Search results for: conditional volatility
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 457

Search results for: conditional volatility

397 Modelling Impacts of Global Financial Crises on Stock Volatility of Nigeria Banks

Authors: Maruf Ariyo Raheem, Patrick Oseloka Ezepue

Abstract:

This research aimed at determining most appropriate heteroskedastic model to predicting volatility of 10 major Nigerian banks: Access, United Bank for Africa (UBA), Guaranty Trust, Skye, Diamond, Fidelity, Sterling, Union, ETI and Zenith banks using daily closing stock prices of each of the banks from 2004 to 2014. The models employed include ARCH (1), GARCH (1, 1), EGARCH (1, 1) and TARCH (1, 1). The results show that all the banks returns are highly leptokurtic, significantly skewed and thus non-normal across the four periods except for Fidelity bank during financial crises; findings similar to those of other global markets. There is also strong evidence for the presence of heteroscedasticity, and that volatility persistence during crisis is higher than before the crisis across the 10 banks, with that of UBA taking the lead, about 11 times higher during the crisis. Findings further revealed that Asymmetric GARCH models became dominant especially during financial crises and post crises when the second reforms were introduced into the banking industry by the Central Bank of Nigeria (CBN). Generally, one could say that Nigerian banks returns are volatility persistent during and after the crises, and characterised by leverage effects of negative and positive shocks during these periods

Keywords: global financial crisis, leverage effect, persistence, volatility clustering

Procedia PDF Downloads 529
396 A Multivariate 4/2 Stochastic Covariance Model: Properties and Applications to Portfolio Decisions

Authors: Yuyang Cheng, Marcos Escobar-Anel

Abstract:

This paper introduces a multivariate 4/2 stochastic covariance process generalizing the one-dimensional counterparts presented in Grasselli (2017). Our construction permits stochastic correlation not only among stocks but also among volatilities, also known as co-volatility movements, both driven by more convenient 4/2 stochastic structures. The parametrization is flexible enough to separate these types of correlation, permitting their individual study. Conditions for proper changes of measure and closed-form characteristic functions under risk-neutral and historical measures are provided, allowing for applications of the model to risk management and derivative pricing. We apply the model to an expected utility theory problem in incomplete markets. Our analysis leads to closed-form solutions for the optimal allocation and value function. Conditions are provided for well-defined solutions together with a verification theorem. Our numerical analysis highlights and separates the impact of key statistics on equity portfolio decisions, in particular, volatility, correlation, and co-volatility movements, with the latter being the least important in an incomplete market.

Keywords: stochastic covariance process, 4/2 stochastic volatility model, stochastic co-volatility movements, characteristic function, expected utility theory, veri cation theorem

Procedia PDF Downloads 158
395 Forecasting Electricity Spot Price with Generalized Long Memory Modeling: Wavelet and Neural Network

Authors: Souhir Ben Amor, Heni Boubaker, Lotfi Belkacem

Abstract:

This aims of this paper is to forecast the electricity spot prices. First, we focus on modeling the conditional mean of the series so we adopt a generalized fractional -factor Gegenbauer process (k-factor GARMA). Secondly, the residual from the -factor GARMA model has used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using the Back Propagation learning algorithms. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has adopted, and the parameters of the k-factor GARMA-G-GARCH model has estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. The empirical results have shown that the k-factor GARMA-G-GARCH model outperform the hybrid k-factor GARMA-LLWNN model, and find it is more appropriate for forecasts.

Keywords: electricity price, k-factor GARMA, LLWNN, G-GARCH, forecasting

Procedia PDF Downloads 234
394 Investment Adjustments to Exchange Rate Fluctuations Evidence from Manufacturing Firms in Tunisia

Authors: Mourad Zmami Oussema BenSalha

Abstract:

The current research aims to assess empirically the reaction of private investment to exchange rate fluctuations in Tunisia using a sample of 548 firms operating in manufacturing industries between 1997 and 2002. The micro-econometric model we estimate is based on an accelerator-profit specification investment model increased by two variables that measure the variation and the volatility of exchange rates. Estimates using the system the GMM method reveal that the effects of the exchange rate depreciation on investment are negative since it increases the cost of imported capital goods. Turning to the exchange rate volatility, as measured by the GARCH (1,1) model, our findings assign a significant role to the exchange rate uncertainty in explaining the sluggishness of private investment in Tunisia in the full sample of firms. Other estimation attempts based on various sub samples indicate that the elasticities of investment relative to the exchange rate volatility depend upon many firms’ specific characteristics such as the size and the ownership structure.

Keywords: investment, exchange rate volatility, manufacturing firms, system GMM, Tunisia

Procedia PDF Downloads 415
393 Forward Conditional Restricted Boltzmann Machines for the Generation of Music

Authors: Johan Loeckx, Joeri Bultheel

Abstract:

Recently, the application of deep learning to music has gained popularity. Its true potential, however, has been largely unexplored. In this paper, a new idea for representing the dynamic behavior of music is proposed. A ”forward” conditional RBM takes into account not only preceding but also future samples during training. Though this may sound controversial at first sight, it will be shown that it makes sense from a musical and neuro-cognitive perspective. The model is applied to reconstruct music based upon the first notes and to improvise in the musical style of a composer. Different to expectations, reconstruction accuracy with respect to a regular CRBM with the same order, was not significantly improved. More research is needed to test the performance on unseen data.

Keywords: deep learning, restricted boltzmann machine, music generation, conditional restricted boltzmann machine (CRBM)

Procedia PDF Downloads 525
392 Analysis of Financial Time Series by Using Ornstein-Uhlenbeck Type Models

Authors: Md Al Masum Bhuiyan, Maria C. Mariani, Osei K. Tweneboah

Abstract:

In the present work, we develop a technique for estimating the volatility of financial time series by using stochastic differential equation. Taking the daily closing prices from developed and emergent stock markets as the basis, we argue that the incorporation of stochastic volatility into the time-varying parameter estimation significantly improves the forecasting performance via Maximum Likelihood Estimation. While using the technique, we see the long-memory behavior of data sets and one-step-ahead-predicted log-volatility with ±2 standard errors despite the variation of the observed noise from a Normal mixture distribution, because the financial data studied is not fully Gaussian. Also, the Ornstein-Uhlenbeck process followed in this work simulates well the financial time series, which aligns our estimation algorithm with large data sets due to the fact that this algorithm has good convergence properties.

Keywords: financial time series, maximum likelihood estimation, Ornstein-Uhlenbeck type models, stochastic volatility model

Procedia PDF Downloads 245
391 Comparison Study of Capital Protection Risk Management Strategies: Constant Proportion Portfolio Insurance versus Volatility Target Based Investment Strategy with a Guarantee

Authors: Olga Biedova, Victoria Steblovskaya, Kai Wallbaum

Abstract:

In the current capital market environment, investors constantly face the challenge of finding a successful and stable investment mechanism. Highly volatile equity markets and extremely low bond returns bring about the demand for sophisticated yet reliable risk management strategies. Investors are looking for risk management solutions to efficiently protect their investments. This study compares a classic Constant Proportion Portfolio Insurance (CPPI) strategy to a Volatility Target portfolio insurance (VTPI). VTPI is an extension of the well-known Option Based Portfolio Insurance (OBPI) to the case where an embedded option is linked not to a pure risky asset such as e.g., S&P 500, but to a Volatility Target (VolTarget) portfolio. VolTarget strategy is a recently emerged rule-based dynamic asset allocation mechanism where the portfolio’s volatility is kept under control. As a result, a typical VTPI strategy allows higher participation rates in the market due to reduced embedded option prices. In addition, controlled volatility levels eliminate the volatility spread in option pricing, one of the frequently cited reasons for OBPI strategy fall behind CPPI. The strategies are compared within the framework of the stochastic dominance theory based on numerical simulations, rather than on the restrictive assumption of the Black-Scholes type dynamics of the underlying asset. An extended comparative quantitative analysis of performances of the above investment strategies in various market scenarios and within a range of input parameter values is presented.

Keywords: CPPI, portfolio insurance, stochastic dominance, volatility target

Procedia PDF Downloads 168
390 A Comparative Study of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and Extreme Value Theory (EVT) Model in Modeling Value-at-Risk (VaR)

Authors: Longqing Li

Abstract:

The paper addresses the inefficiency of the classical model in measuring the Value-at-Risk (VaR) using a normal distribution or a Student’s t distribution. Specifically, the paper focuses on the one day ahead Value-at-Risk (VaR) of major stock market’s daily returns in US, UK, China and Hong Kong in the most recent ten years under 95% confidence level. To improve the predictable power and search for the best performing model, the paper proposes using two leading alternatives, Extreme Value Theory (EVT) and a family of GARCH models, and compares the relative performance. The main contribution could be summarized in two aspects. First, the paper extends the GARCH family model by incorporating EGARCH and TGARCH to shed light on the difference between each in estimating one day ahead Value-at-Risk (VaR). Second, to account for the non-normality in the distribution of financial markets, the paper applies Generalized Error Distribution (GED), instead of the normal distribution, to govern the innovation term. A dynamic back-testing procedure is employed to assess the performance of each model, a family of GARCH and the conditional EVT. The conclusion is that Exponential GARCH yields the best estimate in out-of-sample one day ahead Value-at-Risk (VaR) forecasting. Moreover, the discrepancy of performance between the GARCH and the conditional EVT is indistinguishable.

Keywords: Value-at-Risk, Extreme Value Theory, conditional EVT, backtesting

Procedia PDF Downloads 325
389 Cryptocurrency as a Payment Method in the Tourism Industry: A Comparison of Volatility, Correlation and Portfolio Performance

Authors: Shu-Han Hsu, Jiho Yoon, Chwen Sheu

Abstract:

With the rapidly growing of blockchain technology and cryptocurrency, various industries which include tourism has added in cryptocurrency as the payment method of their transaction. More and more tourism companies accept payments in digital currency for flights, hotel reservations, transportation, and more. For travellers and tourists, using cryptocurrency as a payment method has become a way to circumvent costs and prevent risks. Understanding volatility dynamics and interdependencies between standard currency and cryptocurrency is important for appropriate financial risk management to assist policy-makers and investors in marking more informed decisions. The purpose of this paper has been to understand and explain the risk spillover effects between six major cryptocurrencies and the top ten most traded standard currencies. Using data for the daily closing price of cryptocurrencies and currency exchange rates from 7 August 2015 to 10 December 2019, with 1,133 observations. The diagonal BEKK model was used to analyze the co-volatility spillover effects between cryptocurrency returns and exchange rate returns, which are measures of how the shocks to returns in different assets affect each other’s subsequent volatility. The empirical results show there are co-volatility spillover effects between the cryptocurrency returns and GBP/USD, CNY/USD and MXN/USD exchange rate returns. Therefore, currencies (British Pound, Chinese Yuan and Mexican Peso) and cryptocurrencies (Bitcoin, Ethereum, Ripple, Tether, Litecoin and Stellar) are suitable for constructing a financial portfolio from an optimal risk management perspective and also for dynamic hedging purposes.

Keywords: blockchain, co-volatility effects, cryptocurrencies, diagonal BEKK model, exchange rates, risk spillovers

Procedia PDF Downloads 147
388 Application of Forward Contract and Crop Insurance as Risk Management Tools of Agriculture: A Case Study in Bangladesh

Authors: M. Bokhtiar Hasan, M. Delowar Hossain, Abu N. M. Wahid

Abstract:

The principal aim of the study is to find out a way to effectively manage the agricultural risks like price volatility, weather risks, and fund shortage. To hedge price volatility, farmers sometimes make contracts with agro-traders but fail to protect themselves effectively due to not having legal framework for such contracts. The study extensively reviews existing literature and find evidence that the majority studies either deal with price volatility or weather risks. If we could address these risks through a single model, it would be more useful to both the farmers and traders. Intrinsically, the authors endeavor in this regard, and the key contribution of this study basically lies in it. Initially, we conduct a small survey aspiring to identify the shortcomings of existing contracts. Later, we propose a model encompassing forward and insurance contracts together where forward contract will be used to hedge price volatility and insurance contract will be used to protect weather risks. Contribution/Originality: The study adds to the existing literature through proposing an integrated model comprising of forward contract and crop insurance which will support both farmers and traders to cope with the agricultural risks like price volatility, weather hazards, and fund shortage. JEL Classifications: O13, Q13

Keywords: agriculture, forward contract, insurance contract, risk management, model

Procedia PDF Downloads 159
387 Financial Markets Integration between Morocco and France: Implications on International Portfolio Diversification

Authors: Abdelmounaim Lahrech, Hajar Bousfiha

Abstract:

This paper examines equity market integration between Morocco and France and its consequent implications on international portfolio diversification. In the absence of stock market linkages, Morocco can act as a diversification destination to European investors, allowing higher returns at a comparable level of risk in developed markets. In contrast, this attractiveness is limited if both financial markets show significant linkage. The research empirically measures financial market’s integration in by capturing the conditional correlation between the two markets using the Generalized Autoregressive Conditionally Heteroscedastic (GARCH) model. Then, the research uses the Dynamic Conditional Correlation (DCC) model of Engle (2002) to track the correlations. The research findings show that there is no important increase over the years in the correlation between the Moroccan and the French equity markets, even though France is considered Morocco’s first trading partner. Failing to prove evidence of the stock index linkage between the two countries, the volatility series of each market were assumed to change over time separately. Yet, the study reveals that despite the important historical and economic linkages between Morocco and France, there is no evidence that equity markets follow. The small correlations and their stationarity over time show that over the 10 years studied, correlations were fluctuating around a stable mean with no significant change at their level. Different explanations can be attributed to the absence of market linkage between the two equity markets.

Keywords: equity market linkage, DCC GARCH, international portfolio diversification, Morocco, France

Procedia PDF Downloads 442
386 Modelling Volatility Spillovers and Cross Hedging among Major Agricultural Commodity Futures

Authors: Roengchai Tansuchat, Woraphon Yamaka, Paravee Maneejuk

Abstract:

From the past recent, the global financial crisis, economic instability, and large fluctuation in agricultural commodity price have led to increased concerns about the volatility transmission among them. The problem is further exacerbated by commodities volatility caused by other commodity price fluctuations, hence the decision on hedging strategy has become both costly and useless. Thus, this paper is conducted to analysis the volatility spillover effect among major agriculture including corn, soybeans, wheat and rice, to help the commodity suppliers hedge their portfolios, and manage the risk and co-volatility of them. We provide a switching regime approach to analyzing the issue of volatility spillovers in different economic conditions, namely upturn and downturn economic. In particular, we investigate relationships and volatility transmissions between these commodities in different economic conditions. We purposed a Copula-based multivariate Markov Switching GARCH model with two regimes that depend on an economic conditions and perform simulation study to check the accuracy of our proposed model. In this study, the correlation term in the cross-hedge ratio is obtained from six copula families – two elliptical copulas (Gaussian and Student-t) and four Archimedean copulas (Clayton, Gumbel, Frank, and Joe). We use one-step maximum likelihood estimation techniques to estimate our models and compare the performance of these copula using Akaike information criterion (AIC) and Bayesian information criteria (BIC). In the application study of agriculture commodities, the weekly data used are conducted from 4 January 2005 to 1 September 2016, covering 612 observations. The empirical results indicate that the volatility spillover effects among cereal futures are different, as response of different economic condition. In addition, the results of hedge effectiveness will also suggest the optimal cross hedge strategies in different economic condition especially upturn and downturn economic.

Keywords: agricultural commodity futures, cereal, cross-hedge, spillover effect, switching regime approach

Procedia PDF Downloads 205
385 Use of Multistage Transition Regression Models for Credit Card Income Prediction

Authors: Denys Osipenko, Jonathan Crook

Abstract:

Because of the variety of the card holders’ behaviour types and income sources each consumer account can be transferred to a variety of states. Each consumer account can be inactive, transactor, revolver, delinquent, defaulted and requires an individual model for the income prediction. The estimation of transition probabilities between statuses at the account level helps to avoid the memorylessness of the Markov Chains approach. This paper investigates the transition probabilities estimation approaches to credit cards income prediction at the account level. The key question of empirical research is which approach gives more accurate results: multinomial logistic regression or multistage conditional logistic regression with binary target. Both models have shown moderate predictive power. Prediction accuracy for conditional logistic regression depends on the order of stages for the conditional binary logistic regression. On the other hand, multinomial logistic regression is easier for usage and gives integrate estimations for all states without priorities. Thus further investigations can be concentrated on alternative modeling approaches such as discrete choice models.

Keywords: multinomial regression, conditional logistic regression, credit account state, transition probability

Procedia PDF Downloads 490
384 The Impact of the Global Financial Crises on MILA Stock Markets

Authors: Miriam Sosa, Edgar Ortiz, Alejandra Cabello

Abstract:

This paper examines the volatility changes and leverage effects of the MILA stock markets and their changes since the 2007 global financial crisis. This group integrates the stock markets from Chile, Colombia, Mexico and Peru. Volatility changes and leverage effects are tested with a symmetric GARCH (1,1) and asymmetric TARCH (1,1) models with a dummy variable in the variance equation. Daily closing prices of the stock indexes of Chile (IPSA), Colombia (COLCAP), Mexico (IPC) and Peru (IGBVL) are examined for the period 2003:01 to 2015:02. The evidence confirms the presence of an overall increase in asymmetric market volatility in the Peruvian share market since the 2007 crisis.

Keywords: financial crisis, Latin American Integrated Market, TARCH, GARCH

Procedia PDF Downloads 280
383 Mean and Volatility Spillover between US Stocks Market and Crude Oil Markets

Authors: Kamel Malik Bensafta, Gervasio Bensafta

Abstract:

The purpose of this paper is to investigate the relationship between oil prices and socks markets. The empirical analysis in this paper is conducted within the context of Multivariate GARCH models, using a transform version of the so-called BEKK parameterization. We show that mean and uncertainty of US market are transmitted to oil market and European market. We also identify an important transmission from WTI prices to Brent Prices.

Keywords: oil volatility, stock markets, MGARCH, transmission, structural break

Procedia PDF Downloads 489
382 Economic Growth: The Nexus of Oil Price Volatility and Renewable Energy Resources among Selected Developed and Developing Economies

Authors: Muhammad Siddique, Volodymyr Lugovskyy

Abstract:

This paper explores how nations might mitigate the unfavorable impacts of oil price volatility on economic growth by switching to renewable energy sources. The impacts of uncertain factor prices on economic activity are examined by looking at the Realized Volatility (RV) of oil prices rather than the more traditional method of looking at oil price shocks. The United States of America (USA), China (C), India (I), United Kingdom (UK), Germany (G), Malaysia (M), and Pakistan (P) are all included to round out the traditional literature's examination of selected nations, which focuses on oil-importing and exporting economies. Granger Causality Tests (GCT), Impulse Response Functions (IRF), and Variance Decompositions (VD) demonstrate that in a Vector Auto-Regressive (VAR) scenario, the negative impacts of oil price volatility extend beyond what can be explained by oil price shocks alone for all of the nations in the sample. Different nations have different levels of vulnerability to changes in oil prices and other factors that may play a role in a sectoral composition and the energy mix. The conventional method, which only takes into account whether a country is a net oil importer or exporter, is inadequate. The potential economic advantages of initiatives to decouple the macroeconomy from volatile commodities markets are shown through simulations of volatility shocks in alternative energy mixes (with greater proportions of renewables). It is determined that in developing countries like Pakistan, increasing the use of renewable energy sources might lessen an economy's sensitivity to changes in oil prices; nonetheless, a country-specific study is required to identify particular policy actions. In sum, the research provides an innovative justification for mitigating economic growth's dependence on stable oil prices in our sample countries.

Keywords: oil price volatility, renewable energy, economic growth, developed and developing economies

Procedia PDF Downloads 82
381 Statistical Inferences for GQARCH-It\^{o} - Jumps Model Based on The Realized Range Volatility

Authors: Fu Jinyu, Lin Jinguan

Abstract:

This paper introduces a novel approach that unifies two types of models: one is the continuous-time jump-diffusion used to model high-frequency data, and the other is discrete-time GQARCH employed to model low-frequency financial data by embedding the discrete GQARCH structure with jumps in the instantaneous volatility process. This model is named “GQARCH-It\^{o} -Jumps mode.” We adopt the realized range-based threshold estimation for high-frequency financial data rather than the realized return-based volatility estimators, which entail the loss of intra-day information of the price movement. Meanwhile, a quasi-likelihood function for the low-frequency GQARCH structure with jumps is developed for the parametric estimate. The asymptotic theories are mainly established for the proposed estimators in the case of finite activity jumps. Moreover, simulation studies are implemented to check the finite sample performance of the proposed methodology. Specifically, it is demonstrated that how our proposed approaches can be practically used on some financial data.

Keywords: It\^{o} process, GQARCH, leverage effects, threshold, realized range-based volatility estimator, quasi-maximum likelihood estimate

Procedia PDF Downloads 166
380 Ankaferd Blood Stopper (ABS) Has Protective Effect on Colonic Inflammation: An in Vitro Study in Raw 264.7 and Caco-2 Cells

Authors: Aysegul Alyamac, Sukru Gulec

Abstract:

Ankaferd Blood Stopper (ABS) is a plant extract used to stop bleeding caused by injuries and surgical interventions. ABS also involved in wound healing of intestinal mucosal damage due to oxidative stress and inflammation. Inflammatory Bowel Disease (IBD) is a common chronic disorder of the gastrointestinal tract that causes abdominal pain, diarrhea, and gastrointestinal bleeding, and increases the risk of colon cancer. Inflammation is an essential factor in the development of IBD. The various studies have been performed about the physiological effects of ABS; however, ABS dependent mechanism on colonic inflammation has not been elucidated. Thus, the protective effect of ABS on colonic inflammation was investigated in this study. The Caco-2 and RAW 264.7 murine macrophage cells were used as a model of in vitro colonic inflammation. RAW 264.7 cells were treated with lipopolysaccharide (LPS) for 12 hours to induce the inflammation, and a conditional medium was obtained. Caco-2 cells were treated with 15 µl/ml ABS for 4 hours, then incubated with conditional medium and the cells also were incubated with 15 µl/ml ABS and conditional medium together for 4 hours. Tumor necrosis factor alpha (TNF-α) protein levels were targeted in testing inflammatory condition and its level was significantly increased (25 fold, p<0.001) compared to the control group by using Enzyme-Linked Immunosorbent Assay (ELISA) method. The COX-2 mRNA level was used as a marker gene to show the possible anti-inflammatory effect of ABS in Caco-2 cells. RAW cells-derived conditional medium significantly (3.3 fold, p<0.001) induced cyclooxygenase-2 (COX-2) mRNA levels in Caco-2 cells. The pretreatment of Caco-2 cells caused a significant decrease (3.3 fold, p<0.001) in COX-2 mRNA levels relative to conditional medium given group. Furthermore, COX-2 mRNA level was significantly reduced (4,7 fold, p<0.001) in ABS and conditional medium treated group. These results suggest that ABS might have an anti-inflammatory effect in vitro.

Keywords: Ankaferd blood stopper, CaCo-2, colonic inflammation, RAW 264.7

Procedia PDF Downloads 148
379 Spatial Time Series Models for Rice and Cassava Yields Based on Bayesian Linear Mixed Models

Authors: Panudet Saengseedam, Nanthachai Kantanantha

Abstract:

This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.

Keywords: Bayesian method, linear mixed model, multivariate conditional autoregressive model, spatial time series

Procedia PDF Downloads 400
378 FMR1 Gene Carrier Screening for Premature Ovarian Insufficiency in Females: An Indian Scenario

Authors: Sarita Agarwal, Deepika Delsa Dean

Abstract:

Like the task of transferring photo images to artistic images, image-to-image translation aims to translate the data to the imitated data which belongs to the target domain. Neural Style Transfer and CycleGAN are two well-known deep learning architectures used for photo image-to-art image transfer. However, studies involving these two models concentrate on one-to-one domain translation, not one-to-multi domains translation. Our study tries to investigate deep learning architectures, which can be controlled to yield multiple artistic style translation only by adding a conditional vector. We have expanded CycleGAN and constructed Conditional CycleGAN for 5 kinds of categories translation. Our study found that the architecture inserting conditional vector into the middle layer of the Generator could output multiple artistic images.

Keywords: genetic counseling, FMR1 gene, fragile x-associated primary ovarian insufficiency, premutation

Procedia PDF Downloads 133
377 Generative AI: A Comparison of Conditional Tabular Generative Adversarial Networks and Conditional Tabular Generative Adversarial Networks with Gaussian Copula in Generating Synthetic Data with Synthetic Data Vault

Authors: Lakshmi Prayaga, Chandra Prayaga. Aaron Wade, Gopi Shankar Mallu, Harsha Satya Pola

Abstract:

Synthetic data generated by Generative Adversarial Networks and Autoencoders is becoming more common to combat the problem of insufficient data for research purposes. However, generating synthetic data is a tedious task requiring extensive mathematical and programming background. Open-source platforms such as the Synthetic Data Vault (SDV) and Mostly AI have offered a platform that is user-friendly and accessible to non-technical professionals to generate synthetic data to augment existing data for further analysis. The SDV also provides for additions to the generic GAN, such as the Gaussian copula. We present the results from two synthetic data sets (CTGAN data and CTGAN with Gaussian Copula) generated by the SDV and report the findings. The results indicate that the ROC and AUC curves for the data generated by adding the layer of Gaussian copula are much higher than the data generated by the CTGAN.

Keywords: synthetic data generation, generative adversarial networks, conditional tabular GAN, Gaussian copula

Procedia PDF Downloads 86
376 Measuring Banking Systemic Risk Conditional Value-At-Risk and Conditional Coherent Expected Shortfall in Taiwan Using Vector Quantile GARCH Model

Authors: Ender Su, Kai Wen Wong, I-Ling Ju, Ya-Ling Wang

Abstract:

In this study, the systemic risk change of Taiwan’s banking sector is analyzed during the financial crisis. The risk expose of each financial institutions to the whole Taiwan banking systemic risk or vice versa under financial distress are measured by conditional Value-at-Risk (CoVaR) and conditional coherent expected shortfall (CoES). The CoVaR and CoES are estimated by using vector quantile autoregression (MVMQ-CaViaR) with the daily stock returns of each banks included domestic and foreign banks in Taiwan. The daily in-sample data covered the period from 05/20/2002 to 07/31/2007 and the out-of-sample period until 12/31/2013 spanning the 2008 U.S. subprime crisis, 2010 Greek debt crisis, and post risk duration. All banks in Taiwan are categorised into several groups according to their size of market capital, leverage and domestic/foreign to find out what the extent of changes of the systemic risk as the risk changes between the individuals in the bank groups and vice versa. The final results can provide a guidance to financial supervisory commission of Taiwan to gauge the downside risk in the system of financial institutions and determine the minimum capital requirement hold by financial institutions due to the sensibility changes in CoVaR and CoES of each banks.

Keywords: bank financial distress, vector quantile autoregression, CoVaR, CoES

Procedia PDF Downloads 388
375 The Stock Price Effect of Apple Keynotes

Authors: Ethan Petersen

Abstract:

In this paper, we analyze the volatility of Apple’s stock beginning January 3, 2005 up to October 9, 2014, then focus on a range from 30 days prior to each product announcement until 30 days after. Product announcements are filtered; announcements whose 60 day range is devoid of other events are separated. This filtration is chosen to isolate, and study, a potential cross-effect. Concerning Apple keynotes, there are two significant dates: the day the invitations to the event are received and the day of the event itself. As such, the statistical analysis is conducted for both invite-centered and event-centered time frames. A comparison to the VIX is made to determine if the trend is simply following the market or deviating. Regardless of the filtration, we find that there is a clear deviation from the market. Comparing these data sets, there are significantly different trends: isolated events have a constantly decreasing, erratic trend in volatility but an increasing, linear trend is observed for clustered events. According to the Efficient Market Hypothesis, we would expect a change when new information is publicly known and the results of this study support this claim.

Keywords: efficient market hypothesis, event study, volatility, VIX

Procedia PDF Downloads 283
374 Risk Management of Water Derivatives: A New Commodity in The Market

Authors: Daniel Mokatsanyane, Johnny Jansen Van Rensburg

Abstract:

This paper is a concise introduction of the risk management on the water derivatives market. Water, a new commodity in the market, is one of the most important commodity on earth. As important to life and planet as crops, metals, and energy, none of them matters without water. This paper presents a brief overview of water as a tradable commodity via a new first of its kind futures contract on the Nasdaq Veles California Water Index (NQH2O) derivative instrument, TheGeneralised Autoregressive Conditional Heteroscedasticity (GARCH) statistical model will be the used to measure the water price volatility of the instrument and its performance since it’s been traded. describe the main products and illustrate their usage in risk management and also discuss key challenges with modeling and valuation of water as a traded commodity and finally discuss how water derivatives may be taken as an alternative asset investment class.

Keywords: water derivatives, commodity market, nasdaq veles california water Index (NQH2O, water price, risk management

Procedia PDF Downloads 139
373 Volatility Index, Fear Sentiment and Cross-Section of Stock Returns: Indian Evidence

Authors: Pratap Chandra Pati, Prabina Rajib, Parama Barai

Abstract:

The traditional finance theory neglects the role of sentiment factor in asset pricing. However, the behavioral approach to asset-pricing based on noise trader model and limit to arbitrage includes investor sentiment as a priced risk factor in the assist pricing model. Investor sentiment affects stock more that are vulnerable to speculation, hard to value and risky to arbitrage. It includes small stocks, high volatility stocks, growth stocks, distressed stocks, young stocks and non-dividend-paying stocks. Since the introduction of Chicago Board Options Exchange (CBOE) volatility index (VIX) in 1993, it is used as a measure of future volatility in the stock market and also as a measure of investor sentiment. CBOE VIX index, in particular, is often referred to as the ‘investors’ fear gauge’ by public media and prior literature. The upward spikes in the volatility index are associated with bouts of market turmoil and uncertainty. High levels of the volatility index indicate fear, anxiety and pessimistic expectations of investors about the stock market. On the contrary, low levels of the volatility index reflect confident and optimistic attitude of investors. Based on the above discussions, we investigate whether market-wide fear levels measured volatility index is priced factor in the standard asset pricing model for the Indian stock market. First, we investigate the performance and validity of Fama and French three-factor model and Carhart four-factor model in the Indian stock market. Second, we explore whether India volatility index as a proxy for fearful market-based sentiment indicators affect the cross section of stock returns after controlling for well-established risk factors such as market excess return, size, book-to-market, and momentum. Asset pricing tests are performed using monthly data on CNX 500 index constituent stocks listed on the National stock exchange of India Limited (NSE) over the sample period that extends from January 2008 to March 2017. To examine whether India volatility index, as an indicator of fear sentiment, is a priced risk factor, changes in India VIX is included as an explanatory variable in the Fama-French three-factor model as well as Carhart four-factor model. For the empirical testing, we use three different sets of test portfolios used as the dependent variable in the in asset pricing regressions. The first portfolio set is the 4x4 sorts on the size and B/M ratio. The second portfolio set is the 4x4 sort on the size and sensitivity beta of change in IVIX. The third portfolio set is the 2x3x2 independent triple-sorting on size, B/M and sensitivity beta of change in IVIX. We find evidence that size, value and momentum factors continue to exist in Indian stock market. However, VIX index does not constitute a priced risk factor in the cross-section of returns. The inseparability of volatility and jump risk in the VIX is a possible explanation of the current findings in the study.

Keywords: India VIX, Fama-French model, Carhart four-factor model, asset pricing

Procedia PDF Downloads 257
372 Estimating the Relationship between Education and Political Polarization over Immigration across Europe

Authors: Ben Tappin, Ryan McKay

Abstract:

The political left and right appear to disagree not only over questions of value but, also, over questions of fact—over what is true “out there” in society and the world. Alarmingly, a large body of survey data collected during the past decade suggests that this disagreement tends to be greatest among the most educated and most cognitively sophisticated opposing partisans. In other words, the data show that these individuals display the widest political polarization in their reported factual beliefs. Explanations of this polarization pattern draw heavily on cultural and political factors; yet, the large majority of the evidence originates from one cultural and political context—the United States, a country with a rather unique cultural and political history. One consequence is that widening political polarization conditional on education and cognitive sophistication may be due to idiosyncratic cultural, political or historical factors endogenous to US society—rather than a more general, international phenomenon. We examined widening political polarization conditional on education across Europe, over a topic that is culturally and politically contested; immigration. To do so, we analyzed data from the European Social Survey, a premier survey of countries in and around the European area conducted biennially since 2002. Our main results are threefold. First, we see widening political polarization conditional on education over beliefs about the economic impact of immigration. The foremost countries showing this pattern are the most influential in Europe: Germany and France. However, we also see heterogeneity across countries, with some—such as Belgium—showing no evidence of such polarization. Second, we find that widening political polarization conditional on education is a product of sorting. That is, highly educated partisans exhibit stronger within-group consensus in their beliefs about immigration—the data do not support the view that the more educated partisans are more polarized simply because the less educated fail to adopt a position on the question. Third, and finally, we find some evidence that shocks to the political climate of countries in the European area—for example, the “refugee crisis” of summer 2015—were associated with a subsequent increase in political polarization over immigration conditional on education. The largest increase was observed in Germany, which was at the centre of the so-called refugee crisis in 2015. These results reveal numerous insights: they show that widening political polarization conditional on education is not restricted to the US or native English-speaking culture; that such polarization emerges in the domain of immigration; that it is a product of within-group consensus among the more educated; and, finally, that exogenous shocks to the political climate may be associated with subsequent increases in political polarization conditional on education.

Keywords: beliefs, Europe, immigration, political polarization

Procedia PDF Downloads 151
371 Combining a Continuum of Hidden Regimes and a Heteroskedastic Three-Factor Model in Option Pricing

Authors: Rachid Belhachemi, Pierre Rostan, Alexandra Rostan

Abstract:

This paper develops a discrete-time option pricing model for index options. The model consists of two key ingredients. First, daily stock return innovations are driven by a continuous hidden threshold mixed skew-normal (HTSN) distribution which generates conditional non-normality that is needed to fit daily index return. The most important feature of the HTSN is the inclusion of a latent state variable with a continuum of states, unlike the traditional mixture distributions where the state variable is discrete with little number of states. The HTSN distribution belongs to the class of univariate probability distributions where parameters of the distribution capture the dependence between the variable of interest and the continuous latent state variable (the regime). The distribution has an interpretation in terms of a mixture distribution with time-varying mixing probabilities. It has been shown empirically that this distribution outperforms its main competitor, the mixed normal (MN) distribution, in terms of capturing the stylized facts known for stock returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence. Second, heteroscedasticity in the model is captured by a threeexogenous-factor GARCH model (GARCHX), where the factors are taken from the principal components analysis of various world indices and presents an application to option pricing. The factors of the GARCHX model are extracted from a matrix of world indices applying principal component analysis (PCA). The empirically determined factors are uncorrelated and represent truly different common components driving the returns. Both factors and the eight parameters inherent to the HTSN distribution aim at capturing the impact of the state of the economy on price levels since distribution parameters have economic interpretations in terms of conditional volatilities and correlations of the returns with the hidden continuous state. The PCA identifies statistically independent factors affecting the random evolution of a given pool of assets -in our paper a pool of international stock indices- and sorting them by order of relative importance. The PCA computes a historical cross asset covariance matrix and identifies principal components representing independent factors. In our paper, factors are used to calibrate the HTSN-GARCHX model and are ultimately responsible for the nature of the distribution of random variables being generated. We benchmark our model to the MN-GARCHX model following the same PCA methodology and the standard Black-Scholes model. We show that our model outperforms the benchmark in terms of RMSE in dollar losses for put and call options, which in turn outperforms the analytical Black-Scholes by capturing the stylized facts known for index returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence.

Keywords: continuous hidden threshold, factor models, GARCHX models, option pricing, risk-premium

Procedia PDF Downloads 298
370 Time Series Simulation by Conditional Generative Adversarial Net

Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto

Abstract:

Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.

Keywords: conditional generative adversarial net, market and credit risk management, neural network, time series

Procedia PDF Downloads 146
369 The Impact of Unconditional and Conditional Conservatism on Cost of Equity Capital: A Quantile Regression Approach for MENA Countries

Authors: Khalifa Maha, Ben Othman Hakim, Khaled Hussainey

Abstract:

Prior empirical studies have investigated the economic consequences of accounting conservatism by examining its impact on the cost of equity capital (COEC). However, findings are not conclusive. We assume that inconsistent results of such association may be attributed to the regression models used in data analysis. To address this issue, we re-examine the effect of different dimension of accounting conservatism: unconditional conservatism (U_CONS) and conditional conservatism (C_CONS) on the COEC for a sample of listed firms from Middle Eastern and North Africa (MENA) countries, applying quantile regression (QR) approach developed by Koenker and Basset (1978). While classical ordinary least square (OLS) method is widely used in empirical accounting research, however it may produce inefficient and bias estimates in the case of departures from normality or long tail error distribution. QR method is more powerful than OLS to handle this kind of problem. It allows the coefficient on the independent variables to shift across the distribution of the dependent variable whereas OLS method only estimates the conditional mean effects of a response variable. We find as predicted that U_CONS has a significant positive effect on the COEC however, C_CONS has a negative impact. Findings suggest also that the effect of the two dimensions of accounting conservatism differs considerably across COEC quantiles. Comparing results from QR method with those of OLS, this study throws more lights on the association between accounting conservatism and COEC.

Keywords: unconditional conservatism, conditional conservatism, cost of equity capital, OLS, quantile regression, emerging markets, MENA countries

Procedia PDF Downloads 362
368 Investigating the UAE Residential Valuation System: A Framework for Analysis

Authors: Simon Huston, Ebraheim Lahbash, Ali Parsa

Abstract:

The development of the United Arab Emirates (UAE) into a regional trade, tourism, finance and logistics hub has transformed its real estate markets. However, speculative activity and price volatility remain concerns. UAE residential market values (MV) are exposed to fluctuations in capital flows and migration which in turn are affected by geopolitical uncertainty, oil price volatility, and global investment market sentiment. Internally, a complex interplay between administrative boundaries, land tenure, building quality and evolving location characteristics fragments UAE residential property markets. In short, the UAE Residential Valuation System (UAE-RVS) confronts multiple challenges to collect, filter and analyze relevant information in complex and dynamic spatial and capital markets. A robust (RVS) can mitigate the risk of unhelpful volatility, speculative excess or investment mistakes. The research outlines the institutional, ontological, dynamic, and epistemological issues at play. We highlight the importance of system capabilities, valuation standard salience and stakeholders trust.

Keywords: valuation, property rights, information, institutions, trust, salience

Procedia PDF Downloads 384