
Procedia PDF Downloads 263398 35 MHz Coherent Plane Wave Compounding High Frequency Ultrasound Imaging
Authors: Chih-Chung Huang, Po-Hsun Peng
Abstract:
Ultrasound transient elastography has become a valuable tool for many clinical diagnoses, such as liver diseases and breast cancer. The pathological tissue can be distinguished by elastography due to its stiffness is different from surrounding normal tissues. An ultrafast frame rate of ultrasound imaging is needed for transient elastography modality. The elastography obtained in the ultrafast system suffers from a low quality for resolution, and affects the robustness of the transient elastography. In order to overcome these problems, a coherent plane wave compounding technique has been proposed for conventional ultrasound system which the operating frequency is around 3-15 MHz. The purpose of this study is to develop a novel beamforming technique for high frequency ultrasound coherent plane-wave compounding imaging and the simulated results will provide the standards for hardware developments. Plane-wave compounding imaging produces a series of low-resolution images, which fires whole elements of an array transducer in one shot with different inclination angles and receives the echoes by conventional beamforming, and compounds them coherently. Simulations of plane-wave compounding image and focused transmit image were performed using Field II. All images were produced by point spread functions (PSFs) and cyst phantoms with a 64-element linear array working at 35MHz center frequency, 55% bandwidth, and pitch of 0.05 mm. The F number is 1.55 in all the simulations. The simulated results of PSFs and cyst phantom which were obtained using single, 17, 43 angles plane wave transmission (angle of each plane wave is separated by 0.75 degree), and focused transmission. The resolution and contrast of image were improved with the number of angles of firing plane wave. The lateral resolutions for different methods were measured by -10 dB lateral beam width. Comparison of the plane-wave compounding image and focused transmit image, both images exhibited the same lateral resolution of 70 um as 37 angles were performed. The lateral resolution can reach 55 um as the plane-wave was compounded 47 angles. All the results show the potential of using high-frequency plane-wave compound imaging for realizing the elastic properties of the microstructure tissue, such as eye, skin and vessel walls in the future.Keywords: plane wave imaging, high frequency ultrasound, elastography, beamforming
Procedia PDF Downloads 539397 Endoscopic Ultrasound-Guided Choledochoduodenostomy in an Advanced Extrahepatic Cholangiocarcinoma
Authors: Diego Carrasco, Catarina Freitas, Hugo Rio Tinto, Ricardo Rio Tinto, Nuno Couto, Joaquim Gago, Carlos Carvalho
Abstract:
Introduction: Endoscopic ultrasound-guided choledochoduodenostomy (EUS-CD) to drain the gallbladder can be a palliative care procedure for non-surgical oncologic patients with cholelithiasis and cholangitis process. Case description: A 59-years old Caucasian male diagnosed with extrahepatic cholangiocarcinoma with multiple liver, lung and peritoneum metastasis, unresponsive to treatment with gemcitabine/cisplatin, presented in the institution with fever, hypotension, and severe upper right abdominal pain secondary to cholelithiasis and cholangitis process. The patient was admitted and started on large spectrum antibiotics plus fluid-challenge. Afterward, a percutaneous transhepatic biliary drainage (PTBD) was performed to drain the gallbladder. This procedure temporarily stabilized the patient. However, the definitive solution required gallbladder removal. Since the patient exhibited an advanced oncologic disease and poor response to the chemotherapy, he was not a candidate for surgical intervention. Diagnostic Pathways: A self-expanding metal stent was placed from the duodenum into the bile duct by endoscopic ultrasound-guided. The stent allowed efficient drainage of the contrast from the gallbladder at the end of the endoscopic procedure. Conclusion and Discussion: The stent allowed efficient drainage of the contrast from the gallbladder at the end of the endoscopic procedure and successfully reversed the cholangitis process. EUS-CD is an effective and safe technique and can be used as a palliative care procedure for non-surgical oncologic patients.Keywords: palliative care, cholangiocarcinoma, choledochoduodenostomy, endoscopic ultrasound-guided
Procedia PDF Downloads 185396 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images
Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez
Abstract:
Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking
Procedia PDF Downloads 106395 Automated Ultrasound Carotid Artery Image Segmentation Using Curvelet Threshold Decomposition
Authors: Latha Subbiah, Dhanalakshmi Samiappan
Abstract:
In this paper, we propose denoising Common Carotid Artery (CCA) B mode ultrasound images by a decomposition approach to curvelet thresholding and automatic segmentation of the intima media thickness and adventitia boundary. By decomposition, the local geometry of the image, its direction of gradients are well preserved. The components are combined into a single vector valued function, thus removes noise patches. Double threshold is applied to inherently remove speckle noise in the image. The denoised image is segmented by active contour without specifying seed points. Combined with level set theory, they provide sub regions with continuous boundaries. The deformable contours match to the shapes and motion of objects in the images. A curve or a surface under constraints is developed from the image with the goal that it is pulled into the necessary features of the image. Region based and boundary based information are integrated to achieve the contour. The method treats the multiplicative speckle noise in objective and subjective quality measurements and thus leads to better-segmented results. The proposed denoising method gives better performance metrics compared with other state of art denoising algorithms.Keywords: curvelet, decomposition, levelset, ultrasound
Procedia PDF Downloads 340394 3D Microbubble Dynamics in a Weakly Viscous Fluid Near a Rigid Boundary Subject to Ultrasound
Authors: K. Manmi, Q. X. Wang
Abstract:
This paper investigates microbubble dynamics subject to ultrasound in a weakly viscous fluid near a rigid boundary. The phenomenon is simulated using a boundary integral method. The weak viscous effects are incorporated into the model through the normal stress balance across the bubble surface. The model agrees well with the Rayleigh-Plesset equation for a spherical bubble for several cycles. The effects of the fluid viscosity in the bubble dynamics are analyzed, including jet development, centroid movement and bubble volume.Keywords: microbubble dynamics, bubble jetting, viscous effect, boundary integral method
Procedia PDF Downloads 483393 Improving the Optoacoustic Signal by Monitoring the Changes of Coupling Medium
Authors: P. Prasannakumar, L. Myoung Young, G. Seung Kye, P. Sang Hun, S. Chul Gyu
Abstract:
In this paper, we discussed the coupling medium in the optoacoustic imaging. The coupling medium is placed between the scanned object and the ultrasound transducers. Water with varying temperature was used as the coupling medium. The water temperature is gradually varied between 25 to 40 degrees. This heating process is taken with care in order to avoid the bubble formation. Rise in the photoacoustic signal is noted through an unfocused transducer with frequency of 2.25 MHz as the temperature increases. The temperature rise is monitored using a NTC thermistor and the values in degrees are calculated using an embedded evaluation kit. Also the temperature is transmitted to PC through a serial communication. All these processes are synchronized using a trigger signal from the laser source.Keywords: embedded, optoacoustic, ultrasound , unfocused transducer
Procedia PDF Downloads 349392 A Comparative Study between Digital Mammography, B Mode Ultrasound, Shear-Wave and Strain Elastography to Distinguish Benign and Malignant Breast Masses
Authors: Arjun Prakash, Samanvitha H.
Abstract:
BACKGROUND: Breast cancer is the commonest malignancy among women globally, with an estimated incidence of 2.3 million new cases as of 2020, representing 11.7% of all malignancies. As per Globocan data 2020, it accounted for 13.5% of all cancers and 10.6% of all cancer deaths in India. Early diagnosis and treatment can improve the overall morbidity and mortality, which necessitates the importance of differentiating benign from malignant breast masses. OBJECTIVE: The objective of the present study was to evaluate and compare the role of Digital Mammography (DM), B mode Ultrasound (USG), Shear Wave Elastography (SWE) and Strain Elastography (SE) in differentiating benign and malignant breast masses (ACR BI-RADS 3 - 5). Histo-Pathological Examination (HPE) was considered the Gold standard. MATERIALS & METHODS: We conducted a cross-sectional study on 53 patients with 64 breast masses over a period of 10 months. All patients underwent DM, USG, SWE and SE. These modalities were individually assessed to know their accuracy in differentiating benign and malignant masses. All Digital Mammograms were done using the Fujifilm AMULET Innovality Digital Mammography system and all Ultrasound examinations were performed on SAMSUNG RS 80 EVO Ultrasound system equipped with 2 to 9 MHz and 3 – 16 MHz linear transducers. All masses were subjected to HPE. Independent t-test and Chi-square or Fisher’s exact test were used to assess continuous and categorical variables, respectively. ROC analysis was done to assess the accuracy of diagnostic tests. RESULTS: Of 64 lesions, 51 (79.68%) were malignant and 13 (20.31%) (p < 0.0001) were benign. SE was the most specific (100%) (p < 0.0001) and USG (98%) (p < 0.0001) was the most sensitive of all the modalities. E max, E mean, E max ratio, E mean ratio and Strain Ratio of the malignant masses significantly differed from those of the benign masses. Maximum SWE value showed the highest sensitivity (88.2%) (p < 0.0001) among the elastography parameters. A combination of USG, SE and SWE had good sensitivity (86%) (p < 0.0001). CONCLUSION: A combination of USG, SE and SWE improves overall diagnostic yield in differentiating benign and malignant breast masses. Early diagnosis and treatment of breast carcinoma will reduce patient mortality and morbidity.Keywords: digital mammography, breast cancer, ultrasound, elastography
Procedia PDF Downloads 106391 Ultrasound as an Aid to Predict the Onset of Leaking in Dengue Haemorrhagic Fever: Experience of a Dengue Treatment Facility in South Asia
Authors: Hasn Perera, Is Almeida, Hnk Perera, Mzf Mohammed, Ade Silva, H. Wijesinghe, Ajal Fernando
Abstract:
Introduction: Dengue is a major Public Health burden of two clinical entities, Dengue Fever & Dengue Haemorrhagic Fever (DHF). The vast majority of dengue deaths occur in DHF patients, where the diagnosis hinges on the presence of fluid leakage. Limited Ultrasound Scans (USS) of chest and abdomen are used widely at Centre for Clinical Management of Dengue & Dengue Haemorrhagic Fever (CCMDDHF), as the primary method for detecting fluid leaking in DHF. This study analyses the relationship between haematological and USS findings at the onset of leaking and to further determine the usefulness of ultrasound in diagnosing DHF. Methods: A prospective analysis of 80 serologically confirmed dengue patients initially admitted to a General Medical and Paediatric wards who were subsequently transferred to the CCMDDHF from March to September 2017 were analysed. In addition to repeated blood counts and capillary haematocrits’, serial USS were done to detect the onset fluid leaking by three competent and experienced doctors at CCMDDHF. Results: 80 patients (male: female: 38:42) with a mean age of 20 years (SD ±16.8, range 3-74) were evaluated. Dropping of platelet counts below 100,000 and haematocrit rise towards 20% started 4±1.3 day of fever with a mean platelet value of 69x103(range17-98x103). Gallbladder wall thickening was the commonest (98.7%) USS finding followed by fluid in hepato-renal pouch (95%), pelvic fluid (58.7%), right-sided pleural effusion (35%), bilateral effusions (7.5%). USS evidence of plasma leakage was detected in 11.25 %( n=9) of DHF cases from 1 day before significant haematocrit rise was noted. 35 (43.7%) patients with lowering platelets and haematocrit rise showed no objective evidence of plasma leaking on ultrasound scan. Conclusion: This outbreak underscores the importance of USS as a useful, sensitive and cost-effective tool for early diagnosis of suspected DHF cases, facilitating the tracking of progress of leaking and management of epidemics.Keywords: dengue, ultrasound, plasma leaking, South Asia
Procedia PDF Downloads 234390 Differential Diagnosis of an Asymptomatic Lesion in Contact with the Bladder
Authors: Angelis P. Barlampas
Abstract:
PURPOSE: Presentation of an interesting finding in an asymptomatic patient. MATERIAL: A patient came at hospital because of dysuric complaints and after a urologist’s prescription of a US exam of the urogenital system. The simple ultrasound examination of the lower abdomen revealed a moderate hypertrophy of the prostate and a solitary large bladder stone. The kidneys were normal. Then, the patient underwent a CT scan, which depicted the bladder stone and, as an incidental finding, a cystic lesion in contact with the upper anterior right surface of the bladder, with mural calcifications. METHOD: Abdominal ultrasound and abdominal computed tomography before and after intravenous contrast administration. RESULTS: The repeated US exam showed a cylindrical cystic lesion with a double wall and two mural hyperechoic foci, with partial posterior shadowing. Blood flow was not recognized on color doppler. The CT exam confirmed the cystic-like anechoic lesion, in the right iliac fossa, with the presence of two foci of mural calcifications. The differential diagnosis includes cases of enteric cyst, intestinal duplication cyst, chronic abscess, urachal cyst, Meckel's diverticulum, bladder diverticulum, old hematoma, thrombosed vascular aneurysm, diverticular abscess, etc. The patient refused surgical removal and is being monitored by ultrasound. CONCLUSIONS: The careful examination of the wider peri-abdominal area, especially during the routine ultrasound examination, can contribute to the identification of important asymptomatic findings. The radiologist must not be solely focused in a certain area of examination, even if the clinical doctor asks so, but should give attention to the neighboring areas, too.Keywords: enteric cyst, US, CT, urogenital tract, miscellaneous findings
Procedia PDF Downloads 56389 Robust Segmentation of Salient Features in Automatic Breast Ultrasound (ABUS) Images
Authors: Lamees Nasser, Yago Diez, Robert Martí, Joan Martí, Ibrahim Sadek
Abstract:
Automated 3D breast ultrasound (ABUS) screening is a novel modality in medical imaging because of its common characteristics shared with other ultrasound modalities in addition to the three orthogonal planes (i.e., axial, sagittal, and coronal) that are useful in analysis of tumors. In the literature, few automatic approaches exist for typical tasks such as segmentation or registration. In this work, we deal with two problems concerning ABUS images: nipple and rib detection. Nipple and ribs are the most visible and salient features in ABUS images. Determining the nipple position plays a key role in some applications for example evaluation of registration results or lesion follow-up. We present a nipple detection algorithm based on color and shape of the nipple, besides an automatic approach to detect the ribs. In point of fact, rib detection is considered as one of the main stages in chest wall segmentation. This approach consists of four steps. First, images are normalized in order to minimize the intensity variability for a given set of regions within the same image or a set of images. Second, the normalized images are smoothed by using anisotropic diffusion filter. Next, the ribs are detected in each slice by analyzing the eigenvalues of the 3D Hessian matrix. Finally, a breast mask and a probability map of regions detected as ribs are used to remove false positives (FP). Qualitative and quantitative evaluation obtained from a total of 22 cases is performed. For all cases, the average and standard deviation of the root mean square error (RMSE) between manually annotated points placed on the rib surface and detected points on rib borders are 15.1188 mm and 14.7184 mm respectively.Keywords: Automated 3D Breast Ultrasound, Eigenvalues of Hessian matrix, Nipple detection, Rib detection
Procedia PDF Downloads 330388 A Combined Activated Sludge-Sonication Process for Abattoir Wastewater Treatment
Authors: Pello Alfonso-Muniozguren, Madeleine Bussemaker, Devendra Saroj, Judy Lee
Abstract:
Wastewater treatment is becoming a worldwide concern due to new and tighter environmental regulations, and the increasing need for fresh water for the exponentially growing population. The meat industry has one of the highest consumption of water producing up to 10 times more polluted (BOD) wastewaters in comparison to domestic sewage. Therefore, suitable wastewater treatment methods are required to ensure the wastewater quality meet regulations before discharge. In the present study, a combined lab scale activated sludge-sonication system was used to treat pre-treated abattoir wastewater. A hydraulic retention time of 24 hours and a solid retention time of 13 days were used for the activated sludge process and using ultrasound as tertiary treatment. Different ultrasonic frequencies, powers and sonication times were applied to the samples and results were analysed for chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solids, pH, total coliforms and total viable counts. Additionally, both mechanical and chemical effects of ultrasound were quantified for organic matter removal (COD and BOD) and disinfection (microorganism inactivation) using different techniques such as aluminum foil pitting, flow cytometry, and KI dosimetry.Keywords: abattoir wastewater, ultrasound, wastewater treatment, water disinfection
Procedia PDF Downloads 287387 Applications of High Intensity Ultrasound to Modify Millet Protein Concentrate Functionality
Authors: B. Nazari, M. A. Mohammadifar, S. Shojaee-Aliabadi, L. Mirmoghtadaie
Abstract:
Millets as a new source of plant protein were not used in food applications due to its poor functional properties. In this study, the effect of high intensity ultrasound (frequency: 20 kHz, with contentious flow) (US) in 100% amplitude for varying times (5, 12.5, and 20 min) on solubility, emulsifying activity index (EAI), emulsion stability (ES), foaming capacity (FC), and foaming stability (FS) of millet protein concentrate (MPC) were evaluated. In addition, the structural properties of best treatments such as molecular weight and surface charge were compared with the control sample to prove the US effect. The US treatments significantly (P<0.05) increased the solubility of the native MPC (65.8±0.6%) at all sonicated times with the maximum solubility that is recorded at 12.5 min treatment (96.9±0.82 %). The FC of MPC was also significantly affected by the US treatment. Increase in sonicated time up to 12.5 min significantly increased the FC of native MPC (271.03±4.51 ml), but higher increase reduced it significantly. Minimal improvements were observed in the FS of all sonicated MPC compared to the native MPC. Sonicated time for 12.5 min affected the EAI and ES of the native MPC more markedly than 5 and 20 min that may be attributed to higher increase in proteins tendency to adsorption at the oil and water interfaces after the US treatment at this time. SDS-PAGE analysis showed changes in the molecular weight of MPC that attributed to shearing forces created by cavitation phenomenon. Also, this phenomenon caused an increase in the exposure of more amino acids with negative charge in the surface of US treated MPC, that was demonstrated by Zetasizer data. High intensity ultrasound, as a green technology, can significantly increase the functional properties of MPC and can make this usable for food applications.Keywords: functional properties, high intensity ultrasound, millet protein concentrate, structural properties
Procedia PDF Downloads 240386 Ultrasound-Assisted Sol – Gel Synthesis of Nano-Boehmite for Biomedical Purposes
Authors: Olga Shapovalova, Vladimir Vinogradov
Abstract:
Among many different sol – gel matrices only alumina can be successfully parenteral injected in the human body. And this is not surprising, because boehmite (aluminium oxyhydroxide) is the metal oxide approved by FDA and EMA for intravenous and intramuscular administrations, and also has been using for a longtime as adjuvant for producing of many modern vaccines. In our earlier study, it has been shown, that denaturation temperature of enzymes entrapped in sol-gel boehmite matrix increases for 30 – 60 °С with preserving of initial activity. It makes such matrices more attractive for long-term storage of non-stable drugs. In current work we present ultrasound-assisted sol-gel synthesis of nano-boehmite. This method provides bio-friendly, very stable, highly homogeneous alumina sol with using only water and aluminium isopropoxide as a precursor. Many parameters of the synthesis were studied in details: time of ultrasound treatment, US frequency, surface area, pore and nanoparticle size, zeta potential and others. Here we investigated the dependence of stability of colloidal sols and textural properties of the final composites as a function of the time of ultrasonic treatment. Chosen ultrasonic treatment time was between 30 and 180 minutes. Surface area, average pore diameter and total pore volume of the final composites were measured by surface and pore size analyzer Nova 1200 Quntachrome. It was shown that the matrices with ultrasonic treatment time equal to 90 minutes have the biggest surface area 431 ± 24 m2/g. On the other had such matrices have a smaller stability in comparison with the samples with ultrasonic treatment time equal to 120 minutes that have the surface area 390 ± 21 m2/g. It was shown that the stable sols could be formed only after 120 minutes of ultrasonic treatment, otherwise the white precipitate of boehmite is formed. We conclude that the optimal ultrasonic treatment time is 120 minutes.Keywords: boehmite matrix, stabilisation, ultrasound-assisted sol-gel synthesis
Procedia PDF Downloads 267385 Ultrasonic Atomizer for Turbojet Engines
Authors: Aman Johri, Sidhant Sood, Pooja Suresh
Abstract:
This paper suggests a new and more efficient method of atomization of fuel in a combustor nozzle of a high bypass turbofan engine, using ultrasonic vibrations. Since atomization of fuel just before the fuel spray is injected into the combustion chamber is an important and crucial aspect related to functioning of a propulsion system, the technology suggested by this paper and the experimental analysis on the system components eventually proves to assist in complete and rapid combustion of the fuel in the combustor module of the engine. Current propulsion systems use carburetors, atomization nozzles and apertures in air intake pipes for atomization. The idea of this paper is to deploy new age hybrid technology, namely the Ultrasound Field Effect (UFE) to effectively atomize fuel before it enters the combustion chamber, as a viable and effective method to increase efficiency and improve upon existing designs. The Ultrasound Field Effect is applied axially, on diametrically opposite ends of an atomizer tube that gloves onto the combustor nozzle, where the fuel enters and exits under a pre-defined pressure. The Ultrasound energy vibrates the fuel particles to a breakup frequency. At reaching this frequency, the fuel particles start disintegrating into smaller diameter particles perpendicular to the axis of application of the field from the parent boundary layer of fuel flow over the baseplate. These broken up fuel droplets then undergo swirling effect as per the original nozzle design, with a higher breakup ratio than before. A significant reduction of the size of fuel particles eventually results in an increment in the propulsive efficiency of the engine. Moreover, the Ultrasound atomizer operates within a control frequency such that effects of overheating and induced vibrations are least felt on the overall performance of the engine. The design of an electrical manifold for the multiple-nozzle system over a typical can-annular combustor is developed along with this study, such that the product can be installed and removed easily for maintenance and repairing, can allow for easy access for inspections and transmits least amount of vibrational energy to the surface of the combustor. Since near-field ultrasound is used, the vibrations are easily controlled, thereby successfully reducing vibrations on the outer shell of the combustor. Experimental analysis is carried out on the effect of ultrasonic vibrations on flowing jet turbine fuel using an ultrasound generator probe and results of an effective decrease in droplet size across a constant diameter, away from the boundary layer of flow is noted using visual aid by observing under ultraviolet light. The choice of material for the Ultrasound inducer tube and crystal along with the operating range of temperatures, pressures, and frequencies of the Ultrasound field effect are also studied in this paper, while taking into account the losses incurred due to constant vibrations and thermal loads on the tube surface.Keywords: atomization, ultrasound field effect, titanium mesh, breakup frequency, parent boundary layer, baseplate, propulsive efficiency, jet turbine fuel, induced vibrations
Procedia PDF Downloads 240