Search results for: credit portfolio
548 The Determinants of Customer’s Purchase Intention of Islamic Credit Card: Evidence from Pakistan
Authors: Nasir Mehmood, Muhammad Yar Khan, Anam Javeed
Abstract:
This study aims to scrutinize the dynamics which tend to impact customer’s purchasing intention of Islamic credit card and nexus of product’s knowledge and religiosity with the attitude of potential Islamic credit card’s customer. The theory of reasoned action strengthened the idea that intentions due to its proven predictive power are most likely to instigate intended consumer behavior. Particularly, the study examines the relationships of perceived financial cost (PFC), subjective norms (SN), and attitude (ATT) with the intention to purchase Islamic credit cards. Using a convenience sampling approach, data have been collected from 450 customers of banks located in Rawalpindi and Islamabad. A five-point Likert scale self-administered questionnaire was used to collect the data. The data were analyzed using the Statistical Package of Social Sciences (SPSS) through the procedures of principal component and multiple regression analysis. The results suggested that customer’s religiosity and product knowledge are strong indicators of attitude towards buying Islamic credit cards. Likewise, subjective norms, attitude, and perceived financial cost have a significant positive impact on customers’ purchase intent of Islamic bank’s credit cards. This study models a useful path for future researchers to further investigate the underlined phenomenon along with a variety of psychodynamic factors which are still in its infancy, at least in the Pakistani banking sector. The study also provides an insight to the practitioners and Islamic bank managers for directing their efforts toward educating customers regarding the use of Islamic credit cards and other financial products.Keywords: attitude, Islamic credit card, religiosity, subjective norms
Procedia PDF Downloads 144547 Evolutionary Analysis of Green Credit Regulation on Greenwashing Behavior in Dual-Layer Network
Authors: Bo-wen Zhu, Bin Wu, Feng Chen
Abstract:
It has become a common measure among governments to support green development of enterprises through Green Credit policies. In China, the Central Bank of China and other authorities even put forward corresponding assessment requirements for proportion of green credit in commercial banks. Policy changes might raise concerns about commercial banks turning a blind eye to greenwashing behavior by enterprises. The lack of effective regulation may lead to a diffusion of such behavior, and eventually result in the phenomenon of “bad money driving out good money”, which could dampen the incentive effect of Green Credit policies. This paper employs a complex network model based on an evolutionary game analysis framework involving enterprises, banks, and regulatory authorities to investigate inhibitory effect of the Green Credit regulation on enterprises’ greenwashing behavior, banks’ opportunistic and collusive behaviors. The findings are as follows: (1) Banking opportunism rises with Green Credit evaluation criteria and requirements for the proportion of credit balance. Restrictive regulation against violating banks is necessary as there is an increasing trend of banks adopting opportunistic strategy. (2) Raising penalties and probability of regulatory inspections can effectively suppress banks’ opportunistic behavior, however, it cannot entirely eradicate the opportunistic behavior on the bank side. (3) Although maintaining a certain inspection probability can inhibit enterprises from adopting greenwashing behavior, enterprises choose a catering production strategy instead. (4) One-time rewards from local government have limited effects on the equilibrium state and diffusion trend of bank regulatory decision-making.Keywords: green credit, greenwashing behavior, regulation, diffusion effect
Procedia PDF Downloads 24546 An Expert System Designed to Be Used with MOEAs for Efficient Portfolio Selection
Authors: Kostas Metaxiotis, Kostas Liagkouras
Abstract:
This study presents an Expert System specially designed to be used with Multiobjective Evolutionary Algorithms (MOEAs) for the solution of the portfolio selection problem. The validation of the proposed hybrid System is done by using data sets from Hang Seng 31 in Hong Kong, DAX 100 in Germany and FTSE 100 in UK. The performance of the proposed system is assessed in comparison with the Non-dominated Sorting Genetic Algorithm II (NSGAII). The evaluation of the performance is based on different performance metrics that evaluate both the proximity of the solutions to the Pareto front and their dispersion on it. The results show that the proposed hybrid system is efficient for the solution of this kind of problems.Keywords: expert systems, multi-objective optimization, evolutionary algorithms, portfolio selection
Procedia PDF Downloads 439545 A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection
Authors: Niloofar Yousefi, Marie Alaghband, Ivan Garibay
Abstract:
With the increase of credit card usage, the volume of credit card misuse also has significantly increased, which may cause appreciable financial losses for both credit card holders and financial organizations issuing credit cards. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part, we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.Keywords: Credit Card Fraud Detection, User Authentication, Behavioral Biometrics, Machine Learning, Literature Survey
Procedia PDF Downloads 121544 Applying the Underwriting Technique to Analyze and Mitigate the Credit Risks in Construction Project Management
Authors: Hai Chien Pham, Thi Phuong Anh Vo, Chansik Park
Abstract:
Risks management in construction projects is important to ensure the positive feasibility of the projects in which financial risks are most concerned while construction projects always run on a credit basis. Credit risks, therefore, require unique and technical tools to be well managed. Underwriting technique in credit risks, in its most basic sense, refers to the process of evaluating the risks and the potential exposure of losses. Risks analysis and underwriting are applied as a must in banks and financial institutions who are supporters for constructions projects when required. Recently, construction organizations, especially contractors, have recognized the significant increasing of credit risks which caused negative impacts to project performance and profit of construction firms. Despite the successful application of underwriting in banks and financial institutions for many years, there are few contractors who are applying this technique to analyze and mitigate the credit risks of their potential owners before signing contracts with them for delivering their performed services. Thus, contractors have taken credit risks during project implementation which might be not materialized due to the bankruptcy and/or protracted default made by their owners. With this regard, this study proposes a model using the underwriting technique for contractors to analyze and assess credit risks of their owners before making final decisions for the potential construction contracts. Contractor’s underwriters are able to analyze and evaluate the subjects such as owner, country, sector, payment terms, financial figures and their related concerns of the credit limit requests in details based on reliable information sources, and then input into the proposed model to have the Overall Assessment Score (OAS). The OAS is as a benchmark for the decision makers to grant the proper limits for the project. The proposed underwriting model is validated by 30 subjects in Asia Pacific region within 5 years to achieve their OAS, and then compare output OAS with their own practical performance in order to evaluate the potential of underwriting model for analyzing and assessing credit risks. The results revealed that the underwriting would be a powerful method to assist contractors in making precise decisions. The contribution of this research is to allow the contractors firstly to develop their own credit risk management model for proactively preventing the credit risks of construction projects and continuously improve and enhance the performance of this function during project implementation.Keywords: underwriting technique, credit risk, risk management, construction project
Procedia PDF Downloads 208543 Literature Review on the Barriers to Access Credit for Small Agricultural Producers and Policies to Mitigate Them in Developing Countries
Authors: Margarita Gáfaro, Karelys Guzmán, Paola Poveda
Abstract:
This paper establishes the theoretical aspects that explain the barriers to accessing credit for small agricultural producers in developing countries and identifies successful policy experiences to mitigate them. We will test two hypotheses. The first one is that information asymmetries, high transaction costs and high-risk exposure limit the supply of credit to small agricultural producers in developing countries. The second hypothesis is that low levels of financial education and productivity and high uncertainty about the returns of agricultural activity limit the demand for credit. To test these hypotheses, a review of the theoretical and empirical literature on access to rural credit in developing countries will be carried out. The first part of this review focuses on theoretical models that incorporate information asymmetries in the credit market and analyzes the interaction between these asymmetries and the characteristics of the agricultural sector in developing countries. Some of the characteristics we will focus on are the absence of collateral, the underdevelopment of the judicial systems and insurance markets, and the high dependence on climatic factors of production technologies. The second part of this review focuses on the determinants of credit demand by small agricultural producers, including the profitability of productive projects, security conditions, risk aversion or loss, financial education, and cognitive biases, among others. There are policies that focus on resolving these supply and demand constraints and managing to improve credit access. Therefore, another objective of this paper is to present a review of effective policies that have promoted access to credit for smallholders in the world. For this, information available in policy documents will be collected. This information will be complemented by interviews with officials in charge of the design and execution of these policies in a subset of selected countries. The information collected will be analyzed in light of the conceptual framework proposed in the first two parts of this section. The barriers to access to credit that each policy attempts to resolve and the factors that could explain its effectiveness will be identified.Keywords: agricultural economics, credit access, smallholder, developing countries
Procedia PDF Downloads 69542 Effect of Micro Credit Access on Poverty Reduction among Small Scale Women Entrepreneurs in Ondo State, Nigeria
Authors: Adewale Oladapo, C. A. Afolami
Abstract:
The study analyzed the effect of micro credit access on poverty reduction among small scale women entrepreneurs in Ondo state, Nigeria. Primary data were collected in a cross-sectional survey of 100 randomly selected woman entrepreneurs. These were drawn in multistage sampling process covering four local government areas (LGAS). Data collected include socio economics characteristics of respondents, access to micro credit, sources of micro credit, and constraints faced by the entrepreneur in sourcing for micro credit. Data were analyzed using descriptive statistics, Foster, Greer and Thorbecke (FGT) index of poverty measure, Gini coefficients and probit regression analysis. The study found that respondents sampled for the survey were within the age range of 31-40 years with mean age 38.6%. Mostly (56.0%) of the respondents were educated to the tune of primary school. Majority (87.0%) of the respondents were married with fairly large household size of (4-5). The poverty index analysis revealed that most (67%) of the sample respondents were poor. The result of the Probit regression analyzed showed that income was a significant variable in micro credit access, while the result of the Gini coefficient revealed a very high income inequality among the respondents. The study concluded that most of the respondents were poor and return on investment (income) was an important variable that increased the chance of respondents in sourcing for micro-credit loan and recommended that income realized by entrepreneur should be properly documented to facilitate loan accessibility.Keywords: entrepreneurs, income, micro-credit, poverty
Procedia PDF Downloads 128541 Economic Analysis of the Impact of Commercial Agricultural Credit Scheme (CACS) on Farmers Income in Nigeria
Authors: Titus Wuyah Yunana
Abstract:
This study analyzed the impact of commercial agricultural credit scheme on income of beneficiary farmers in Kaduna State using the Net farm income and double difference method. A questionnaire was used to source the data from 306 farmers comprising of 153 beneficiaries and 153 non-beneficiaries. The results indicated that the net farm income of the commercial agricultural credit scheme beneficiaries increases from N15,006,352.00 before scheme to N24,862,585.00 after the first and the second phases of the scheme. There was also an increase in the net farm income of the non-beneficiaries from N9, 670,385.40 to N14, 391,469.00 during the scheme. The double difference method analysis indicated a positive mean income difference value between beneficiaries and nonbeneficiaries after the first and the second phases of the scheme. The study recommends expansion in the number of beneficiaries and efficient allocation and utilization of the resources. The government should also introduce more programs that will assist the farmers to increase their productivity, income and the economy as a whole.Keywords: agriculture, credit scheme, farmers, income, beneficiary
Procedia PDF Downloads 338540 Comparison Study of Capital Protection Risk Management Strategies: Constant Proportion Portfolio Insurance versus Volatility Target Based Investment Strategy with a Guarantee
Authors: Olga Biedova, Victoria Steblovskaya, Kai Wallbaum
Abstract:
In the current capital market environment, investors constantly face the challenge of finding a successful and stable investment mechanism. Highly volatile equity markets and extremely low bond returns bring about the demand for sophisticated yet reliable risk management strategies. Investors are looking for risk management solutions to efficiently protect their investments. This study compares a classic Constant Proportion Portfolio Insurance (CPPI) strategy to a Volatility Target portfolio insurance (VTPI). VTPI is an extension of the well-known Option Based Portfolio Insurance (OBPI) to the case where an embedded option is linked not to a pure risky asset such as e.g., S&P 500, but to a Volatility Target (VolTarget) portfolio. VolTarget strategy is a recently emerged rule-based dynamic asset allocation mechanism where the portfolio’s volatility is kept under control. As a result, a typical VTPI strategy allows higher participation rates in the market due to reduced embedded option prices. In addition, controlled volatility levels eliminate the volatility spread in option pricing, one of the frequently cited reasons for OBPI strategy fall behind CPPI. The strategies are compared within the framework of the stochastic dominance theory based on numerical simulations, rather than on the restrictive assumption of the Black-Scholes type dynamics of the underlying asset. An extended comparative quantitative analysis of performances of the above investment strategies in various market scenarios and within a range of input parameter values is presented.Keywords: CPPI, portfolio insurance, stochastic dominance, volatility target
Procedia PDF Downloads 167539 Unveiling the Black Swan of the Inflation-Adjusted Real Excess Returns-Risk Nexus: Evidence From Pakistan Stock Exchange
Authors: Mohammad Azam
Abstract:
The purpose of this study is to investigate risk and real excess portfolio returns using inflation adjusted risk-free rates, a measuring technique that focuses on the momentum augmented Fama-French six-factor model and use monthly data from 1994 to 2022. With the exception of profitability, the data show that market, size, value, momentum, and investment factors are all strongly associated to excess portfolio stock returns using ordinary lease square regression technique. According to the Gibbons, Ross, and Shanken test, the momentum augmented Fama-French six-factor model outperforms the market. This technique discovery may be utilised by academics and professionals to acquire an in-depth knowledge of the Pakistan Stock Exchange across a broad stock pattern for investing decisions and portfolio construction.Keywords: real excess portfolio returns, momentum augmented fama & french five-factor model, GRS-test, pakistan stock exchange
Procedia PDF Downloads 102538 Optimal Diversification and Bank Value Maximization
Authors: Chien-Chih Lin
Abstract:
This study argues that the optimal diversifications for the maximization of bank value are asymmetrical; they depend on the business cycle. During times of expansion, systematic risks are relatively low, and hence there is only a slight effect from raising them with a diversified portfolio. Consequently, the benefit of reducing individual risks dominates any loss from raising systematic risks, leading to a higher value for a bank by holding a diversified portfolio of assets. On the contrary, in times of recession, systematic risks are relatively high. It is more likely that the loss from raising systematic risks surpasses the benefit of reducing individual risks from portfolio diversification. Consequently, more diversification leads to lower bank values. Finally, some empirical evidence from the banks in Taiwan is provided.Keywords: diversification, default probability, systemic risk, banking, business cycle
Procedia PDF Downloads 437537 Multi-Period Portfolio Optimization Using Predictive Machine Learning Models
Authors: Peng Liu, Chyng Wen Tee, Xiaofei Xu
Abstract:
This paper integrates machine learning forecasting techniques into the multi-period portfolio optimization framework, enabling dynamic asset allocation based on multiple future periods. We explore both theoretical foundations and practical applications, employing diverse machine learning models for return forecasting. This comprehensive guide demonstrates the superiority of multi-period optimization over single-period approaches, particularly in risk mitigation through strategic rebalancing and enhanced market trend forecasting. Our goal is to promote wider adoption of multi-period optimization, providing insights that can significantly enhance the decision-making capabilities of practitioners and researchers alike.Keywords: multi-period portfolio optimization, look-ahead constrained optimization, machine learning, sequential decision making
Procedia PDF Downloads 48536 Effect of Credit Use on Technical Efficiency of Cassava Farmers in Ondo State, Nigeria
Authors: Adewale Oladapo, Carolyn A. Afolami
Abstract:
Agricultural production should be the major financial contributor to the Nigerian economy; however, the petroleum sector had taken the importance attached to this sector. The situation tends to be more worsening unless necessary attention is given to adequate credit supply among food crop farmers. This research analyses the effect of credit use on the technical efficiency of cassava farmers in Ondo State, Nigeria. Primary data were collected from two hundred randomly selected cassava farmers through a multistage sampling procedure in the study area. Data were analysed using descriptive statistics and stochastic frontier analysis (SFA). Findings revealed that 95.0% of the farmers were male while 56.0% had no formal education and were married. The SFA showed that cassava farmer’s efficiency increased with farm size, herbicide and planting material at 5%,10% and 1% respectively but decreased with fertilizer application at 1% level while farmers’ age, education, household size, experience and access to credit increased technical inefficiency at 10%. The study concluded that cassava farmers are technically inefficient in the use of farm resources and recommended that adequate and workable agricultural policy measures that will ensure availability and efficient fertilizer distribution should be put in place to increase efficiency. Furthermore, the government should encourage youth participation in cassava production and ensure improvement in farmer’s access to credit to increase farmer’s technical efficiency.Keywords: agriculture, access to credit, cassava farmers, technical efficiency
Procedia PDF Downloads 183535 Educational Credit in Enhancing Collaboration between Universities and Companies in Smart City
Authors: Eneken Titov, Ly Hobe
Abstract:
The collaboration between the universities and companies has been a challenging topic for many years, and although we have many good experiences, those seem to be single examples between one university and company. In Ülemiste Smart City in Estonia, the new initiative was started in 2020 fall, when five Estonian universities cooperated, led by the Ülemiste City developing company Mainor, intending to provide charge-free university courses for the Ülemiste City companies and their employees to encourage university-company wider collaboration. Every Ülemiste City company gets a certain number of free educational credit hours per year to participate in university courses. A functional and simple web platform was developed to mediate university courses for the companies. From January 2021, the education credit platform is open for all Ülemiste City companies and their employees to join, and universities offer more than 9000 hours of courses (appr 150 ECTS). Just two months later, more than 20% of Ülemiste City companies (82 out of 400) have joined the project, and their employees have registered for more than in total 3000 hours courses. The first results already show that the project supports the university marketing and the continuous education mindset in general, whether 1/4 of the courses are paid courses (e.g., when the company is out of free credit).Keywords: education, educational credit, smart city, university-industry collaboration
Procedia PDF Downloads 203534 Portfolio Selection with Constraints on Trading Frequency
Authors: Min Dai, Hong Liu, Shuaijie Qian
Abstract:
We study a portfolio selection problem of an investor who faces constraints on rebalancing frequency, which is common in pension fund investment. We formulate it as a multiple optimal stopping problem and utilize the dynamic programming principle. By numerically solving the corresponding Hamilton-Jacobi-Bellman (HJB) equation, we find a series of free boundaries characterizing optimal strategy, and the constraints significantly impact the optimal strategy. Even in the absence of transaction costs, there is a no-trading region, depending on the number of the remaining trading chances. We also find that the equivalent wealth loss caused by the constraints is large. In conclusion, our model clarifies the impact of the constraints on transaction frequency on the optimal strategy.Keywords: portfolio selection, rebalancing frequency, optimal strategy, free boundary, optimal stopping
Procedia PDF Downloads 88533 Volatility Transmission among European Bank CDS
Authors: Aida Alemany, Laura Ballester, Ana González-Urteaga
Abstract:
From 2007 subprime crisis to the recent Eurozone debt crisis the European banking industry has experienced a terrible financial instability situation with increasing levels of CDS spreads (used as a proxy of credit risk). This paper investigates whether volatility transmission channels in European banking markets have changed after three significant crises’ events during the period January 2006 to March 2013. The global financial crisis is characterized by a unidirectional volatility shocks spillovers effect in credit risk from inside to outside the Eurozone. By contrast, the Eurozone debt crisis is revealed to be local in nature with the euro as the key element suggesting a market fragmentation between distressed peripheral and non-distressed core Eurozone countries, whereas retaining the local currency have acted as a firewall. With these findings we are able to shed light on the impact of the different crises on the European banking credit risk dynamics.Keywords: CDS spreads, credit risk, volatility spillovers, financial crisis
Procedia PDF Downloads 467532 SME Credit Financing, Financial Development and Economic Growth: A VAR Approach to the Nigerian Economy
Authors: A. Bolaji Adesoye, Alimi Olorunfemi
Abstract:
This paper examines the impact of small and medium-scale enterprises (SMEs) credit financing and financial market development and their shocks on the output growth of Nigeria. The study estimated a VAR model for Nigeria using 1970-2013 annual data series. Unit root tests and cointegration are carried out. The study also explores IRFs and FEVDs in a system that includes output, commercial bank loan to SMEs, domestic credit to private sector by banks, money supply, lending rate and investment. Findings suggest that shocks in commercial bank credit to SMEs has a major impact on the output changes of Nigeria. Money supply shocks also have a sizeable impact on output growth variations amidst other financial instruments. Lastly, neutrality of investment does not hold in Nigeria as it also has impact on output fluctuations.Keywords: SMEs financing, financial development, investment, output, Nigeria
Procedia PDF Downloads 408531 The Responsible Lending Principle in the Spanish Proposal of the Mortgage Credit Act
Authors: Noelia Collado-Rodriguez
Abstract:
The Mortgage Credit Directive 2014/17/UE should have been transposed the 21st of March of 2016. However, in Spain not only we did not meet the deadline, but currently we just have a preliminary draft of the so-called Mortgage Credit Act. Before we analyze the preliminary draft from the standpoint of the responsible lending principle, we should point out that this preliminary draft is not a consumer law statute. Through the text of the preliminary draft we cannot see any reference to the consumer, but we see references to the borrower. Furthermore, and more important, the application of this statute would not be, according to its text, circumscribed to borrowers who address the credit to a personal purpose. Instead, it seems that the preliminary draft aims to be one more of the rules of banking transparency that already exists in the Spanish legislation. In this sense, we can also mention that the sanctions contained in the preliminary draft are referred to these laws of banking ordination and oversight – where the rules of banking transparency belong –. This might be against the spirit of the Mortgage Credit Directive, which allows the extension of its scope to credits aimed to acquire other immovable property beyond the residential one. However, the borrower has to be a consumer accordingly with the Directive. It is quite relevant that the prospective Spanish Mortgage Credit Act might not be a consumer protection statute; specially, from the perspective of the responsible lending principle. The responsible lending principle is a consumer law principle, which is based on the structural weakness of the consumer’s position in the relationship with the creditor. Therefore, it cannot surprise that the Spanish preliminary draft does not state any of the pre contractual conducts that express the responsible lending principle. We are referring to the lender’s duty to provide adequate explanations; the consumer’s suitability test; the lender’s duty to assess consumer’s creditworthiness; the consultation of databases to perform the creditworthiness assessment; and the most important, the lender’s prohibition to grant credit in case of a negative creditworthiness assessment. The preliminary draft just entitles the Economy Ministry to enact provisions related to those topics. Thus, the duties and rules derived from the responsible lending principle included in the EU Directive will not have legal character in Spain, being mere administrative regulations. To conclude, the two main questions that come up after reading the Spanish Mortgage Credit Act preliminary draft are, in the first place, what kind of consequences might arise from the Mortgage Credit Act if finally it is not a consumer law statute. And in the second place, what might be the consequences for the responsible lending principle of being developed by administrative regulations instead of by legislation.Keywords: consumer credit, consumer protection, creditworthiness assessment, responsible lending
Procedia PDF Downloads 288530 Reflective Portfolio to Bridge the Gap in Clinical Training
Authors: Keenoo Bibi Sumera, Alsheikh Mona, Mubarak Jan Beebee Zeba Mahetaab
Abstract:
Background: Due to the busy schedule of the practicing clinicians at the hospitals, students may not always be attended to, which is to their detriment. The clinicians at the hospitals are also not always acquainted with teaching and/or supervising students on their placements. Additionally, there is a high student-patient ratio. Since they are the prospective clinical doctors under training, they need to reach the competence levels in clinical decision-making skills to be able to serve the healthcare system of the country and to be safe doctors. Aims and Objectives: A reflective portfolio was used to provide a means for students to learn by reflecting on their experiences and obtaining continuous feedback. This practice is an attempt to compensate for the scarcity of lack of resources, that is, clinical placement supervisors and patients. It is also anticipated that it will provide learners with a continuous monitoring and learning gap analysis tool for their clinical skills. Methodology: A hardcopy reflective portfolio was designed and validated. The portfolio incorporated a mini clinical evaluation exercise (mini-CEX), direct observation of procedural skills and reflection sections. Workshops were organized for the stakeholders, that is the management, faculty and students, separately. The rationale of reflection was emphasized. Students were given samples of reflective writing. The portfolio was then implemented amongst the undergraduate medical students of years four, five and six during clinical clerkship. After 16 weeks of implementation of the portfolio, a survey questionnaire was introduced to explore how undergraduate students perceive the educational value of the reflective portfolio and its impact on their deep information processing. Results: The majority of the respondents are in MD Year 5. Out of 52 respondents, 57.7% were doing the internal medicine clinical placement rotation, and 42.3% were in Otorhinolaryngology clinical placement rotation. The respondents believe that the implementation of a reflective portfolio helped them identify their weaknesses, gain professional development in terms of helping them to identify areas where the knowledge is good, increase the learning value if it is used as a formative assessment, try to relate to different courses and in improving their professional skills. However, it is not necessary that the portfolio will improve the self-esteem of respondents or help in developing their critical thinking, The portfolio takes time to complete, and the supervisors are not useful. They had to chase supervisors for feedback. 53.8% of the respondents followed the Gibbs reflective model to write the reflection, whilst the others did not follow any guidelines to write the reflection 48.1% said that the feedback was helpful, 17.3% preferred the use of written feedback, whilst 11.5% preferred oral feedback. Most of them suggested more frequent feedback. 59.6% of respondents found the current portfolio user-friendly, and 28.8% thought it was too bulky. 27.5% have mentioned that for a mobile application. Conclusion: The reflective portfolio, through the reflection of their work and regular feedback from supervisors, has an overall positive impact on the learning process of undergraduate medical students during their clinical clerkship.Keywords: Portfolio, Reflection, Feedback, Clinical Placement, Undergraduate Medical Education
Procedia PDF Downloads 86529 High-Frequency Cryptocurrency Portfolio Management Using Multi-Agent System Based on Federated Reinforcement Learning
Authors: Sirapop Nuannimnoi, Hojjat Baghban, Ching-Yao Huang
Abstract:
Over the past decade, with the fast development of blockchain technology since the birth of Bitcoin, there has been a massive increase in the usage of Cryptocurrencies. Cryptocurrencies are not seen as an investment opportunity due to the market’s erratic behavior and high price volatility. With the recent success of deep reinforcement learning (DRL), portfolio management can be modeled and automated. In this paper, we propose a novel DRL-based multi-agent system to automatically make proper trading decisions on multiple cryptocurrencies and gain profits in the highly volatile cryptocurrency market. We also extend this multi-agent system with horizontal federated transfer learning for better adapting to the inclusion of new cryptocurrencies in our portfolio; therefore, we can, through the concept of diversification, maximize our profits and minimize the trading risks. Experimental results through multiple simulation scenarios reveal that this proposed algorithmic trading system can offer three promising key advantages over other systems, including maximized profits, minimized risks, and adaptability.Keywords: cryptocurrency portfolio management, algorithmic trading, federated learning, multi-agent reinforcement learning
Procedia PDF Downloads 119528 Using Electronic Portfolio to Promote English Speaking Ability of EFL Undergraduate Students
Authors: Jiraporn Lao-Un, Dararat Khampusaen
Abstract:
Lack of exposure to English language in the authentic English setting naturally leads to a lack of fluency in the language. As a result, Thai EFL learners are struggling in meeting with the communication 'can do' descriptors of the Common European Framework of References (CEFR) required by the Ministry of Education. This initial phase of the ongoing study, employing the e-portfolio to promote the English speaking ability, probed into the effects of the use of e-portfolio on Thai EFL nursing students' speaking ability. Also, their opinions towards the use of e-portfolio to enhance their speaking ability were investigated. The participants were 44 undergraduate nursing students at a Thai College of Nursing. The participants undertook four lessons to promote their communication skills according to the CEFR criteria. Throughout the semester, the participants videotaped themselves while completing the four speaking tasks. The videos were then uploaded onto the e-portfolio website where the researcher provided them with the feedbacks. The video records were analyzed by the speaking rubric designed according to the CEFR 'can do' descriptors. Also, students were required to record self-reflections in video format and upload onto the same URL Students' oral self-reflections were coded to find out the perceptions towards the use of the e-portfolio in promoting their speaking ability. The results from the two research instruments suggested the effectiveness of the tool on improving speaking ability, learner autonomy and media literacy skills. In addition, the oral reflection videos revealed positive opinion towards the tool. The discussion offers the current status of English speaking ability among Thai EFL students. This reveals the gaps between the EFL speaking ability and the CEFR ‘can do’ descriptors. In addition, the author raises the light on integration of the 21st century IT tool to enhance these students’ speaking ability. Lastly, the theoretical implications and recommendation for further study in integrating electronic tools to promote language skills in the EFL context are offered for further research.Keywords: EFL communication, EFL speaking, English communication, E-learning, E-portfolio, speaking ability, Thai EFL learners
Procedia PDF Downloads 163527 Application of Deep Neural Networks to Assess Corporate Credit Rating
Authors: Parisa Golbayani, Dan Wang, Ionut¸ Florescu
Abstract:
In this work we implement machine learning techniques to financial statement reports in order to asses company’s credit rating. Specifically, the work analyzes the performance of four neural network architectures (MLP, CNN, CNN2D, LSTM) in predicting corporate credit rating as issued by Standard and Poor’s. The paper focuses on companies from the energy, financial, and healthcare sectors in the US. The goal of this analysis is to improve application of machine learning algorithms to credit assessment. To accomplish this, the study investigates three questions. First, we investigate if the algorithms perform better when using a selected subset of important features or whether better performance is obtained by allowing the algorithms to select features themselves. Second, we address the temporal aspect inherent in financial data and study whether it is important for the results obtained by a machine learning algorithm. Third, we aim to answer if one of the four particular neural network architectures considered consistently outperforms the others, and if so under which conditions. This work frames the problem as several case studies to answer these questions and analyze the results using ANOVA and multiple comparison testing procedures.Keywords: convolutional neural network, long short term memory, multilayer perceptron, credit rating
Procedia PDF Downloads 235526 Modeling Default Probabilities of the Chosen Czech Banks in the Time of the Financial Crisis
Authors: Petr Gurný
Abstract:
One of the most important tasks in the risk management is the correct determination of probability of default (PD) of particular financial subjects. In this paper a possibility of determination of financial institution’s PD according to the credit-scoring models is discussed. The paper is divided into the two parts. The first part is devoted to the estimation of the three different models (based on the linear discriminant analysis, logit regression and probit regression) from the sample of almost three hundred US commercial banks. Afterwards these models are compared and verified on the control sample with the view to choose the best one. The second part of the paper is aimed at the application of the chosen model on the portfolio of three key Czech banks to estimate their present financial stability. However, it is not less important to be able to estimate the evolution of PD in the future. For this reason, the second task in this paper is to estimate the probability distribution of the future PD for the Czech banks. So, there are sampled randomly the values of particular indicators and estimated the PDs’ distribution, while it’s assumed that the indicators are distributed according to the multidimensional subordinated Lévy model (Variance Gamma model and Normal Inverse Gaussian model, particularly). Although the obtained results show that all banks are relatively healthy, there is still high chance that “a financial crisis” will occur, at least in terms of probability. This is indicated by estimation of the various quantiles in the estimated distributions. Finally, it should be noted that the applicability of the estimated model (with respect to the used data) is limited to the recessionary phase of the financial market.Keywords: credit-scoring models, multidimensional subordinated Lévy model, probability of default
Procedia PDF Downloads 456525 Credit Risk Prediction Based on Bayesian Estimation of Logistic Regression Model with Random Effects
Authors: Sami Mestiri, Abdeljelil Farhat
Abstract:
The aim of this current paper is to predict the credit risk of banks in Tunisia, over the period (2000-2005). For this purpose, two methods for the estimation of the logistic regression model with random effects: Penalized Quasi Likelihood (PQL) method and Gibbs Sampler algorithm are applied. By using the information on a sample of 528 Tunisian firms and 26 financial ratios, we show that Bayesian approach improves the quality of model predictions in terms of good classification as well as by the ROC curve result.Keywords: forecasting, credit risk, Penalized Quasi Likelihood, Gibbs Sampler, logistic regression with random effects, curve ROC
Procedia PDF Downloads 542524 Government Credit Card in State Financial Management: Public Sector Innovation in Indonesia
Authors: Paramita Nur Kurniati, Stanislaus Riyanta
Abstract:
In the midst of the heightened usage of electronic money (e-money), Indonesian government expenditure is yet governed through cash-basis transactions. This conventional system brings about a number of potential risks and obstacles to operational conduct, including state financial liquidity issue. Consequently, Ministry of Finance is currently establishing the cashless payment methods for State Budget (APBN). Included in those advance methods is credit card facility as a government expenditure payment scheme. This policy is one of the innovations within the public sector learned from other countries’ best practices. Moreover, this particular method is already prominent within the private-sector realm. Qualitative descriptive analysis technique is implemented to evaluate the contemporary innovation of using government credit card in the path towards cashless society. This approach is expected to generate several benefits for the government, particularly in minimizing corruption within the state financial management. Effective coordination among policy makers and policy implementers is essential for the success of this policy’s exercise, without neglecting prudence and public transparency aspects. Government credit card usage shall be the potent resolution for enhancing the government’s overall public service performance.Keywords: cashless basis, cashless society, government credit card, public sector innovation
Procedia PDF Downloads 149523 Findings: Impact of a Sustained Health Promoting Workplace on Stock Price Performance and Beta; A Singapore Case
Authors: Wee Tong Liaw, Elaine Wong Yee Sing
Abstract:
The main objective and focus of this study are to establish the significance of a sustained health promoting workplace on stock and portfolio returns focusing on companies listed on the Singapore stock exchange, using a two-factor model comprising of the single factor CAPM and a 'health promoting workplace' factor. The 'health promoting workplace' factor represents the excess returns derived between two portfolios of component stocks that, when combined, would represent a top tier stock market index in Singapore, namely the STI index. The first portfolio represents companies that are independently assessed by the Singapore’s Health Award, SHA, to have a sustained and comprehensive health promoting workplace (SHA-STI portfolio) and the second portfolio represents companies that had not been independently assessed (Non-SHA STI portfolio). Since 2001, many companies in Singapore have voluntarily participated in the bi-annual Singapore HEALTH Award initiated by the Health Promotion Board of Singapore (HPB). The Singapore HEALTH Award (SHA), is an industry-wide award and assessment process. SHA assesses and recognizes employers in Singapore for implementing a comprehensive and sustainable health promotion programme at their workplaces. When using a ten year holding period instead of a one year holding period, excess returns in the SHA-STI portfolio over Non-SHA STI portfolio were consistently being observed over all test periods, during 2001 to 2013. In addition, when applied to the SHA-STI portfolio, results from the Two Factor Model consistently revealed higher explanatory powers across all test periods for the portfolio as well as all the individual component stocks in SHA-STI portfolio, than the single factor CAPM model. However, with respect to attaining higher level of achievement in the Singapore Health Award, this study did not show any incentive for selecting listed companies that have achieved a higher level of award. Results from this study would give further insights to investors and fund managers alike who intend to consider health promoting workplace as a risk factor in their stock or portfolio selection process, in particular for investors who have a preference for STI’s component stocks and with a longer investment horizon. Key micro factors like management abilities, business development strategies and production capabilities that meet the needs of market would create the demand for a company’s product(s) or service(s) and consequently contribute to its top line and profitability. Thereafter, the existence of a sustainable health promoting workplace would be a key catalytic factor in sustaining a productive workforce needed to support the continued success of a profitable business.Keywords: asset pricing model, company's performance, stock returns, financial risk factor, sustained health promoting workplace
Procedia PDF Downloads 169522 Credit Risk Evaluation of Dairy Farming Using Fuzzy Logic
Authors: R. H. Fattepur, Sameer R. Fattepur, D. K. Sreekantha
Abstract:
Dairy Farming is one of the key industries in India. India is the leading producer and also the consumer of milk, milk-based products in the world. In this paper, we have attempted to the replace the human expert system and to develop an artificial expert system prototype to increase the speed and accuracy of decision making dairy farming credit risk evaluation. Fuzzy logic is used for dealing with uncertainty, vague and acquired knowledge, fuzzy rule base method is used for representing this knowledge for building an effective expert system.Keywords: expert system, fuzzy logic, knowledge base, dairy farming, credit risk
Procedia PDF Downloads 361521 Optimization of a High-Growth Investment Portfolio for the South African Market Using Predictive Analytics
Authors: Mia Françoise
Abstract:
This report aims to develop a strategy for assisting short-term investors to benefit from the current economic climate in South Africa by utilizing technical analysis techniques and predictive analytics. As part of this research, value investing and technical analysis principles will be combined to maximize returns for South African investors while optimizing volatility. As an emerging market, South Africa offers many opportunities for high growth in sectors where other developed countries cannot grow at the same rate. Investing in South African companies with significant growth potential can be extremely rewarding. Although the risk involved is more significant in countries with less developed markets and infrastructure, there is more room for growth in these countries. According to recent research, the offshore market is expected to outperform the local market over the long term; however, short-term investments in the local market will likely be more profitable, as the Johannesburg Stock Exchange is predicted to outperform the S&P500 over the short term. The instabilities in the economy contribute to increased market volatility, which can benefit investors if appropriately utilized. Price prediction and portfolio optimization comprise the two primary components of this methodology. As part of this process, statistics and other predictive modeling techniques will be used to predict the future performance of stocks listed on the Johannesburg Stock Exchange. Following predictive data analysis, Modern Portfolio Theory, based on Markowitz's Mean-Variance Theorem, will be applied to optimize the allocation of assets within an investment portfolio. By combining different assets within an investment portfolio, this optimization method produces a portfolio with an optimal ratio of expected risk to expected return. This methodology aims to provide a short-term investment with a stock portfolio that offers the best risk-to-return profile for stocks listed on the JSE by combining price prediction and portfolio optimization.Keywords: financial stocks, optimized asset allocation, prediction modelling, South Africa
Procedia PDF Downloads 97520 Markowitz and Implementation of a Multi-Objective Evolutionary Technique Applied to the Colombia Stock Exchange (2009-2015)
Authors: Feijoo E. Colomine Duran, Carlos E. Peñaloza Corredor
Abstract:
There modeling component selection financial investment (Portfolio) a variety of problems that can be addressed with optimization techniques under evolutionary schemes. For his feature, the problem of selection of investment components of a dichotomous relationship between two elements that are opposed: The Portfolio Performance and Risk presented by choosing it. This relationship was modeled by Markowitz through a media problem (Performance) - variance (risk), ie must Maximize Performance and Minimize Risk. This research included the study and implementation of multi-objective evolutionary techniques to solve these problems, taking as experimental framework financial market equities Colombia Stock Exchange between 2009-2015. Comparisons three multiobjective evolutionary algorithms, namely the Nondominated Sorting Genetic Algorithm II (NSGA-II), the Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Indicator-Based Selection in Multiobjective Search (IBEA) were performed using two measures well known performance: The Hypervolume indicator and R_2 indicator, also it became a nonparametric statistical analysis and the Wilcoxon rank-sum test. The comparative analysis also includes an evaluation of the financial efficiency of the investment portfolio chosen by the implementation of various algorithms through the Sharpe ratio. It is shown that the portfolio provided by the implementation of the algorithms mentioned above is very well located between the different stock indices provided by the Colombia Stock Exchange.Keywords: finance, optimization, portfolio, Markowitz, evolutionary algorithms
Procedia PDF Downloads 302519 Asymmetric Linkages Between Global Sustainable Index (Green Bond) and Cryptocurrency Markets with Portfolio Implications
Authors: Faheem Ur Rehman, Muhammad Khalil Khan, Miao Qing
Abstract:
This study investigated the asymmetric links and portfolio strategies between green bonds and the markets of three different cryptocurrencies, i.e., green, Islamic, and conventional, using data from January 1, 2018, to April 8, 2022, and employing asymmetric TVP-VAR model to quantify risk spillovers in the network analysis. In addition, we use the minimum variance, minimum correlation, and minimum connectedness methodologies to assess the portfolio implications. The results of the asymmetric dynamic connectedness index (TCI) model show that by adopting cryptocurrencies for digital finance, risk spillovers are found to be reduced. The findings of net directional connectedness demonstrate that during the study period, green bonds consistently get return spillovers from all other network variables. Positive return spillovers are bigger in magnitude than negative ones. These results imply that the influence of the green bond market on the cryptocurrency markets is decreasing. Positive return spillovers generate higher connectedness values for (HG, BNB, and TRX) coins and persistent net recipients in the specific network. On the other hand, Cardano and ADA coins are persistent net transmitters in the system. XLM and MIOTA's responsibilities shift over time, and there is evidence of asymmetry when both positive and negative returns are considered. According to the pairwise portfolio weights, BNB vs. BTC has the largest portfolio weights in the system, followed by BNB vs. Ethereum, suggesting the best investment strategies in the network.Keywords: asymmetric TVP-VAR, global sustainable index, cryptocurrency, portfolios
Procedia PDF Downloads 78