Search results for: mixed-integer linear programming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4093

Search results for: mixed-integer linear programming

4033 Optimization of Personnel Selection Problems via Unconstrained Geometric Programming

Authors: Vildan Kistik, Tuncay Can

Abstract:

From a business perspective, cost and profit are two key factors for businesses. The intent of most businesses is to minimize the cost to maximize or equalize the profit, so as to provide the greatest benefit to itself. However, the physical system is very complicated because of technological constructions, rapid increase of competitive environments and similar factors. In such a system it is not easy to maximize profits or to minimize costs. Businesses must decide on the competence and competence of the personnel to be recruited, taking into consideration many criteria in selecting personnel. There are many criteria to determine the competence and competence of a staff member. Factors such as the level of education, experience, psychological and sociological position, and human relationships that exist in the field are just some of the important factors in selecting a staff for a firm. Personnel selection is a very important and costly process in terms of businesses in today's competitive market. Although there are many mathematical methods developed for the selection of personnel, unfortunately the use of these mathematical methods is rarely encountered in real life. In this study, unlike other methods, an exponential programming model was established based on the possibilities of failing in case the selected personnel was started to work. With the necessary transformations, the problem has been transformed into unconstrained Geometrical Programming problem and personnel selection problem is approached with geometric programming technique. Personnel selection scenarios for a classroom were established with the help of normal distribution and optimum solutions were obtained. In the most appropriate solutions, the personnel selection process for the classroom has been achieved with minimum cost.

Keywords: geometric programming, personnel selection, non-linear programming, operations research

Procedia PDF Downloads 267
4032 Spectrum Assignment Algorithms in Optical Networks with Protection

Authors: Qusay Alghazali, Tibor Cinkler, Abdulhalim Fayad

Abstract:

In modern optical networks, the flex grid spectrum usage is most widespread, where higher bit rate streams get larger spectrum slices while lower bit rate traffic streams get smaller spectrum slices. To our practice, under the ITU-T recommendation, G.694.1, spectrum slices of 50, 75, and 100 GHz are being used with central frequency at 193.1 THz. However, when these spectrum slices are not sufficient, multiple spectrum slices can use either one next to another or anywhere in the optical wavelength. In this paper, we propose the analysis of the wavelength assignment problem. We compare different algorithms for this spectrum assignment with and without protection. As a reference for comparisons, we concluded that the Integer Linear Programming (ILP) provides the global optimum for all cases. The most scalable algorithm is the greedy one, which yields results in subsequent ranges even for more significant network instances. The algorithms’ benchmark implemented using the LEMON C++ optimization library and simulation runs based on a minimum number of spectrum slices assigned to lightpaths and their execution time.

Keywords: spectrum assignment, integer linear programming, greedy algorithm, international telecommunication union, library for efficient modeling and optimization in networks

Procedia PDF Downloads 169
4031 A Genetic Algorithm Based Permutation and Non-Permutation Scheduling Heuristics for Finite Capacity Material Requirement Planning Problem

Authors: Watchara Songserm, Teeradej Wuttipornpun

Abstract:

This paper presents a genetic algorithm based permutation and non-permutation scheduling heuristics (GAPNP) to solve a multi-stage finite capacity material requirement planning (FCMRP) problem in automotive assembly flow shop with unrelated parallel machines. In the algorithm, the sequences of orders are iteratively improved by the GA characteristics, whereas the required operations are scheduled based on the presented permutation and non-permutation heuristics. Finally, a linear programming is applied to minimize the total cost. The presented GAPNP algorithm is evaluated by using real datasets from automotive companies. The required parameters for GAPNP are intently tuned to obtain a common parameter setting for all case studies. The results show that GAPNP significantly outperforms the benchmark algorithm about 30% on average.

Keywords: capacitated MRP, genetic algorithm, linear programming, automotive industries, flow shop, application in industry

Procedia PDF Downloads 488
4030 Production Planning for Animal Food Industry under Demand Uncertainty

Authors: Pirom Thangchitpianpol, Suttipong Jumroonrut

Abstract:

This research investigates the distribution of food demand for animal food and the optimum amount of that food production at minimum cost. The data consist of customer purchase orders for the food of laying hens, price of food for laying hens, cost per unit for the food inventory, cost related to food of laying hens in which the food is out of stock, such as fine, overtime, urgent purchase for material. They were collected from January, 1990 to December, 2013 from a factory in Nakhonratchasima province. The collected data are analyzed in order to explore the distribution of the monthly food demand for the laying hens and to see the rate of inventory per unit. The results are used in a stochastic linear programming model for aggregate planning in which the optimum production or minimum cost could be obtained. Programming algorithms in MATLAB and tools in Linprog software are used to get the solution. The distribution of the food demand for laying hens and the random numbers are used in the model. The study shows that the distribution of monthly food demand for laying has a normal distribution, the monthly average amount (unit: 30 kg) of production from January to December. The minimum total cost average for 12 months is Baht 62,329,181.77. Therefore, the production planning can reduce the cost by 14.64% from real cost.

Keywords: animal food, stochastic linear programming, aggregate planning, production planning, demand uncertainty

Procedia PDF Downloads 377
4029 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming

Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad

Abstract:

Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.

Keywords: breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration

Procedia PDF Downloads 215
4028 The Interplay of Factors Affecting Learning of Introductory Programming: A Comparative Study of an Australian and an Indian University

Authors: Ritu Sharma, Haifeng Shen

Abstract:

Teaching introductory programming is a challenging task in tertiary education and various factors are believed to have influence on students’ learning of programming. However, these factors were largely studied independently in a chosen context. This paper aims to investigate whether interrelationships exist among the factors and whether the interrelationships are context-dependent. In this empirical study, two universities were chosen from two continents, which represent different cultures, teaching methodologies, assessment criteria and languages used to teach programming in west and east worlds respectively. The results reveal that some interrelationships are common across the two different contexts, while others appear context-dependent.

Keywords: introductory programming, tertiary education, factors, interrelationships, context, empirical study

Procedia PDF Downloads 361
4027 Optimization of Structures with Mixed Integer Non-linear Programming (MINLP)

Authors: Stojan Kravanja, Andrej Ivanič, Tomaž Žula

Abstract:

This contribution focuses on structural optimization in civil engineering using mixed integer non-linear programming (MINLP). MINLP is characterized as a versatile method that can handle both continuous and discrete optimization variables simultaneously. Continuous variables are used to optimize parameters such as dimensions, stresses, masses, or costs, while discrete variables represent binary decisions to determine the presence or absence of structural elements within a structure while also calculating discrete materials and standard sections. The optimization process is divided into three main steps. First, a mechanical superstructure with a variety of different topology-, material- and dimensional alternatives. Next, a MINLP model is formulated to encapsulate the optimization problem. Finally, an optimal solution is searched in the direction of the defined objective function while respecting the structural constraints. The economic or mass objective function of the material and labor costs of a structure is subjected to the constraints known from structural analysis. These constraints include equations for the calculation of internal forces and deflections, as well as equations for the dimensioning of structural components (in accordance with the Eurocode standards). Given the complex, non-convex and highly non-linear nature of optimization problems in civil engineering, the Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm is applied. This algorithm alternately solves subproblems of non-linear programming (NLP) and main problems of mixed-integer linear programming (MILP), in this way gradually refines the solution space up to the optimal solution. The NLP corresponds to the continuous optimization of parameters (with fixed topology, discrete materials and standard dimensions, all determined in the previous MILP), while the MILP involves a global approximation to the superstructure of alternatives, where a new topology, materials, standard dimensions are determined. The optimization of a convex problem is stopped when the MILP solution becomes better than the best NLP solution. Otherwise, it is terminated when the NLP solution can no longer be improved. While the OA/ER algorithm, like all other algorithms, does not guarantee global optimality due to the presence of non-convex functions, various modifications, including convexity tests, are implemented in OA/ER to mitigate these difficulties. The effectiveness of the proposed MINLP approach is demonstrated by its application to various structural optimization tasks, such as mass optimization of steel buildings, cost optimization of timber halls, composite floor systems, etc. Special optimization models have been developed for the optimization of these structures. The MINLP optimizations, facilitated by the user-friendly software package MIPSYN, provide insights into a mass or cost-optimal solutions, optimal structural topologies, optimal material and standard cross-section choices, confirming MINLP as a valuable method for the optimization of structures in civil engineering.

Keywords: MINLP, mixed-integer non-linear programming, optimization, structures

Procedia PDF Downloads 45
4026 A Multi-Criteria Model for Scheduling of Stochastic Single Machine Problem with Outsourcing and Solving It through Application of Chance Constrained

Authors: Homa Ghave, Parmis Shahmaleki

Abstract:

This paper presents a new multi-criteria stochastic mathematical model for a single machine scheduling with outsourcing allowed. There are multiple jobs processing in batch. For each batch, all of job or a quantity of it can be outsourced. The jobs have stochastic processing time and lead time and deterministic due dates arrive randomly. Because of the stochastic inherent of processing time and lead time, we use the chance constrained programming for modeling the problem. First, the problem is formulated in form of stochastic programming and then prepared in a form of deterministic mixed integer linear programming. The objectives are considered in the model to minimize the maximum tardiness and outsourcing cost simultaneously. Several procedures have been developed to deal with the multi-criteria problem. In this paper, we utilize the concept of satisfaction functions to increases the manager’s preference. The proposed approach is tested on instances where the random variables are normally distributed.

Keywords: single machine scheduling, multi-criteria mathematical model, outsourcing strategy, uncertain lead times and processing times, chance constrained programming, satisfaction function

Procedia PDF Downloads 260
4025 Comparative Study on Daily Discharge Estimation of Soolegan River

Authors: Redvan Ghasemlounia, Elham Ansari, Hikmet Kerem Cigizoglu

Abstract:

Hydrological modeling in arid and semi-arid regions is very important. Iran has many regions with these climate conditions such as Chaharmahal and Bakhtiari province that needs lots of attention with an appropriate management. Forecasting of hydrological parameters and estimation of hydrological events of catchments, provide important information that used for design, management and operation of water resources such as river systems, and dams, widely. Discharge in rivers is one of these parameters. This study presents the application and comparison of some estimation methods such as Feed-Forward Back Propagation Neural Network (FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) to predict the daily flow discharge of the Soolegan River, located at Chaharmahal and Bakhtiari province, in Iran. In this study, Soolegan, station was considered. This Station is located in Soolegan River at 51° 14՜ Latitude 31° 38՜ longitude at North Karoon basin. The Soolegan station is 2086 meters higher than sea level. The data used in this study are daily discharge and daily precipitation of Soolegan station. Feed Forward Back Propagation Neural Network(FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) models were developed using the same input parameters for Soolegan's daily discharge estimation. The results of estimation models were compared with observed discharge values to evaluate performance of the developed models. Results of all methods were compared and shown in tables and charts.

Keywords: ANN, multi linear regression, Bayesian network, forecasting, discharge, gene expression programming

Procedia PDF Downloads 559
4024 Non-Population Search Algorithms for Capacitated Material Requirement Planning in Multi-Stage Assembly Flow Shop with Alternative Machines

Authors: Watcharapan Sukkerd, Teeradej Wuttipornpun

Abstract:

This paper aims to present non-population search algorithms called tabu search (TS), simulated annealing (SA) and variable neighborhood search (VNS) to minimize the total cost of capacitated MRP problem in multi-stage assembly flow shop with two alternative machines. There are three main steps for the algorithm. Firstly, an initial sequence of orders is constructed by a simple due date-based dispatching rule. Secondly, the sequence of orders is repeatedly improved to reduce the total cost by applying TS, SA and VNS separately. Finally, the total cost is further reduced by optimizing the start time of each operation using the linear programming (LP) model. Parameters of the algorithm are tuned by using real data from automotive companies. The result shows that VNS significantly outperforms TS, SA and the existing algorithm.

Keywords: capacitated MRP, tabu search, simulated annealing, variable neighborhood search, linear programming, assembly flow shop, application in industry

Procedia PDF Downloads 232
4023 Benders Decomposition Approach to Solve the Hybrid Flow Shop Scheduling Problem

Authors: Ebrahim Asadi-Gangraj

Abstract:

Hybrid flow shop scheduling problem (HFS) contains sequencing in a flow shop where, at any stage, there exist one or more related or unrelated parallel machines. This production system is a common manufacturing environment in many real industries, such as the steel manufacturing, ceramic tile manufacturing, and car assembly industries. In this research, a mixed integer linear programming (MILP) model is presented for the hybrid flow shop scheduling problem, in which, the objective consists of minimizing the maximum completion time (makespan). For this purpose, a Benders Decomposition (BD) method is developed to solve the research problem. The proposed approach is tested on some test problems, small to moderate scale. The experimental results show that the Benders decomposition approach can solve the hybrid flow shop scheduling problem in a reasonable time, especially for small and moderate-size test problems.

Keywords: hybrid flow shop, mixed integer linear programming, Benders decomposition, makespan

Procedia PDF Downloads 187
4022 WhatsApp as Part of a Blended Learning Model to Help Programming Novices

Authors: Tlou J. Ramabu

Abstract:

Programming is one of the challenging subjects in the field of computing. In the higher education sphere, some programming novices’ performance, retention rate, and success rate are not improving. Most of the time, the problem is caused by the slow pace of learning, difficulty in grasping the syntax of the programming language and poor logical skills. More importantly, programming forms part of major subjects within the field of computing. As a result, specialized pedagogical methods and innovation are highly recommended. Little research has been done on the potential productivity of the WhatsApp platform as part of a blended learning model. In this article, the authors discuss the WhatsApp group as a part of blended learning model incorporated for a group of programming novices. We discuss possible administrative activities for productive utilisation of the WhatsApp group on the blended learning overview. The aim is to take advantage of the popularity of WhatsApp and the time students spend on it for their educational purpose. We believe that blended learning featuring a WhatsApp group may ease novices’ cognitive load and strengthen their foundational programming knowledge and skills. This is a work in progress as the proposed blended learning model with WhatsApp incorporated is yet to be implemented.

Keywords: blended learning, higher education, WhatsApp, programming, novices, lecturers

Procedia PDF Downloads 171
4021 On Optimum Stratification

Authors: M. G. M. Khan, V. D. Prasad, D. K. Rao

Abstract:

In this manuscript, we discuss the problem of determining the optimum stratification of a study (or main) variable based on the auxiliary variable that follows a uniform distribution. If the stratification of survey variable is made using the auxiliary variable it may lead to substantial gains in precision of the estimates. This problem is formulated as a Nonlinear Programming Problem (NLPP), which turn out to multistage decision problem and is solved using dynamic programming technique.

Keywords: auxiliary variable, dynamic programming technique, nonlinear programming problem, optimum stratification, uniform distribution

Procedia PDF Downloads 329
4020 Duality in Multiobjective Nonlinear Programming under Generalized Second Order (F, b, φ, ρ, θ)− Univex Functions

Authors: Meraj Ali Khan, Falleh R. Al-Solamy

Abstract:

In the present paper, second order duality for multiobjective nonlinear programming are investigated under the second order generalized (F, b, φ, ρ, θ)− univex functions. The weak, strong and converse duality theorems are proved. Further, we also illustrated an example of (F, b, φ, ρ, θ)− univex functions. Results obtained in this paper extend some previously known results of multiobjective nonlinear programming in the literature.

Keywords: duality, multiobjective programming, univex functions, univex

Procedia PDF Downloads 353
4019 Using Gene Expression Programming in Learning Process of Rough Neural Networks

Authors: Sanaa Rashed Abdallah, Yasser F. Hassan

Abstract:

The paper will introduce an approach where a rough sets, gene expression programming and rough neural networks are used cooperatively for learning and classification support. The Objective of gene expression programming rough neural networks (GEP-RNN) approach is to obtain new classified data with minimum error in training and testing process. Starting point of gene expression programming rough neural networks (GEP-RNN) approach is an information system and the output from this approach is a structure of rough neural networks which is including the weights and thresholds with minimum classification error.

Keywords: rough sets, gene expression programming, rough neural networks, classification

Procedia PDF Downloads 382
4018 A Fuzzy Linear Regression Model Based on Dissemblance Index

Authors: Shih-Pin Chen, Shih-Syuan You

Abstract:

Fuzzy regression models are useful for investigating the relationship between explanatory variables and responses in fuzzy environments. To overcome the deficiencies of previous models and increase the explanatory power of fuzzy data, the graded mean integration (GMI) representation is applied to determine representative crisp regression coefficients. A fuzzy regression model is constructed based on the modified dissemblance index (MDI), which can precisely measure the actual total error. Compared with previous studies based on the proposed MDI and distance criterion, the results from commonly used test examples show that the proposed fuzzy linear regression model has higher explanatory power and forecasting accuracy.

Keywords: dissemblance index, fuzzy linear regression, graded mean integration, mathematical programming

Procedia PDF Downloads 435
4017 Reallocation of Bed Capacity in a Hospital Combining Discrete Event Simulation and Integer Linear Programming

Authors: Muhammed Ordu, Eren Demir, Chris Tofallis

Abstract:

The number of inpatient admissions in the UK has been significantly increasing over the past decade. These increases cause bed occupancy rates to exceed the target level (85%) set by the Department of Health in England. Therefore, hospital service managers are struggling to better manage key resource such as beds. On the other hand, this severe demand pressure might lead to confusion in wards. For example, patients can be admitted to the ward of another inpatient specialty due to lack of resources (i.e., bed). This study aims to develop a simulation-optimization model to reallocate the available number of beds in a mid-sized hospital in the UK. A hospital simulation model was developed to capture the stochastic behaviours of the hospital by taking into account the accident and emergency department, all outpatient and inpatient services, and the interactions between each other. A couple of outputs of the simulation model (e.g., average length of stay and revenue) were generated as inputs to be used in the optimization model. An integer linear programming was developed under a number of constraints (financial, demand, target level of bed occupancy rate and staffing level) with the aims of maximizing number of admitted patients. In addition, a sensitivity analysis was carried out by taking into account unexpected increases on inpatient demand over the next 12 months. As a result, the major findings of the approach proposed in this study optimally reallocate the available number of beds for each inpatient speciality and reveal that 74 beds are idle. In addition, the findings of the study indicate that the hospital wards will be able to cope with 14% demand increase at most in the projected year. In conclusion, this paper sheds a new light on how best to reallocate beds in order to cope with current and future demand for healthcare services.

Keywords: bed occupancy rate, bed reallocation, discrete event simulation, inpatient admissions, integer linear programming, projected usage

Procedia PDF Downloads 143
4016 The Reduction of CO2 Emissions Level in Malaysian Transportation Sector: An Optimization Approach

Authors: Siti Indati Mustapa, Hussain Ali Bekhet

Abstract:

Transportation sector represents more than 40% of total energy consumption in Malaysia. This sector is a major user of fossils based fuels, and it is increasingly being highlighted as the sector which contributes least to CO2 emission reduction targets. Considering this fact, this paper attempts to investigate the problem of reducing CO2 emission using linear programming approach. An optimization model which is used to investigate the optimal level of CO2 emission reduction in the road transport sector is presented. In this paper, scenarios have been used to demonstrate the emission reduction model: (1) utilising alternative fuel scenario, (2) improving fuel efficiency scenario, (3) removing fuel subsidy scenario, (4) reducing demand travel, (5) optimal scenario. This study finds that fuel balancing can contribute to the reduction of the amount of CO2 emission by up to 3%. Beyond 3% emission reductions, more stringent measures that include fuel switching, fuel efficiency improvement, demand travel reduction and combination of mitigation measures have to be employed. The model revealed that the CO2 emission reduction in the road transportation can be reduced by 38.3% in the optimal scenario.

Keywords: CO2 emission, fuel consumption, optimization, linear programming, transportation sector, Malaysia

Procedia PDF Downloads 421
4015 Evaluation of Introductory Programming Course for Non-Computer Science Majored Students

Authors: H. Varol

Abstract:

Although students’ interest level in pursuing Computer Science and related degrees are lower than previous decade, fundamentals of computers, specifically introductory level programming courses are either listed as core or elective courses for a number of non-computer science majors. Universities accommodate these non-computer science majored students either via creating separate sections of a class for them or simply offering mixed-body classroom solutions, in which both computer science and non-computer science students take the courses together. In this work, we demonstrated how we handle introductory level programming course at Sam Houston State University and also provide facts about our observations on students’ success during the coursework. Moreover, we provide suggestions and methodologies that are based on students’ major and skills to overcome the deficiencies of mix-body type of classes.

Keywords: computer science, non-computer science major, programming, programming education

Procedia PDF Downloads 330
4014 Programming Systems in Implementation of Process Safety at Chemical Process Industry

Authors: Maryam Shayan

Abstract:

Programming frameworks have been utilized as a part of chemical industry process safety operation and configuration to enhance its effectiveness. This paper gives a brief survey and investigation of the best in class and effects of programming frameworks in process security. A study was completed by talking staff accountable for procedure wellbeing practices in the Iranian chemical process industry and diving into writing of innovation for procedure security. This article investigates the useful and operational attributes of programming frameworks for security and endeavors to sort the product as indicated by its level of effect in the administration chain of importance. The study adds to better comprehension of the parts of Information Communication Technology in procedure security, the future patterns and conceivable gaps for innovative work.

Keywords: programming frameworks, chemical industry process, process security, administration chain, information communication technology

Procedia PDF Downloads 372
4013 A Hybrid Model of Goal, Integer and Constraint Programming for Single Machine Scheduling Problem with Sequence Dependent Setup Times: A Case Study in Aerospace Industry

Authors: Didem Can

Abstract:

Scheduling problems are one of the most fundamental issues of production systems. Many different approaches and models have been developed according to the production processes of the parts and the main purpose of the problem. In this study, one of the bottleneck stations of a company serving in the aerospace industry is analyzed and considered as a single machine scheduling problem with sequence-dependent setup times. The objective of the problem is assigning a large number of similar parts to the same shift -to reduce chemical waste- while minimizing the number of tardy jobs. The goal programming method will be used to achieve two different objectives simultaneously. The assignment of parts to the shift will be expressed using the integer programming method. Finally, the constraint programming method will be used as it provides a way to find a result in a short time by avoiding worse resulting feasible solutions with the defined variables set. The model to be established will be tested and evaluated with real data in the application part.

Keywords: constraint programming, goal programming, integer programming, sequence-dependent setup, single machine scheduling

Procedia PDF Downloads 235
4012 Use of Transportation Networks to Optimize The Profit Dynamics of the Product Distribution

Authors: S. Jayasinghe, R. B. N. Dissanayake

Abstract:

Optimization modelling together with the Network models and Linear Programming techniques is a powerful tool in problem solving and decision making in real world applications. This study developed a mathematical model to optimize the net profit by minimizing the transportation cost. This model focuses the transportation among decentralized production plants to a centralized distribution centre and then the distribution among island wide agencies considering the customer satisfaction as a requirement. This company produces basically 9 types of food items with 82 different varieties and 4 types of non-food items with 34 different varieties. Among 6 production plants, 4 were located near the city of Mawanella and the other 2 were located in Galewala and Anuradhapura cities which are 80 km and 150 km away from Mawanella respectively. The warehouse located in the Mawanella was the main production plant and also the only distribution plant. This plant distributes manufactured products to 39 agencies island-wide. The average values and average amount of the goods for 6 consecutive months from May 2013 to October 2013 were collected and then average demand values were calculated. The following constraints are used as the necessary requirement to satisfy the optimum condition of the model; there was one source, 39 destinations and supply and demand for all the agencies are equal. Using transport cost for a kilometer, total transport cost was calculated. Then the model was formulated using distance and flow of the distribution. Network optimization and linear programming techniques were used to originate the model while excel solver is used in solving. Results showed that company requires total transport cost of Rs. 146, 943, 034.50 to fulfil the customers’ requirement for a month. This is very much less when compared with data without using the model. Model also proved that company can reduce their transportation cost by 6% when distributing to island-wide customers. Company generally satisfies their customers’ requirements by 85%. This satisfaction can be increased up to 97% by using this model. Therefore this model can be used by other similar companies in order to reduce the transportation cost.

Keywords: mathematical model, network optimization, linear programming

Procedia PDF Downloads 346
4011 Improving Performance and Progression of Novice Programmers: Factors Considerations

Authors: Hala Shaari, Nuredin Ahmed

Abstract:

Teaching computer programming is recognized to be difficult and a real challenge. The biggest problem faced by novice programmers is their lack of understanding of basic programming concepts. A visualized learning tool was developed and used by volunteered first-year students for two semesters. The purposes of this paper are firstly, to emphasize factors which directly affect the performance of our students negatively. Secondly, to examine whether the proposed tool would improve their performance and learning progression. The results of adopting this tool were conducted using a pre-survey and post-survey questionnaire. As a result, students who used the learning tool showed better performance in their programming subject.

Keywords: factors, novice, programming, visualization

Procedia PDF Downloads 361
4010 Two Efficient Heuristic Algorithms for the Integrated Production Planning and Warehouse Layout Problem

Authors: Mohammad Pourmohammadi Fallah, Maziar Salahi

Abstract:

In the literature, a mixed-integer linear programming model for the integrated production planning and warehouse layout problem is proposed. To solve the model, the authors proposed a Lagrangian relax-and-fix heuristic that takes a significant amount of time to stop with gaps above 5$\%$ for large-scale instances. Here, we present two heuristic algorithms to solve the problem. In the first one, we use a greedy approach by allocating warehouse locations with less reservation costs and also less transportation costs from the production area to locations and from locations to the output point to items with higher demands. Then a smaller model is solved. In the second heuristic, first, we sort items in descending order according to the fraction of the sum of the demands for that item in the time horizon plus the maximum demand for that item in the time horizon and the sum of all its demands in the time horizon. Then we categorize the sorted items into groups of 3, 4, or 5 and solve a small-scale optimization problem for each group, hoping to improve the solution of the first heuristic. Our preliminary numerical results show the effectiveness of the proposed heuristics.

Keywords: capacitated lot-sizing, warehouse layout, mixed-integer linear programming, heuristics algorithm

Procedia PDF Downloads 194
4009 An Optimization Model for Maximum Clique Problem Based on Semidefinite Programming

Authors: Derkaoui Orkia, Lehireche Ahmed

Abstract:

The topic of this article is to exploring the potentialities of a powerful optimization technique, namely Semidefinite Programming, for solving NP-hard problems. This approach provides tight relaxations of combinatorial and quadratic problems. In this work, we solve the maximum clique problem using this relaxation. The clique problem is the computational problem of finding cliques in a graph. It is widely acknowledged for its many applications in real-world problems. The numerical results show that it is possible to find a maximum clique in polynomial time, using an algorithm based on semidefinite programming. We implement a primal-dual interior points algorithm to solve this problem based on semidefinite programming. The semidefinite relaxation of this problem can be solved in polynomial time.

Keywords: semidefinite programming, maximum clique problem, primal-dual interior point method, relaxation

Procedia PDF Downloads 219
4008 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem

Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq

Abstract:

High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.

Keywords: artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch

Procedia PDF Downloads 188
4007 Customer Experience Management in Food and Beverage Outlet at Indian School of Business: Methodology and Recommendations

Authors: Anupam Purwar

Abstract:

In conventional consumer product industry, stockouts are taken care by carrying buffer stock to check underserving caused by changes in customer demand, incorrect forecast or variability in lead times. But, for food outlets, the alternate of carrying buffer stock is unviable because of indispensable need to serve freshly cooked meals. Besides, the food outlet being the sole provider has no incentives to reduce stockouts, as they have no fear of losing revenue, gross profit, customers and market share. Hence, innovative, easy to implement and practical ways of addressing the twin problem of long queues and poor customer experience needs to be investigated. Current work analyses the demand pattern of 11 different food items across a routine day. Based on this optimum resource allocation for all food items has been carried out by solving a linear programming problem with cost minimization as the objective. Concurrently, recommendations have been devised to address this demand and supply side problem keeping in mind their practicability. Currently, the recommendations are being discussed and implemented at ISB (Indian School of Business) Hyderabad campus.

Keywords: F&B industry, resource allocation, demand management, linear programming, LP, queuing analysis

Procedia PDF Downloads 135
4006 Design Of An Arduino Shield For New Generation Microcontroller Training

Authors: Boubacar Niang, Denis Raulin

Abstract:

This paper presents the design of a dedicated board for learning and programming with ATMEL AVR new generation micro controller’s family. This board designed as a "shield" for the Arduino Uno allows us to focus on the design and programming of basic micro controller functionalities in high level language with a considerable time saving because of dealing with additional components is not required.

Keywords: Arduino, microcontroller, programming, language

Procedia PDF Downloads 580
4005 Modeling Revolution Shell Structures by MATLAB Programming-Axisymmetric and Nonaxisymmetric Shells

Authors: Hamadi Djamal, Labiodh Bachir, Ounis Abdelhafid, Chaalane Mourad

Abstract:

The objective of this work is setting numerically operational finite element CAXI_L for the axisymmetric and nonaxisymmetric shells. This element is based on the Reissner-Mindlin theory and mixed model formulation. The MATLAB language is used for the programming. In order to test the elaborated program, some applications are carried out.

Keywords: axisymmetric shells, nonaxisymmetric behaviour, finite element, MATLAB programming

Procedia PDF Downloads 312
4004 Learning Programming for Hearing Impaired Students via an Avatar

Authors: Nihal Esam Abuzinadah, Areej Abbas Malibari, Arwa Abdulaziz Allinjawi, Paul Krause

Abstract:

Deaf and hearing-impaired students face many obstacles throughout their education, especially with learning applied sciences such as computer programming. In addition, there is no clear signs in the Arabic Sign Language that can be used to identify programming logic terminologies such as while, for, case, switch etc. However, hearing disabilities should not be a barrier for studying purpose nowadays, especially with the rapid growth in educational technology. In this paper, we develop an Avatar based system to teach computer programming to deaf and hearing-impaired students using Arabic Signed language with new signs vocabulary that is been developed for computer programming education. The system is tested on a number of high school students and results showed the importance of visualization in increasing the comprehension or understanding of concepts for deaf students through the avatar.

Keywords: hearing-impaired students, isolation, self-esteem, learning difficulties

Procedia PDF Downloads 143