Search results for: crop farming-households
1087 Vegetation Index-Deduced Crop Coefficient of Wheat (Triticum aestivum) Using Remote Sensing: Case Study on Four Basins of Golestan Province, Iran
Authors: Hoda Zolfagharnejad, Behnam Kamkar, Omid Abdi
Abstract:
Crop coefficient (Kc) is an important factor contributing to estimation of evapotranspiration, and is also used to determine the irrigation schedule. This study investigated and determined the monthly Kc of winter wheat (Triticum aestivum L.) using five vegetation indices (VIs): Normalized Difference Vegetation Index (NDVI), Difference Vegetation Index (DVI), Soil Adjusted Vegetation Index (SAVI), Infrared Percentage Vegetation Index (IPVI), and Ratio Vegetation Index (RVI) of four basins in Golestan province, Iran. 14 Landsat-8 images according to crop growth stage were used to estimate monthly Kc of wheat. VIs were calculated based on infrared and near infrared bands of Landsat 8 images using Geographical Information System (GIS) software. The best VIs were chosen after establishing a regression relationship among these VIs with FAO Kc and Kc that was modified for the study area by the previous research based on R² and Root Mean Square Error (RMSE). The result showed that local modified SAVI with R²= 0.767 and RMSE= 0.174 was the best index to produce monthly wheat Kc maps.Keywords: crop coefficient, remote sensing, vegetation indices, wheat
Procedia PDF Downloads 4121086 Weeds Density Affects Yield and Quality of Wheat Crop under Different Crop Densities
Authors: Ijaz Ahmad
Abstract:
Weed competition is one of the major biotic constraints in wheat crop productivity. Avena fatua L. and Silybum marianum (L.) Gaertn. are among the worst weeds of wheat, greatly deteriorating wheat quality subsequently reducing its market value. In this connection, two-year experiments were conducted in 2018 & 2019. Different seeding rate wheat viz; 80, 100, 120 and 140 kg ha-1 and different weeds ratio (A. fatua: S. marianum ) sown at the rate 1:8, 2:7, 3:6, 4:5, 5:4, 6:3, 7:2, 8:1 and 0:0 respectively. The weeds ratio and wheat densities are indirectly proportional. However, the wheat seed at the rate of 140 kg ha-1 has minimal weeds interference. Yield losses were 17.5% at weeds density 1:8 while 7.2% at 8:1. However, in wheat density, the highest percent losses were computed on 80 kg ha-1 while the lowest was recorded on 140 kg ha-1. Since due to the large leaf canopy of S. marianum other species can't sustain their growth. Hence, it has been concluded that S. marianum is the hotspot that causes reduction to the yield-related parameters, followed by A. fatua and the other weeds. Due to the morphological mimicry of A. fatua with wheat crop during the vegetative growth stage, it cannot be easily distinguished. Therefore, managing A. fatua and S. marianum before seed setting is recommended for reducing the future weed problem. Based on current studies, it is suggested that sowing wheat seed at the rate of 140 kg ha-1 is recommended to better compete with all the field weeds.Keywords: fat content, holly thistle, protein content, weed competition, wheat, wild oat
Procedia PDF Downloads 2071085 Transmission Dynamics of Lumpy Skin Disease in Ethiopia
Authors: Wassie Molla, Klaas Frankena, Mart De Jong
Abstract:
Lumpy skin disease (LSD) is a severe viral disease of cattle, which often occurs in epidemic form. It is caused by lumpy skin disease virus of the genus capripoxvirus of family poxviridae. Mathematical models play important role in the study of infectious diseases epidemiology. They help to explain the dynamics and understand the transmission of an infectious disease within a population. Understanding the transmission dynamics of lumpy skin disease between animals is important for the implementation of effective prevention and control measures against the disease. This study was carried out in central and north-western part of Ethiopia with the objectives to understand LSD outbreak dynamics, quantify the transmission between animals and herds, and estimate the disease reproduction ratio in dominantly crop-livestock mixed and commercial herd types. Field observation and follow-up study were undertaken, and the transmission parameters were estimated based on a SIR epidemic model in which individuals are susceptible (S), infected and infectious (I), and recovered and immune or dead (R) using the final size and generalized linear model methods. The result showed that a higher morbidity was recorded in infected crop-livestock (24.1%) mixed production system herds than infected commercial production (17.5%) system herds whereas mortality was higher in intensive (4.0%) than crop-livestock (1.5%) system and the differences were statistically significant. The transmission rate among animals and between herds were 0.75 and 0.68 per week, respectively in dominantly crop-livestock production system. The transmission study undertaken in dominantly crop-livestock production system highlighted the presence of statistically significant seasonal difference in LSD transmission among animals. The reproduction numbers of LSD in dominantly crop-livestock production system were 1.06 among animals and 1.28 between herds whereas it varies from 1.03 to 1.31 among animals in commercial production system. Though the R estimated for LSD in different production systems at different localities is greater than 1, its magnitude is low implying that the disease can be easily controlled by implementing the appropriate control measures.Keywords: commercial, crop-livestock, Ethiopia, LSD, reproduction number, transmission
Procedia PDF Downloads 2991084 Climate-Smart Agriculture for Sustainable Maize-Wheat Production: Effects on Crop Productivity, Profitability and Irrigation Water Use
Authors: S. K. Kakraliya, R. D. Jat, H. S. Jat, P. C. Sharma, M. L. Jat
Abstract:
The traditional rice-wheat (RW) system in the IGP of South Asia is tillage, water, energy, and capital intensive. Coupled with more pumping of groundwater over the years to meet the high irrigation water requirement of the RW system has resulted in over-exploitation of groundwater. Replacement of traditional rice with less water crops such as maize under climate-smart agriculture (CSA) based management (tillage, crop establishment and residue management) practices are required to promote sustainable intensification. Furthermore, inefficient nutrient management practices are responsible for low crop yields and nutrient use efficiencies in maize-wheat (MW) system. A 7-year field experiment was conducted in farmer’s participatory strategic research mode at Taraori, Karnal, India to evaluate the effects of tillage and crop establishment (TCE) methods, residue management, mungbean integration, and nutrient management practices on crop yields, water productivity and profitability of MW system. The main plot treatments included four combinations of TCE, residue and mungbean integration [conventional tillage (CT), conventional tillage with mungbean (CT + MB), permanent bed (PB) and permanent bed with MB (PB + MB] with three nutrient management practices [farmer’s fertilizer practice (FFP), recommended dose of fertilizer (RDF) and site-specific nutrient management (SSNM)] using Nutrient Expert® as subplot treatments. System productivity, water use efficiency (WUE) and net returns under PB + MB were significantly increased by 25–30%, 28–31% and 35–40% compared to CT respectively, during seven years of experimentation. The integration of MB in MW system contributed ~25and ~ 28% increases in system productivity and net returns compared with no MB, respectively. SSNM based nutrient management increased the mean (averaged across 7 yrs) system productivity by 12- 15% compared with FFP. The study revealed that CSA based sustainable intensification (PB + MB) and SSNM approach provided opportunities for enhancing crop productivity, WUE and profitability of the MW system in India.Keywords: Conservation Agriculture, Precision water and nutrient management, Permanent beds, Crop yields
Procedia PDF Downloads 1321083 Use of the Budyko Framework to Estimate the Virtual Water Content in Shijiazhuang Plain, North China
Authors: Enze Zhang
Abstract:
One of the most challenging steps in implementing virtual water content (VWC) analysis of crops is to get properly the total volume of consumptive water use (CWU) and, therefore, the choice of a reliable crop CWU estimation method. In practice, lots of previous researches obtaining CWU of crops follow a classical procedure for calculating crop evapotranspiration which is determined by multiplying reference evapotranspiration by appropriate coefficient, such as crop coefficient and water stress coefficients. However, this manner of calculation requires lots of field experimental data at point scale and more seriously, when current growing conditions differ from the standard conditions, may easily produce deviation between the calculated CWU and the actual CWU. Since evapotranspiration caused by crop planting always plays a vital role in surface water-energy balance in an agricultural region, this study decided to alternatively estimates crop evapotranspiration by Budyko framework. After brief introduce the development process of Budyko framework. We choose a modified Budyko framework under unsteady-state to better evaluated the actual CWU and apply it in an agricultural irrigation area in North China Plain which rely on underground water for irrigation. With the agricultural statistic data, this calculated CWU was further converted into VWC and its subdivision of crops at the annual scale. Results show that all the average values of VWC, VWC_blue and VWC_green show a downward trend with increased agricultural production and improved acreage. By comparison with the previous research, VWC calculated by Budyko framework agree well with part of the previous research and for some other research the value is greater. Our research also suggests that this methodology and findings may be reliable and convenient for investigation of virtual water throughout various agriculture regions of the world.Keywords: virtual water content, Budyko framework, consumptive water use, crop evapotranspiration
Procedia PDF Downloads 3331082 Use of Sentiel-2 Data to Monitor Plant Density and Establishment Rate of Winter Wheat Fields
Authors: Bing-Bing E. Goh
Abstract:
Plant counting is a labour intensive and time-consuming task for the farmers. However, it is an important indicator for farmers to make decisions on subsequent field management. This study is to evaluate the potential of Sentinel-2 images using statistical analysis to retrieve information on plant density for monitoring, especially during critical period at the beginning of March. The model was calibrated with in-situ data from 19 winter wheat fields in Republic of Ireland during the crop growing season in 2019-2020. The model for plant density resulted in R2 = 0.77, RMSECV = 103 and NRMSE = 14%. This study has shown the potential of using Sentinel-2 to estimate plant density and quantify plant establishment to effectively monitor crop progress and to ensure proper field management.Keywords: winter wheat, remote sensing, crop monitoring, multivariate analysis
Procedia PDF Downloads 1611081 The First Transcriptome Assembly of Marama Bean: An African Orphan Crop
Authors: Ethel E. Phiri, Lionel Hartzenberg, Percy Chimwamuromba, Emmanuel Nepolo, Jens Kossmann, James R. Lloyd
Abstract:
Orphan crops are underresearched and underutilized food plant species that have not been categorized as major food crops, but have the potential to be economically and agronomically significant. They have been documented to have the ability to tolerate extreme environmental conditions. However, limited research has been conducted to uncover their potential as food crop species. The New Partnership for Africa’s Development (NEPAD) has classified Marama bean, Tylosema esculentum, as an orphan crop. The plant is one of the 101 African orphan crops that must have their genomes sequenced, assembled, and annotated in the foreseeable future. Marama bean is a perennial leguminous plant that primarily grows in poor, arid soils in southern Africa. The plants produce large tubers that can weigh as much as 200kg. While the foliage provides fodder, the tuber is carbohydrate rich and is a staple food source for rural communities in Namibia. Also, the edible seeds are protein- and oil-rich. Marama Bean plants respond rapidly to increased temperatures and severe water scarcity without extreme consequences. Advances in molecular biology and biotechnology have made it possible to effectively transfer technologies between model- and major crops to orphan crops. In this research, the aim was to assemble the first transcriptomic analysis of Marama Bean RNA-sequence data. Many model plant species have had their genomes sequenced and their transcriptomes assembled. Therefore the availability of transcriptome data for a non-model crop plant species will allow for gene identification and comparisons between various species. The data has been sequenced using the Ilumina Hiseq 2500 sequencing platform. Data analysis is underway. In essence, this research will eventually evaluate the potential use of Marama Bean as a crop species to improve its value in agronomy. data for a non-model crop plant species will allow for gene identification and comparisons between various species. The data has been sequenced using the Ilumina Hiseq 2500 sequencing platform. Data analysis is underway. In essence, this researc will eventually evaluate the potential use of Marama bean as a crop species to improve its value in agronomy.Keywords: 101 African orphan crops, RNA-Seq, Tylosema esculentum, underutilised crop plants
Procedia PDF Downloads 3601080 Biological Methods to Control Parasitic Weed Phelipanche ramosa L. Pomel in the Field Tomato Crop
Authors: F. Lops, G. Disciglio, A. Carlucci, G. Gatta, L. Frabboni, A. Tarantino, E. Tarantino
Abstract:
Phelipanche ramosa L. Pomel is a root holoparasitic weed plant of many cultivations, particularly of tomato (Lycopersicum esculentum L.) crop. In Italy, Phelipanche problem is increasing, both in density and in acreage. The biological control of this parasitic weed involves the use of living organisms as numerous fungi and bacteria that can infect the parasitic weed, while it may improve the crop growth. This paper deals with the biocontrol with microorganism, including Arbuscular mycorrhizal (AM) fungi and fungal pathogens as Fusarium oxisporum spp. Colonization of crop roots by AM fungi can provide protection of crops against parasitic weeds because of a reduction in their seed germination and attachment, while F. oxisporum, isolated from diseased broomrape tubercles, proved to be highly virulent on P. ramosa. The experimental trial was carried out in open field at Foggia province (Apulia Region, Southern Italy), during the spring-summer season 2016, in order to evaluate the effect of four biological treatments: AM fungi and Fusarium oxisporum applied in the soil alone or combined together, and Rizosum Max® product, compared with the untreated control, to reduce the P. ramosa infestation in processing tomato crop. The principal results to be drawn from this study under field condition, in contrast of those reported previously under laboratory and greenhouse conditions, show that both AM fungi and F. oxisporum do not provide the reduction of the number of emerged shoots of P. ramosa. This can arise probably from the low efficacy seedling of the agent pathogens for the control of this parasite in the field. On the contrary, the Rizosum Max® product, containing AM fungi and some rizophere bacteria combined with several minerals and organic substances, appears to be most effective for the reduction of P. ramosa infestation.Keywords: Arbuscular mycorrhized fungi, biocontrol methods, Phelipanche ramosa, tomato crop
Procedia PDF Downloads 4621079 Different Tillage Possibilities for Second Crop in Green Bean Farming
Authors: Yilmaz Bayhan, Emin Güzel, Ömer Barış Özlüoymak, Ahmet İnce, Abdullah Sessiz
Abstract:
In this study, determining of reduced tillage techniques in green bean farming as a second crop after harvesting wheat was targeted. To this aim, four different soil tillage methods namely, heavy-duty disc harrow (HD), rotary tiller (ROT), heavy-duty disc harrow plus rotary tiller (HD+ROT) and no-tillage (NT) (seeding by direct drill) were examined. Experiments were arranged in a randomized block design with three replications. The highest green beans yields were obtained in HD+ROT and NT as 5,862.1 and 5,829.3 Mg/ha, respectively. The lowest green bean yield was found in HD as 3,076.7 Mg/ha. The highest fuel consumption was measured 30.60 L ha-1 for HD+ROT whereas the lowest value was found 7.50 L ha-1 for NT. No tillage method gave the best results for fuel consumption and effective power requirement. It is concluded that no-tillage method can be used in second crop green bean in the Thrace Region due to economic and erosion conditions.Keywords: green bean, soil tillage, yield, vegetative
Procedia PDF Downloads 3731078 Effect of Deficit Irrigation on Barley Yield and Water Productivity through Field Experiment and Modeling at Koga Irrigation Scheme, Amhara Region, Ethiopia
Authors: Bekalu Melis Alehegn, Dagnenet Sultan Alemu
Abstract:
The insufficiency of water is the most severe restraint for the expansion of agriculture in arid and semi-arid areas. An important strategy for increasing water productivity and improving water productivity deficit irrigation at different growth stages is important to advance the yield and Water Productivity of barley in water scarce areas. A field experiment was conducted at the Koga irrigation scheme in Ethiopia to examine barley yield response to different irrigation regimes and validate the aqua crop model. The experimental setup comprised six randomized treatments (T) with three replications for one irrigation season because of financial limitations. The irrigation regimes were selected 100%, 75%, and 50% application levels in different growth stages of gross irrigation requirements using trial and error in order to select the optimal water application level. The treatments were: no stress at all (T1), 25% stressed during all crop stages (T2), 50% stressed at all stages (T3), 50% stressed at the development stage (T4), 50% stressed at mid-stage (T5) and 50% stress at initial and late season (T6). The agronomic parameters, including canopy cover, biomass, and grain yield, were collected to compare the ground-based crop yield and the aqua crop model. The results showed that the initial and late stages and stress 25% through the whole season were the right time for practice deficit irrigation without significant yield reduction. The highest (2.62kg/m³) and the lowest (2.03 kg/m³) water productivity were found under T3 and T4, respectively. The stress of 50% at the mid-growth stage and stress 50% of the full irrigation water requirement at all growth stages significantly (α=5%) affected the canopy expansion, biomass and yield production. The aqua Crop model performed well in simulating the yield of barley for most of the treatments (R2 = 0.84 and RMSE = 0.7 t ha–¹).Keywords: aqua crop, barley, deficit irrigation, irrigation regimes, water productivity
Procedia PDF Downloads 271077 Impact of Drought in Farm Level Income in the United States
Authors: Anil Giri, Kyle Lovercamp, Sankalp Sharma
Abstract:
Farm level incomes fluctuate significantly due to extreme weather events such as drought. In the light of recent extreme weather events it is important to understand the implications of extreme weather events, flood and drought, on farm level incomes. This study examines the variation in farm level incomes for the United States in drought and no- drought years. Factoring heterogeneity in different enterprises (crop, livestock) and geography this paper analyzes the impact of drought in farm level incomes at state and national level. Livestock industry seems to be affected more by the lag in production of input feed for production, crops, as preliminary results show. Furthermore, preliminary results also show that while crop producers are not affected much due to drought, as price and quantity effect worked on opposite direction with same magnitude, that was not the case for livestock and horticulture enterprises. Results also showed that even when price effect was not as high the crop insurance component helped absorb much of shock for crop producers. Finally, the effect was heterogeneous for different states more on the coastal states compared Midwest region. This study should generate a lot of interest from policy makers across the world as some countries are actively seeking to increase subsidies in their agriculture sector. This study shows how subsidies absorb the shocks for one enterprise more than others. Finally, this paper should also be able to give an insight to economists to design/recommend policies such that it is optimal given the production level of different enterprises in different countries.Keywords: farm level income, United States, crop, livestock
Procedia PDF Downloads 2811076 Agile Real-Time Field Programmable Gate Array-Based Image Processing System for Drone Imagery in Digital Agriculture
Authors: Sabiha Shahid Antora, Young Ki Chang
Abstract:
Along with various farm management technologies, imagery is an important tool that facilitates crop assessment, monitoring, and management. As a consequence, drone imaging technology is playing a vital role to capture the state of the entire field for yield mapping, crop scouting, weed detection, and so on. Although it is essential to inspect the cultivable lands in real-time for making rapid decisions regarding field variable inputs to combat stresses and diseases, drone imagery is still evolving in this area of interest. Cost margin and post-processing complexions of the image stream are the main challenges of imaging technology. Therefore, this proposed project involves the cost-effective field programmable gate array (FPGA) based image processing device that would process the image stream in real-time as well as providing the processed output to support on-the-spot decisions in the crop field. As a result, the real-time FPGA-based image processing system would reduce operating costs while minimizing a few intermediate steps to deliver scalable field decisions.Keywords: real-time, FPGA, drone imagery, image processing, crop monitoring
Procedia PDF Downloads 1131075 An Evaluation of Different Weed Management Techniques in Organic Arable Systems
Authors: Nicola D. Cannon
Abstract:
A range of field experiments have been conducted since 1991 to 2017 on organic land at the Royal Agricultural University’s Harnhill Manor Farm near Cirencester, UK to explore the impact of different management practices on weed infestation in organic winter and spring wheat. The experiments were designed using randomised complete block and some with split plot arrangements. Sowing date, variety choice, crop height and crop establishment technique have all shown a significant impact on weed infestations. Other techniques have also been investigated but with less clear, but, still often significant effects on weed control including grazing with sheep, undersowing with different legumes and mechanical weeding techniques. Tillage treatments included traditional plough based systems, minimum tillage and direct drilling. Direct drilling had significantly higher weed dry matter than the other two techniques. Taller wheat varieties which do not contain Rht1 or Rht2 had higher weed populations than the wheat without dwarfing genes. Early sown winter wheat had greater weed dry matter than later sown wheat. Grazing with sheep interacted strongly with sowing date, with shorter varieties and also late sowing dates providing much less forage but, grazing did reduce weed biomass in June. Undersowing had mixed impacts which were related to the success of establishment of the undersown legume crop. Weeds are most successfully controlled when a range of techniques are implemented to give the wheat crop the greatest chance of competing with weeds.Keywords: crop establishment, drilling date, grazing, undersowing, varieties, weeds
Procedia PDF Downloads 1831074 Evaluation of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System Machine Learning Techniques for the Estimation of Crop Water Stress Index of Wheat under Varying Application of Irrigation Water Levels for Efficient Irrigation Scheduling
Authors: Aschalew C. Workneh, K. S. Hari Prasad, C. S. P. Ojha
Abstract:
The crop water stress index (CWSI) is a cost-effective, non-destructive, and simple technique for tracking the start of crop water stress. This study investigated the feasibility of CWSI derived from canopy temperature to detect the water status of wheat crops. Artificial intelligence (AI) techniques have become increasingly popular in recent years for determining CWSI. In this study, the performance of two AI techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing maps (SOM), are compared while determining the CWSI of paddy crops. Field experiments were conducted for varying irrigation water applications during two seasons in 2022 and 2023 at the irrigation field laboratory at the Civil Engineering Department, Indian Institute of Technology Roorkee, India. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R²). Both models successfully estimated the CWSI of the paddy crop with higher correlation coefficients and lower statistical errors. However, the ANFIS (R²=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE= 0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R²=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE= 0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in wheat crops compared to SOM.Keywords: adaptive neuro-fuzzy inference system, canopy temperature, crop water stress index, self-organizing map, wheat
Procedia PDF Downloads 551073 Utilization of Traditional Medicine for Treatment of Selected Illnesses among Crop-Farming Households in Edo State, Nigeria
Authors: Adegoke A. Adeyelu, Adeola T. Adeyelu, S. D. Y. Alfred, O. O. Fasina
Abstract:
This study examines the use of traditional medicines for the treatment of selected illnesses among crop-farming households in Edo State, Nigeria. A sample size of ninety (90) households were randomly selected for the study. Data were collected with a structured questionnaire alongside focus group discussions (FGD). Result shows that the mean age was 50 years old, the majority (76.7%) of the sampled farmers were below 60 years old. The majority (80.0%) of the farmers were married, about (92.2%) had formal education. It exposes that the majority of the respondents (76.7%) had household size of between 1-10 persons, about 55.6% had spent 11 years and above in crop farming. malaria (8th ), waist pains (7th ), farm injuries ( 6th ), cough (5th), acute headache(4th), skin infection (3rd), typhoid (2nd) and tuberculosis (1st ) were the most and least treated illness. Respondents (80%) had spent N10,000.00 ($27) and less on treatment of illnesses, 8.9% had spent N10,000.00-N20,000.0027 ($27-$55) 4.4% had spent between N20,100-N30,000.00 ($27-$83) while 6.7% had spent more than N30,100.00 ($83) on treatment of illnesses in the last one (1) year prior to the study. Age, years of farming, farm size, household size, level of income, cost of treatment, level of education, social network, and culture are some of the statistically significant factors influencing the utilization of traditional medicine. Farmers should be educated on methods of preventing illnesses, which is far cheaper than the curative.Keywords: crop farming-households, selected illnesses, traditional medicines, Edo State
Procedia PDF Downloads 2011072 Genetic Identification of Crop Cultivars Using Barcode System
Authors: Kesavan Markkandan, Ha Young Park, Seung-Il Yoo, Sin-Gi Park, Junhyung Park
Abstract:
For genetic identification of crop cultivars, insertions/deletions (InDel) markers have been preferred currently because they are easy to use, PCR based, co-dominant and relatively abundant. However, new InDels need to be developed for genetic studies of new varieties due to the difference of allele frequencies in InDels among the population groups. These new varieties are evolved with low levels of genetic diversity in specific genome loci with high recombination rate. In this study, we described soybean barcode system approach based on InDel makers, each of which is specific to a variation block (VB), where the genomes split by all assumed recombination sites. Firstly, VBs in crop cultivars were mined for transferability to VB-specific InDel markers. Secondly, putative InDels in the VB regions were identified for the development of barcode system by analyzing particular cultivar’s whole genome data. Thirdly, common VB-specific InDels from all cultivars were selected by gel electrophoresis, which were converted as 2D barcode types according to comparing amplicon polymorphisms in the five cultivars to the reference cultivar. Finally, the polymorphism of the selected markers was assessed with other cultivars, and the barcode system that allows a clear distinction among those cultivars is described. The same approach can be applicable for other commercial crops. Hence, VB-based genetic identification not only minimize the molecular markers but also useful for assessing cultivars and for marker-assisted breeding in other crop species.Keywords: variation block, polymorphism, InDel marker, genetic identification
Procedia PDF Downloads 3801071 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach
Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar
Abstract:
The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group
Procedia PDF Downloads 1161070 Land Suitability Scaling and Modeling for Assessing Crop Suitability in Some New Reclaimed Areas, Egypt
Authors: W. A. M. Abdel Kawy, Kh. M. Darwish
Abstract:
Adequate land use selection is an essential step towards achieving sustainable development. The main object of this study is to develop a new scale for land suitability system, which can be compatible with the local conditions. Furthermore, it aims to adapt the conventional land suitability systems to match the actual environmental status in term of soil types, climate and other conditions to evaluate land suitability for newly reclaimed areas. The new system suggests calculation of land suitability considering 20 factors affecting crop selection grouping into five categories; crop-agronomic, land management, development, environmental conditions and socio – economic status. Each factor is summed by each other to calculate the total points. The highest rating for each factor indicates the highest preference for the evaluated crop. The highest rated crops for each group are those with the highest points for the actual suitability. This study was conducted to assess the application efficiency of the new land suitability scale in recently reclaimed sites in Egypt. Moreover, 35 representative soil profiles were examined, and soil samples were subjected to some physical and chemical analysis. Actual and potential suitabilities were calculated by using the new land suitability scale. Finally, the obtained results confirmed the applicability of a new land suitability system to recommend the most promising crop rotation that can be applied in the study areas. The outputs of this research revealed that the integration of different aspects for modeling and adapting a proposed model provides an effective and flexible technique, which contribute to improve land suitability assessment for several crops to be more accurate and reliable.Keywords: analytic hierarchy process, land suitability, multi-criteria analysis, new reclaimed areas, soil parameters
Procedia PDF Downloads 1381069 Image-Based (RBG) Technique for Estimating Phosphorus Levels of Different Crops
Authors: M. M. Ali, Ahmed Al- Ani, Derek Eamus, Daniel K. Y. Tan
Abstract:
In this glasshouse study, we developed the new image-based non-destructive technique for detecting leaf P status of different crops such as cotton, tomato and lettuce. Plants were allowed to grow on nutrient media containing different P concentrations, i.e. 0%, 50% and 100% of recommended P concentration (P0 = no P, L; P1 = 2.5 mL 10 L-1 of P and P2 = 5 mL 10 L-1 of P as NaH2PO4). After 10 weeks of growth, plants were harvested and data on leaf P contents were collected using the standard destructive laboratory method and at the same time leaf images were collected by a handheld crop image sensor. We calculated leaf area, leaf perimeter and RGB (red, green and blue) values of these images. This data was further used in the linear discriminant analysis (LDA) to estimate leaf P contents, which successfully classified these plants on the basis of leaf P contents. The data indicated that P deficiency in crop plants can be predicted using the image and morphological data. Our proposed non-destructive imaging method is precise in estimating P requirements of different crop species.Keywords: image-based techniques, leaf area, leaf P contents, linear discriminant analysis
Procedia PDF Downloads 3821068 Conservation Agriculture and Precision Water Management in Alkaline Soils under Rice-Wheat Cropping System: Effect on Wheat Productivity and Irrigation Water Use-a Case Study from India
Authors: S. K. Kakraliya, H. S. Jat, Manish Kakraliya, P. C. Sharma, M. L. Jat
Abstract:
The biggest challenge in agriculture is to produce more food for the continually increasing world population with in the limited land and water resources. Serious water deficits and reducing natural resources are some of the major threats to the agricultural sustainability in many regions of South Asia. Food and water security may be gained by bringing improvement in the crop water productivity and the amount produced per unit of water consumed. Improvement in the crop water productivity may be achieved by pursuing alternative modern agronomics approaches, which are more friendly and efficient in utilizing natural resources. Therefore, a research trial on conservation agriculture (CA) and precision water management (PWM) was conducted in 2018-19 at Karnal, India to evaluate the effect on crop productivity and irrigation in sodic soils under rice-wheat (RW) systems of Indo-Gangetic Plains (IGP). Eight scenarios were compared varied in the tillage, crop establishment, residue and irrigarion management i.e., {First four scenarios irrigated with flood irrigation method;Sc1-Conventional tillage (CT) without residue, Sc2-CT with residue, Sc3- Zero tillage (ZT) without residue, Sc4-ZT with residue}, and {last four scenarios irrigated with sub-surface drip irrigation method; Sc5-ZT without residue, Sc6- ZT with residue, Sc7-ZT inclusion legume without residue and Sc8- ZT inclusion legume with residue}. Results revealed that CA-flood irrigation (S3, Sc4) and CA-PWM system (Sc5, Sc6, Sc7 and Sc8) recorded about ~5% and ~15% higher wheat yield, respectively compared to Sc1. Similar, CA-PWM saved ~40% irrigation water compared to Sc1. Rice yield was not different under different scenarios in the first year (kharif 2019) but almost half irrigation water saved under CA-PWM system. Therefore, results of our study on modern agronomic practices including CA and precision water management (subsurface drip irrigation) for RW rotation would be addressed the existing and future challenges in the RW system.Keywords: Sub-surface drip, Crop residue, Crop yield , Zero tillage
Procedia PDF Downloads 1201067 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest
Procedia PDF Downloads 2311066 Bioefficacy of Diclosulam for Controlling Weeds in Soybean [Glycine Max (L.) Merrill] and Its Carry Over Effect on Succeeding Wheat (Triticum Aestivum) Crop
Authors: Pratap Sing, Chaman. K. Jadon, H. P. Meena, D. L.yadav, S. L. Yadav, Uditi Dhakad
Abstract:
The experiment was conducted at Agricultural Research Station, Agriculture University, Kota, Rajasthan, India during kharif and rabi 2020-21 and 2021-22 to study the biofficacy of diclosulam and its residual effect on succeeding wheat crop. The treatments comprised of Diclosulam 84 % WDG viz. 6.25, 12.50, 25.00 and 37.50 g/ha as pre emergence (PE), Pendimethalin 30% EC 3.33 l/ha, Sulfentrazon 48% SC 750 g/ha, hand weeding at 30 and 45 DAS and weedy check, were evaluated in randomized block design in three replications. The experimental soil was clay in texture and non-calcareous. Experimental field was mainly dominated by grasses-Echinochloa colonum, E.crusgalli,Cynodon dactylon, Sedges-Cyperus rotundus and broad leaved weeds Celosia argentea and Digera arvensis.The result revealed that application of Diclosulam 84 % WDG 25 g/ha PE was found effective in controlling mostly weed species and registered higher weed control efficiency 81.2, 74.3, 69.6 per cent at 30, 45 days after sowing and at harvest. Diclosulam 84 % WDG (6.25-25.0 g/ha) was found selective to the soybean crop as no any phytotoxicity symptoms were observed. Among the herbicidal treatments, Diclosulam 84 % WDG 25 g/ha registered maximum and significantly higher soybean seed yield (1889 and 1431 kg/ha during kharif 2020 and 2021, respectively and was at par with Sulfentrazone 48% SC 750 g/ha and over weedy check( 1027 and 667 kg/ha).The wheat crop growth, yield attributes and seed yield were not influenced due to carry over effect of the Diclosulam 84 % WDG( 6.25-25.0 g/ha) and no any phytotoxicity symptoms were observed. Henceforth, the Diclosulam 84 % WDG 25.0 g/ha as pre emergence may be used in the soybean for effective weed control without carry over effect on succeeding wheat crop.Keywords: Diclosulam, soybean, carry over effect, succeeding wheat
Procedia PDF Downloads 1131065 Performance of AquaCrop Model for Simulating Maize Growth and Yield Under Varying Sowing Dates in Shire Area, North Ethiopia
Authors: Teklay Tesfay, Gebreyesus Brhane Tesfahunegn, Abadi Berhane, Selemawit Girmay
Abstract:
Adjusting the proper sowing date of a crop at a particular location with a changing climate is an essential management option to maximize crop yield. However, determining the optimum sowing date for rainfed maize production through field experimentation requires repeated trials for many years in different weather conditions and crop management. To avoid such long-term experimentation to determine the optimum sowing date, crop models such as AquaCrop are useful. Therefore, the overall objective of this study was to evaluate the performance of AquaCrop model in simulating maize productivity under varying sowing dates. A field experiment was conducted for two consecutive cropping seasons by deploying four maize seed sowing dates in a randomized complete block design with three replications. Input data required to run this model are stored as climate, crop, soil, and management files in the AquaCrop database and adjusted through the user interface. Observed data from separate field experiments was used to calibrate and validate the model. AquaCrop model was validated for its performance in simulating the green canopy and aboveground biomass of maize for the varying sowing dates based on the calibrated parameters. Results of the present study showed that there was a good agreement (an overall R2 =, Ef= d= RMSE =) between measured and simulated values of the canopy cover and biomass yields. Considering the overall values of the statistical test indicators, the performance of the model to predict maize growth and biomass yield was successful, and so this is a valuable tool help for decision-making. Hence, this calibrated and validated model is suggested to use for determining optimum maize crop sowing date for similar climate and soil conditions to the study area, instead of conducting long-term experimentation.Keywords: AquaCrop model, calibration, validation, simulation
Procedia PDF Downloads 711064 Energy Consumption Modeling for Strawberry Greenhouse Crop by Adaptive Nero Fuzzy Inference System Technique: A Case Study in Iran
Authors: Azar Khodabakhshi, Elham Bolandnazar
Abstract:
Agriculture as the most important food manufacturing sector is not only the energy consumer, but also is known as energy supplier. Using energy is considered as a helpful parameter for analyzing and evaluating the agricultural sustainability. In this study, the pattern of energy consumption of strawberry greenhouses of Jiroft in Kerman province of Iran was surveyed. The total input energy required in the strawberries production was calculated as 113314.71 MJ /ha. Electricity with 38.34% contribution of the total energy was considered as the most energy consumer in strawberry production. In this study, Neuro Fuzzy networks was used for function modeling in the production of strawberries. Results showed that the best model for predicting the strawberries function had a correlation coefficient, root mean square error (RMSE) and mean absolute percentage error (MAPE) equal to 0.9849, 0.0154 kg/ha and 0.11% respectively. Regards to these results, it can be said that Neuro Fuzzy method can be well predicted and modeled the strawberry crop function.Keywords: crop yield, energy, neuro-fuzzy method, strawberry
Procedia PDF Downloads 3811063 Dynamics of Smallholder Farmer Adoption of High Value Horticultural Crops in Indonesia
Authors: Suprehatin Suprehatin
Abstract:
Improving the participation of smallholder farmers in horticultural value chains to benefit from the rapidly growing demand for high-value agricultural products is one strategy for raising farm income. However, smallholder farmer participation in Indonesian horticultural value chains is under-researched. To address this knowledge gap, this study aims to describe the current status of horticultural crop adoption in Indonesia and analyze the motivations and dynamics of smallholder farmer participation in horticultural value chains: why some small farmers join these new and potentially profitable chains and continue their participation. This study also examines the characteristics of farmers who adopted and those who did not adopt a new horticultural crop with respect to the household (farmer), farm and institutional characteristics. The analysis was conducted using unique data from a 2013 survey of 960 Indonesian farmers on Java Island that produce a variety of agricultural products. Basic statistical analysis showed relatively low adoption rates (10%) of new horticultural crops amongst 960 selected Indonesian farmers with different decisions made in terms of number and timing of new horticultural crop adoption. Adopters were motivated mainly by higher profit, higher yield, and more cash opportunities. The result also showed that current low rates of horticultural crop adoption are associated with a variety of factors, such as lower levels of education among farmers, resource constraints, lack of information on horticultural crop production and low participation in farmer groups. These findings will be helpful for policymakers when designing policies and programs to promote greater participation of Indonesian smallholder farmers in horticultural value chains. In other words, a revitalisation of agricultural policy beyond staple food is important to seize potential benefits from the ongoing agricultural food market transformation.Keywords: farmer adoption, high value, horticultural crops, Indonesia
Procedia PDF Downloads 2811062 Effect of Biostimulants to Control the Phelipanche ramosa L. Pomel in Processing Tomato Crop
Authors: G. Disciglio, G. Gatta, F. Lops, A. Libutti, A. Tarantino, E. Tarantino
Abstract:
The experimental trial was carried out in open field at Foggia district (Apulia Region, Southern Italy), during the spring-summer season 2014, in order to evaluate the effect of four biostimulant products (RadiconÒ, Viormon plusÒ, LysodinÒ and SiaptonÒ 10L), compared with a control (no biostimulant), on the infestation of processing tomato crop (cv Dres) by the chlorophyll-lacking root parasite Phelipanche ramosa. Biostimulants consist in different categories of products (microbial inoculants, humic and fulvic acids, hydrolyzed proteins and aminoacids, seaweed extracts) which play various roles in plant growing, including the improvement of crop resistance and quali-quantitative characteristics of yield. The experimental trial was arranged according to a complete randomized block design with five treatments, each of one replicated three times. The processing tomato seedlings were transplanted on 5 May 2014. Throughout the crop cycle, P. ramosa infestation was assessed according to the number of emerged shoots (branched plants) counted in each plot, at 66, 78 and 92 day after transplanting. The tomato fruits were harvested at full-stage of maturity on 8 August 2014. From each plot, the marketable yield was measured and the quali-quantitative yield parameters (mean weight, dry matter content, colour coordinate, colour index and soluble solids content of the fruits) were determined. The whole dataset was tested according to the basic assumptions for the analysis of variance (ANOVA) and the differences between the means were determined using Tukey’s tests at the 5% probability level. The results of the study showed that none of the applied biostimulants provided a whole control of Phelipanche, although some positive effects were obtained from their application. To this respect, the RadiconÒ appeared to be the most effective in reducing the infestation of this root-parasite in tomato crop. This treatment also gave the higher tomato yield.Keywords: biostimulant, control methods, Phelipanche ramosa, tomato crop
Procedia PDF Downloads 3011061 Landsat Data from Pre Crop Season to Estimate the Area to Be Planted with Summer Crops
Authors: Valdir Moura, Raniele dos Anjos de Souza, Fernando Gomes de Souza, Jose Vagner da Silva, Jerry Adriani Johann
Abstract:
The estimate of the Area of Land to be planted with annual crops and its stratification by the municipality are important variables in crop forecast. Nowadays in Brazil, these information’s are obtained by the Brazilian Institute of Geography and Statistics (IBGE) and published under the report Assessment of the Agricultural Production. Due to the high cloud cover in the main crop growing season (October to March) it is difficult to acquire good orbital images. Thus, one alternative is to work with remote sensing data from dates before the crop growing season. This work presents the use of multitemporal Landsat data gathered on July and September (before the summer growing season) in order to estimate the area of land to be planted with summer crops in an area of São Paulo State, Brazil. Geographic Information Systems (GIS) and digital image processing techniques were applied for the treatment of the available data. Supervised and non-supervised classifications were used for data in digital number and reflectance formats and the multitemporal Normalized Difference Vegetation Index (NDVI) images. The objective was to discriminate the tracts with higher probability to become planted with summer crops. Classification accuracies were evaluated using a sampling system developed basically for this study region. The estimated areas were corrected using the error matrix derived from these evaluations. The classification techniques presented an excellent level according to the kappa index. The proportion of crops stratified by municipalities was derived by a field work during the crop growing season. These proportion coefficients were applied onto the area of land to be planted with summer crops (derived from Landsat data). Thus, it was possible to derive the area of each summer crop by the municipality. The discrepancies between official statistics and our results were attributed to the sampling and the stratification procedures. Nevertheless, this methodology can be improved in order to provide good crop area estimates using remote sensing data, despite the cloud cover during the growing season.Keywords: area intended for summer culture, estimated area planted, agriculture, Landsat, planting schedule
Procedia PDF Downloads 1501060 Metagenomics Analysis of Bacteria in Sorghum Using next Generation Sequencing
Authors: Kedibone Masenya, Memory Tekere, Jasper Rees
Abstract:
Sorghum is an important cereal crop in the world. In particular, it has attracted breeders due to capacity to serve as food, feed, fiber and bioenergy crop. Like any other plant, sorghum hosts a variety of microbes, which can either, have a neutral, negative and positive influence on the plant. In the current study, regions (V3/V4) of 16 S rRNA were targeted to extensively assess bacterial multitrophic interactions in the phyllosphere of sorghum. The results demonstrated that the presence of a pathogen has a significant effect on the endophytic bacterial community. Understanding these interactions is key to develop new strategies for plant protection.Keywords: bacteria, multitrophic, sorghum, target sequencing
Procedia PDF Downloads 2851059 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases
Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar
Abstract:
Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning
Procedia PDF Downloads 1191058 Determination of Biological Efficiency Values of Some Pesticide Application Methods under Second Crop Maize Conditions
Authors: Ali Bolat, Ali Bayat, Mustafa Gullu
Abstract:
Maize can be cultivated both under main and second crop conditions in Turkey. Main pests of maize under second crop conditions are Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae) and Ostrinia nubilalis Hübner (Lepidoptera: Crambidae). Aerial spraying applications to control these two main maize pests can be carried out until 2006 in Turkey before it was banned due to environmental concerns like drifting of sprayed pestisides and low biological efficiency. In this context, pulverizers which can spray tall maize plants ( > 175 cm) from the ground have begun to be used. However, the biological efficiency of these sprayers is unknown. Some methods have been tested to increase the success of ground spraying in field experiments conducted in second crop maize in 2008 and 2009. For this aim, 6 spraying methods (air assisted spraying with TX cone jet, domestic cone nozzles, twinjet nozzles, air induction nozzles, standard domestic cone nozzles and tail booms) were used at two application rates (150 and 300 l.ha-1) by a sprayer. In the study, biological efficacy evaluations of each methods were measured in each parcel. Biological efficacy evaluations included counts of number of insect damaged plants, number of holes in stems and live larvae and pupa in stems of selected plants. As a result, the highest biological efficacy value (close to 70%) was obtained from Air Assisted Spraying method at 300 l / ha application volume.Keywords: air assisted sprayer, drift nozzles, biological efficiency, maize plant
Procedia PDF Downloads 213