Search results for: cluster overlapping system
18335 Lambda-Levelwise Statistical Convergence of a Sequence of Fuzzy Numbers
Authors: F. Berna Benli, Özgür Keskin
Abstract:
Lately, many mathematicians have been studied the statistical convergence of a sequence of fuzzy numbers. We know that Lambda-statistically convergence is a kind of convergence between ordinary convergence and statistical convergence. In this paper, we will introduce the new kind of convergence such as λ-levelwise statistical convergence. Then, we will define the concept of the λ-levelwise statistical cluster and limit points of a sequence of fuzzy numbers. Also, we will discuss the relations between the sets of λ-levelwise statistical cluster points and λ-levelwise statistical limit points of sequences of fuzzy numbers. This work has been extended in this paper, where some relations have been considered such that when lambda-statistical limit inferior and lambda-statistical limit superior for lambda-statistically convergent sequences of fuzzy numbers are equal. Furthermore, lambda-statistical boundedness condition for different sequences of fuzzy numbers has been studied.Keywords: fuzzy number, λ-levelwise statistical cluster points, λ-levelwise statistical convergence, λ-levelwise statistical limit points, λ-statistical cluster points, λ-statistical convergence, λ-statistical limit points
Procedia PDF Downloads 47618334 Percolation Transition in an Agglomeration of Spherical Particles
Authors: Johannes J. Schneider, Mathias S. Weyland, Peter Eggenberger Hotz, William D. Jamieson, Oliver Castell, Alessia Faggian, Rudolf M. Füchslin
Abstract:
Agglomerations of polydisperse systems of spherical particles are created in computer simulations using a simplified stochastic-hydrodynamic model: Particles sink to the bottom of the cylinder, taking into account gravity reduced by the buoyant force, the Stokes friction force, the added mass effect, and random velocity changes. Two types of particles are considered, with one of them being able to create connections to neighboring particles of the same type, thus forming a network within the agglomeration at the bottom of a cylinder. Decreasing the fraction of these particles, a percolation transition occurs. The critical regime is determined by investigating the maximum cluster size and the percolation susceptibility.Keywords: binary system, maximum cluster size, percolation, polydisperse
Procedia PDF Downloads 5918333 Comparing the Apparent Error Rate of Gender Specifying from Human Skeletal Remains by Using Classification and Cluster Methods
Authors: Jularat Chumnaul
Abstract:
In forensic science, corpses from various homicides are different; there are both complete and incomplete, depending on causes of death or forms of homicide. For example, some corpses are cut into pieces, some are camouflaged by dumping into the river, some are buried, some are burned to destroy the evidence, and others. If the corpses are incomplete, it can lead to the difficulty of personally identifying because some tissues and bones are destroyed. To specify gender of the corpses from skeletal remains, the most precise method is DNA identification. However, this method is costly and takes longer so that other identification techniques are used instead. The first technique that is widely used is considering the features of bones. In general, an evidence from the corpses such as some pieces of bones, especially the skull and pelvis can be used to identify their gender. To use this technique, forensic scientists are required observation skills in order to classify the difference between male and female bones. Although this technique is uncomplicated, saving time and cost, and the forensic scientists can fairly accurately determine gender by using this technique (apparently an accuracy rate of 90% or more), the crucial disadvantage is there are only some positions of skeleton that can be used to specify gender such as supraorbital ridge, nuchal crest, temporal lobe, mandible, and chin. Therefore, the skeletal remains that will be used have to be complete. The other technique that is widely used for gender specifying in forensic science and archeology is skeletal measurements. The advantage of this method is it can be used in several positions in one piece of bones, and it can be used even if the bones are not complete. In this study, the classification and cluster analysis are applied to this technique, including the Kth Nearest Neighbor Classification, Classification Tree, Ward Linkage Cluster, K-mean Cluster, and Two Step Cluster. The data contains 507 particular individuals and 9 skeletal measurements (diameter measurements), and the performance of five methods are investigated by considering the apparent error rate (APER). The results from this study indicate that the Two Step Cluster and Kth Nearest Neighbor method seem to be suitable to specify gender from human skeletal remains because both yield small apparent error rate of 0.20% and 4.14%, respectively. On the other hand, the Classification Tree, Ward Linkage Cluster, and K-mean Cluster method are not appropriate since they yield large apparent error rate of 10.65%, 10.65%, and 16.37%, respectively. However, there are other ways to evaluate the performance of classification such as an estimate of the error rate using the holdout procedure or misclassification costs, and the difference methods can make the different conclusions.Keywords: skeletal measurements, classification, cluster, apparent error rate
Procedia PDF Downloads 25018332 Improved Classification Procedure for Imbalanced and Overlapped Situations
Authors: Hankyu Lee, Seoung Bum Kim
Abstract:
The issue with imbalance and overlapping in the class distribution becomes important in various applications of data mining. The imbalanced dataset is a special case in classification problems in which the number of observations of one class (i.e., major class) heavily exceeds the number of observations of the other class (i.e., minor class). Overlapped dataset is the case where many observations are shared together between the two classes. Imbalanced and overlapped data can be frequently found in many real examples including fraud and abuse patients in healthcare, quality prediction in manufacturing, text classification, oil spill detection, remote sensing, and so on. The class imbalance and overlap problem is the challenging issue because this situation degrades the performance of most of the standard classification algorithms. In this study, we propose a classification procedure that can effectively handle imbalanced and overlapped datasets by splitting data space into three parts: nonoverlapping, light overlapping, and severe overlapping and applying the classification algorithm in each part. These three parts were determined based on the Hausdorff distance and the margin of the modified support vector machine. An experiments study was conducted to examine the properties of the proposed method and compared it with other classification algorithms. The results showed that the proposed method outperformed the competitors under various imbalanced and overlapped situations. Moreover, the applicability of the proposed method was demonstrated through the experiment with real data.Keywords: classification, imbalanced data with class overlap, split data space, support vector machine
Procedia PDF Downloads 30818331 Impacts of Teachers’ Cluster Model Meeting Intervention on Pupils’ Learning, Academic Achievement and Attitudinal Development in Oyo State, Nigeria
Authors: Olusola Joseph Adesina, Abiodun Ezekiel Adesina
Abstract:
Efforts at improving the falling standard of education in the country call for the need-based assessment of the primary tier of education in Nigeria. Teachers’ cluster meeting intervention is a step towards enhancing the teachers’ professional competency, efficient and effective pupils’ academic achievement and attitudinal development. The study thus determined the impact of the intervention on pupils’ achievement in Oyo State, Nigeria. Three research questions and four hypotheses guided the study. Pre-test, post-test control group, quasi-experimental design was adopted for the study. Eight intact classes from eight different schools were randomly selected into treatment and control groups. Two response instruments, pupils academic achievement test (PAAT; r = 0.87) and pupils attitude to lesson scale (PALS; r = 0.80) were used for data collection. Mean, standard deviation and analysis of covariance (ANCOVA) were used to analyse the collected data. The results showed that the teachers’ cluster meeting have significant impact on pupils academic achievement (F (1,327) =41.79; p<0.05) and attitudinal development (F (1,327) =26.01; p<0.05) in the core subjects of primary schools in Oyo State, Nigeria. The study therefore recommended among others that teachers’ cluster meeting should be sustained for teachers’ professional development and pupils’ upgradement in the State.Keywords: teachers’ cluster meeting, pupils’ academic achievement, pupils’ attitudinal development, academic achievement
Procedia PDF Downloads 47018330 Spatio-temporal Distribution of Surface Water Quality in the Kebir Rhumel Basin, Algeria
Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni, Fatma Elhadj Lakouas
Abstract:
This research aims to present a surface water quality assessment of hydrochemical parameters in the Kebir Rhumel Basin, Algeria. The water quality index (WQI), Mann–Kendall (MK) test, and hierarchical cluster analysis (HCA) were used in oder to understand the spatio-temporal distribution of the surface water quality in the study area. Eleven hydrochemical parameters were measured monthly at eight stations from January 2016 to December 2020. The dominant cation in the surface water was found to be calcium, followed by sodium, and the dominant anion was sulfate, followed by chloride. In terms of WQI, a significant percentage of surface water samples at stations Ain Smara (AS), Beni Haroune (BH), Grarem (GR), and Sidi Khlifa (SK) exhibited poor water quality, with approximately 89.5%, 90.6%, 78.2%, and 62.7%, respectively, falling into this category. Mann–Kendall trend analysis revealed a significantly increasing trend in WQI values at stations Oued Boumerzoug (ON) and SK, indicating that the temporal variation of WQI in these stations is significant. Hierarchical clustering analysis classified the data into three clusters. The first cluster contained approximately 22% of the total number of months, the second cluster included about 30%, and the third cluster had the highest representation, approximately 48% of the total number of months. Within these clusters, certain stations exhibited higher WQI values. In the first cluster, stations GR and ON had the highest WQI values. In the second cluster, stations Oued Boumerzoug (OB) and SK showed the highest WQI values, while in the last cluster, stations AS, BH, El Milia (EM), and Hammam Grouz (HG) had the highest mean WQI values. Also, approximately 38%, 41%, and 38% of the total water samples in the first, second, and third clusters, respectively, were classified as having poor water quality. The findings of this study can serve as a scientific basis for decision-makers to formulate strategies for surface water quality restoration and management in the region.Keywords: surface water, water quality index (WQI), Mann Kendall (MK) test, hierarchical cluster analysis (HCA), spatial-temporal distribution, Kebir Rhumel Basin
Procedia PDF Downloads 2318329 Spatio-Temporal Changes of Rainfall in São Paulo, Brazil (1973-2012): A Gamma Distribution and Cluster Analysis
Authors: Guilherme Henrique Gabriel, Lucí Hidalgo Nunes
Abstract:
An important feature of rainfall regimes is the variability, which is subject to the atmosphere’s general and regional dynamics, geographical position and relief. Despite being inherent to the climate system, it can harshly impact virtually all human activities. In turn, global climate change has the ability to significantly affect smaller-scale rainfall regimes by altering their current variability patterns. In this regard, it is useful to know if regional climates are changing over time and whether it is possible to link these variations to climate change trends observed globally. This study is part of an international project (Metropole-FAPESP, Proc. 2012/51876-0 and Proc. 2015/11035-5) and the objective was to identify and evaluate possible changes in rainfall behavior in the state of São Paulo, southeastern Brazil, using rainfall data from 79 rain gauges for the last forty years. Cluster analysis and gamma distribution parameters were used for evaluating spatial and temporal trends, and the outcomes are presented by means of geographic information systems tools. Results show remarkable changes in rainfall distribution patterns in São Paulo over the years: changes in shape and scale parameters of gamma distribution indicate both an increase in the irregularity of rainfall distribution and the probability of occurrence of extreme events. Additionally, the spatial outcome of cluster analysis along with the gamma distribution parameters suggest that changes occurred simultaneously over the whole area, indicating that they could be related to remote causes beyond the local and regional ones, especially in a current global climate change scenario.Keywords: climate change, cluster analysis, gamma distribution, rainfall
Procedia PDF Downloads 31818328 The Practices and Challenges of Secondary School Cluster Supervisors in Implementing School Improvement Program in Saesie Tsaeda Emba Woreda, Eastern Zone of Tigray Region
Authors: Haftom Teshale Gebre
Abstract:
According to the ministry of education’s school improvement program blueprint document (2007), the timely and basic aim of the program is to improve students’ academic achievement through creating conducive teaching and learning environments and with the active involvement of parents in the teaching and learning process. The general objective of the research is to examine the practices of cluster school supervisors in implementing school improvement programs and the major factors affecting the study area. The study used both primary and secondary sources, and the sample size was 93. Twelve people are chosen from each of the two clusters (Edaga Hamus and Adi-kelebes). And cluster ferewyni are Tekli suwaat, Edaga robue, and Kiros Alemayo. In the analysis stage, several interrelated pieces of information were summarized and arranged to make the analysis easily manageable by using statistics and data (STATA). Study findings revealed that the major four domains impacted by school improvement programs through their mean, standard deviation, and variance were 2.688172, 1.052724, and 1.108228, respectively. And also, the researcher can conclude that the major factors of the school improvement program and mostly cluster supervisors were inadequate attention given to supervision service and no experience in the practice of supervision in the study area.Keywords: cluster, eastern Tigray, Saesie Tsaeda Emba, SPI
Procedia PDF Downloads 3218327 A Clustering Algorithm for Massive Texts
Authors: Ming Liu, Chong Wu, Bingquan Liu, Lei Chen
Abstract:
Internet users have to face the massive amount of textual data every day. Organizing texts into categories can help users dig the useful information from large-scale text collection. Clustering, in fact, is one of the most promising tools for categorizing texts due to its unsupervised characteristic. Unfortunately, most of traditional clustering algorithms lose their high qualities on large-scale text collection. This situation mainly attributes to the high- dimensional vectors generated from texts. To effectively and efficiently cluster large-scale text collection, this paper proposes a vector reconstruction based clustering algorithm. Only the features that can represent the cluster are preserved in cluster’s representative vector. This algorithm alternately repeats two sub-processes until it converges. One process is partial tuning sub-process, where feature’s weight is fine-tuned by iterative process. To accelerate clustering velocity, an intersection based similarity measurement and its corresponding neuron adjustment function are proposed and implemented in this sub-process. The other process is overall tuning sub-process, where the features are reallocated among different clusters. In this sub-process, the features useless to represent the cluster are removed from cluster’s representative vector. Experimental results on the three text collections (including two small-scale and one large-scale text collections) demonstrate that our algorithm obtains high quality on both small-scale and large-scale text collections.Keywords: vector reconstruction, large-scale text clustering, partial tuning sub-process, overall tuning sub-process
Procedia PDF Downloads 43418326 Application of Artificial Immune Systems Combined with Collaborative Filtering in Movie Recommendation System
Authors: Pei-Chann Chang, Jhen-Fu Liao, Chin-Hung Teng, Meng-Hui Chen
Abstract:
This research combines artificial immune system with user and item based collaborative filtering to create an efficient and accurate recommendation system. By applying the characteristic of antibodies and antigens in the artificial immune system and using Pearson correlation coefficient as the affinity threshold to cluster the data, our collaborative filtering can effectively find useful users and items for rating prediction. This research uses MovieLens dataset as our testing target to evaluate the effectiveness of the algorithm developed in this study. The experimental results show that the algorithm can effectively and accurately predict the movie ratings. Compared to some state of the art collaborative filtering systems, our system outperforms them in terms of the mean absolute error on the MovieLens dataset.Keywords: artificial immune system, collaborative filtering, recommendation system, similarity
Procedia PDF Downloads 53518325 An Energy-Balanced Clustering Method on Wireless Sensor Networks
Authors: Yu-Ting Tsai, Chiun-Chieh Hsu, Yu-Chun Chu
Abstract:
In recent years, due to the development of wireless network technology, many researchers have devoted to the study of wireless sensor networks. The applications of wireless sensor network mainly use the sensor nodes to collect the required information, and send the information back to the users. Since the sensed area is difficult to reach, there are many restrictions on the design of the sensor nodes, where the most important restriction is the limited energy of sensor nodes. Because of the limited energy, researchers proposed a number of ways to reduce energy consumption and balance the load of sensor nodes in order to increase the network lifetime. In this paper, we proposed the Energy-Balanced Clustering method with Auxiliary Members on Wireless Sensor Networks(EBCAM)based on the cluster routing. The main purpose is to balance the energy consumption on the sensed area and average the distribution of dead nodes in order to avoid excessive energy consumption because of the increasing in transmission distance. In addition, we use the residual energy and average energy consumption of the nodes within the cluster to choose the cluster heads, use the multi hop transmission method to deliver the data, and dynamically adjust the transmission radius according to the load conditions. Finally, we use the auxiliary cluster members to change the delivering path according to the residual energy of the cluster head in order to its load. Finally, we compare the proposed method with the related algorithms via simulated experiments and then analyze the results. It reveals that the proposed method outperforms other algorithms in the numbers of used rounds and the average energy consumption.Keywords: auxiliary nodes, cluster, load balance, routing algorithm, wireless sensor network
Procedia PDF Downloads 27418324 Industry 4.0 Platforms as 'Cluster' ecosystems for small and medium enterprises (SMEs)
Authors: Vivek Anand, Rainer Naegele
Abstract:
Industry 4.0 is a global mega-trend revolutionizing the world of advanced manufacturing, but also bringing up challenges for SMEs. In response, many regional, as well as digital Industry 4.0 Platforms, have been set up to boost the competencies of established enterprises as well as SMEs. The concept of 'Clusters' is a policy tool that aims to be a starting point to establish sustainable and self-supporting structures in industries of a region by identifying competencies and supporting cluster actors with services that match their growth needs. This paper is motivated by the idea that Clusters have the potential to enable firms, particularly SMEs, to accelerate the innovation process and transition to digital technologies. In this research, the efficacy of Industry 4.0 platforms as Cluster ecosystems is evaluated, especially for SMEs. Focusing on the Baden Wurttemberg region in Germany, an action research method is employed to study how SMEs leverage other actors on Industry 4.0 Platforms to further their Industry 4.0 journeys. The aim is to evaluate how such Industry 4.0 platforms stimulate innovation, cooperation and competitiveness. Additionally, the barriers to these platforms fulfilling their promise to serve as capacity building cluster ecosystems for SMEs in a region will also be identified. The findings will be helpful for academicians and policymakers alike, who can leverage a ‘cluster policy’ to enable Industry 4.0 ecosystems in their regions. Furthermore, relevant management and policy implications stem from the analysis. This will also be of interest to the various players in a cluster ecosystem - like SMEs and service providers - who benefit from the cooperation and competition. The paper will improve the understanding of how a dialogue orientation, a bottom-up approach and active integration of all involved cluster actors enhance the potential of Industry 4.0 Platforms. A strong collaborative culture is a key driver of digital transformation and technology adoption across sectors, value chains and supply chains; and will position Industry 4.0 Platforms at the forefront of the industrial renaissance. Motivated by this argument and based on the results of the qualitative research, a roadmap will be proposed to position Industry 4.0 Platforms as effective clusters ecosystems to support Industry 4.0 adoption in a region.Keywords: cluster policy, digital transformation, industry 4.0, innovation clusters, innovation policy, SMEs and startups
Procedia PDF Downloads 22118323 Improving the Bioprocess Phenotype of Chinese Hamster Ovary Cells Using CRISPR/Cas9 and Sponge Decoy Mediated MiRNA Knockdowns
Authors: Kevin Kellner, Nga Lao, Orla Coleman, Paula Meleady, Niall Barron
Abstract:
Chinese Hamster Ovary (CHO) cells are the prominent cell line used in biopharmaceutical production. To improve yields and find beneficial bioprocess phenotypes genetic engineering plays an essential role in recent research. The miR-23 cluster, specifically miR-24 and miR-27, was first identified as differentially expressed during hypothermic conditions suggesting a role in proliferation and productivity in CHO cells. In this study, we used sponge decoy technology to stably deplete the miRNA expression of the cluster. Furthermore, we implemented the CRISPR/Cas9 system to knockdown miRNA expression. Sponge constructs were designed for an imperfect binding of the miRNA target, protecting from RISC mediated cleavage. GuideRNAs for the CRISPR/Cas9 system were designed to target the seed region of the miRNA. The expression of mature miRNA and precursor were confirmed using RT-qPCR. For both approaches stable expressing mixed populations were generated and characterised in batch cultures. It was shown, that CRISPR/Cas9 can be implemented in CHO cells with achieving high knockdown efficacy of every single member of the cluster. Targeting of one miRNA member showed that its genomic paralog is successfully targeted as well. The stable depletion of miR-24 using CRISPR/Cas9 showed increased growth and specific productivity in a CHO-K1 mAb expressing cell line. This phenotype was further characterized using quantitative label-free LC-MS/MS showing 186 proteins differently expressed with 19 involved in proliferation and 26 involved in protein folding/translation. Targeting miR-27 in the same cell line showed increased viability in late stages of the culture compared to the control. To evaluate the phenotype in an industry relevant cell line; the miR-23 cluster, miR-24 and miR-27 were stably depleted in a Fc fusion CHO-S cell line which showed increased batch titers up to 1.5-fold. In this work, we highlighted that the stable depletion of the miR-23 cluster and its members can improve the bioprocess phenotype concerning growth and productivity in two different cell lines. Furthermore, we showed that using CRISPR/Cas9 is comparable to the traditional sponge decoy technology.Keywords: Chinese Hamster ovary cells, CRISPR/Cas9, microRNAs, sponge decoy technology
Procedia PDF Downloads 19718322 The Effects of Yield and Yield Components of Some Quality Increase Applications on Razakı Grape Variety
Authors: Şehri Çınar, Aydın Akın
Abstract:
This study was conducted Razakı grape variety (Vitis vinifera L.) and its vine which was aged 19 was grown on 5 BB rootstock in a vegetation period of 2014 in Afyon province in Turkey. In this research, it was investigated whether the applications of Control (C), 1/3 Cluster Tip Reduction (1/3 CTR), Shoot Tip Reduction (STR), 1/3 CTR + STR, Boric Acid (BA), 1/3 CTR + BA, STR + BA, 1/3 CTR + STR + BA on yield and yield components of Razakı grape variety. The results were obtained as the highest fresh grape yield (7.74 kg/vine) with C application, as the highest cluster weight (244.62 g) with STR application, as the highest 100 berry weight (504.08 g) with C application, as the highest maturity index (36.89) with BA application, as the highest must yield (695.00 ml) with BA and (695.00 ml) with 1/3 CTR + STR + BA applications, as the highest intensity of L* color (46.93) with STR and (46.10) with 1/3 CTR + STR + BA applications, as the highest intensity of a* color (-5.37) with 1/3 CTR + STR and (-5.01) with STR, as the highest intensity of b* color (12.59) with STR application. The shoot tip reduction to increase cluster weight and boric acid application to increase maturity index of Razakı grape variety can be recommended.Keywords: razakı, 1/3 cluster tip reduction, shoot tip reduction, boric acid, yield and yield components
Procedia PDF Downloads 47318321 Condition Monitoring System of Mine Air Compressors Based on Wireless Sensor Network
Authors: Sheng Fu, Yinbo Gao, Hao Lin
Abstract:
In the current mine air compressors monitoring system, there are some difficulties in the installation and maintenance because of the wired connection. To solve the problem, this paper introduces a new air compressors monitoring system based on ZigBee in which the monitoring parameters are transmitted wirelessly. The collecting devices are designed to form a cluster network to collect vibration, temperature, and pressure of air cylinders and other parameters. All these devices are battery-powered. Besides, the monitoring software in PC is developed using MFC. Experiments show that the designed wireless sensor network works well in the site environmental condition and the system is very convenient to be installed since the wireless connection. This monitoring system will have a wide application prospect in the upgrade of the old monitoring system of the air compressors.Keywords: condition monitoring, wireless sensor network, air compressor, zigbee, data collecting
Procedia PDF Downloads 50418320 Finding the Longest Common Subsequence in Normal DNA and Disease Affected Human DNA Using Self Organizing Map
Authors: G. Tamilpavai, C. Vishnuppriya
Abstract:
Bioinformatics is an active research area which combines biological matter as well as computer science research. The longest common subsequence (LCSS) is one of the major challenges in various bioinformatics applications. The computation of the LCSS plays a vital role in biomedicine and also it is an essential task in DNA sequence analysis in genetics. It includes wide range of disease diagnosing steps. The objective of this proposed system is to find the longest common subsequence which presents in a normal and various disease affected human DNA sequence using Self Organizing Map (SOM) and LCSS. The human DNA sequence is collected from National Center for Biotechnology Information (NCBI) database. Initially, the human DNA sequence is separated as k-mer using k-mer separation rule. Mean and median values are calculated from each separated k-mer. These calculated values are fed as input to the Self Organizing Map for the purpose of clustering. Then obtained clusters are given to the Longest Common Sub Sequence (LCSS) algorithm for finding common subsequence which presents in every clusters. It returns nx(n-1)/2 subsequence for each cluster where n is number of k-mer in a specific cluster. Experimental outcomes of this proposed system produce the possible number of longest common subsequence of normal and disease affected DNA data. Thus the proposed system will be a good initiative aid for finding disease causing sequence. Finally, performance analysis is carried out for different DNA sequences. The obtained values show that the retrieval of LCSS is done in a shorter time than the existing system.Keywords: clustering, k-mers, longest common subsequence, SOM
Procedia PDF Downloads 26518319 Proposing an Algorithm to Cluster Ad Hoc Networks, Modulating Two Levels of Learning Automaton and Nodes Additive Weighting
Authors: Mohammad Rostami, Mohammad Reza Forghani, Elahe Neshat, Fatemeh Yaghoobi
Abstract:
An Ad Hoc network consists of wireless mobile equipment which connects to each other without any infrastructure, using connection equipment. The best way to form a hierarchical structure is clustering. Various methods of clustering can form more stable clusters according to nodes' mobility. In this research we propose an algorithm, which allocates some weight to nodes based on factors, i.e. link stability and power reduction rate. According to the allocated weight in the previous phase, the cellular learning automaton picks out in the second phase nodes which are candidates for being cluster head. In the third phase, learning automaton selects cluster head nodes, member nodes and forms the cluster. Thus, this automaton does the learning from the setting and can form optimized clusters in terms of power consumption and link stability. To simulate the proposed algorithm we have used omnet++4.2.2. Simulation results indicate that newly formed clusters have a longer lifetime than previous algorithms and decrease strongly network overload by reducing update rate.Keywords: mobile Ad Hoc networks, clustering, learning automaton, cellular automaton, battery power
Procedia PDF Downloads 41018318 Design and Optimization of Open Loop Supply Chain Distribution Network Using Hybrid K-Means Cluster Based Heuristic Algorithm
Authors: P. Suresh, K. Gunasekaran, R. Thanigaivelan
Abstract:
Radio frequency identification (RFID) technology has been attracting considerable attention with the expectation of improved supply chain visibility for consumer goods, apparel, and pharmaceutical manufacturers, as well as retailers and government procurement agencies. It is also expected to improve the consumer shopping experience by making it more likely that the products they want to purchase are available. Recent announcements from some key retailers have brought interest in RFID to the forefront. A modified K- Means Cluster based Heuristic approach, Hybrid Genetic Algorithm (GA) - Simulated Annealing (SA) approach, Hybrid K-Means Cluster based Heuristic-GA and Hybrid K-Means Cluster based Heuristic-GA-SA for Open Loop Supply Chain Network problem are proposed. The study incorporated uniform crossover operator and combined crossover operator in GAs for solving open loop supply chain distribution network problem. The algorithms are tested on 50 randomly generated data set and compared with each other. The results of the numerical experiments show that the Hybrid K-means cluster based heuristic-GA-SA, when tested on 50 randomly generated data set, shows superior performance to the other methods for solving the open loop supply chain distribution network problem.Keywords: RFID, supply chain distribution network, open loop supply chain, genetic algorithm, simulated annealing
Procedia PDF Downloads 16518317 Wind Velocity Climate Zonation Based on Observation Data in Indonesia Using Cluster and Principal Component Analysis
Authors: I Dewa Gede Arya Putra
Abstract:
Principal Component Analysis (PCA) is a mathematical procedure that uses orthogonal transformation techniques to change a set of data with components that may be related become components that are not related to each other. This can have an impact on clustering wind speed characteristics in Indonesia. This study uses data daily wind speed observations of the Site Meteorological Station network for 30 years. Multicollinearity tests were also performed on all of these data before doing clustering with PCA. The results show that the four main components have a total diversity of above 80% which will be used for clusters. Division of clusters using Ward's method obtained 3 types of clusters. Cluster 1 covers the central part of Sumatra Island, northern Kalimantan, northern Sulawesi, and northern Maluku with the climatological pattern of wind speed that does not have an annual cycle and a weak speed throughout the year with a low-speed ranging from 0 to 1,5 m/s². Cluster 2 covers the northern part of Sumatra Island, South Sulawesi, Bali, northern Papua with the climatological pattern conditions of wind speed that have annual cycle variations with low speeds ranging from 1 to 3 m/s². Cluster 3 covers the eastern part of Java Island, the Southeast Nusa Islands, and the southern Maluku Islands with the climatological pattern of wind speed conditions that have annual cycle variations with high speeds ranging from 1 to 4.5 m/s².Keywords: PCA, cluster, Ward's method, wind speed
Procedia PDF Downloads 19418316 Water Distribution Uniformity of Solid-Set Sprinkler Irrigation under Low Operating Pressure
Authors: Manal Osman
Abstract:
Sprinkler irrigation system became more popular to reduce water consumption and increase irrigation efficiency. The water distribution uniformity plays an important role in the performance of the sprinkler irrigation system. The use of low operating pressure instead of high operating pressure can be achieved many benefits including energy and water saving. An experimental study was performed to investigate the water distribution uniformity of the solid-set sprinkler irrigation system under low operating pressure. Different low operating pressures (62, 82, 102 and 122 kPa) were selected. The range of operating pressure was lower than the recommended in the previous studies to investigate the effect of low pressure on the water distribution uniformity. Different nozzle diameters (4, 5, 6 and 7 mm) were used. The outdoor single sprinkler test was performed. The water distribution of single sprinkler, the coefficients of uniformity such as coefficient of uniformity (CU), distribution uniformity of low quarter (DUlq), distribution uniformity of low half (DUlh), coefficient of variation (CV) and the distribution characteristics like rotation speed, throw radius and overlapping distance are presented in this paper.Keywords: low operating pressure, sprinkler irrigation system, water distribution uniformity
Procedia PDF Downloads 58818315 Configuring Resilience and Environmental Sustainability to Achieve Superior Performance under Differing Conditions of Transportation Disruptions
Authors: Henry Ataburo, Dominic Essuman, Emmanuel Kwabena Anin
Abstract:
Recent trends of catastrophic events, such as the Covid-19 pandemic, the Suez Canal blockage, the Russia-Ukraine conflict, the Israel-Hamas conflict, and the climate change crisis, continue to devastate supply chains and the broader society. Prior authors have advocated for a simultaneous pursuit of resilience and sustainability as crucial for navigating these challenges. Nevertheless, the relationship between resilience and sustainability is a rather complex one: resilience and sustainability are considered unrelated, substitutes, or complements. Scholars also suggest that different firms prioritize resilience and sustainability differently for varied strategic reasons. However, we know little about whether, how, and when these choices produce different typologies of firms to explain differences in financial and market performance outcomes. This research draws inferences from the systems configuration approach to organizational fit to contend that a taxonomy of firms may emerge based on how firms configure resilience and environmental sustainability. The study further examines the effects of these taxonomies on financial and market performance in differing transportation disruption conditions. Resilience is operationalized as a firm’s ability to adjust current operations, structure, knowledge, and resources in response to disruptions, whereas environmental sustainability is operationalized as the extent to which a firm deploys resources judiciously and keeps the ecological impact of its operations to the barest minimum. Using primary data from 199 firms in Ghana and cluster analysis as an analytical tool, the study identifies four clusters of firms based on how they prioritize resilience and sustainability: Cluster 1 - "strong, moderate resilience, high sustainability firms," Cluster 2 - "sigh resilience, high sustainability firms," Cluster 3 - "high resilience, strong, moderate sustainability firms," and Cluster 4 - "weak, moderate resilience, strong, moderate sustainability firms". In addition, ANOVA and regression analysis revealed the following findings: Only clusters 1 and 2 were significantly associated with both market and financial performance. Under high transportation disruption conditions, cluster 1 firms excel better in market performance, whereas cluster 2 firms excel better in financial performance. Conversely, under low transportation disruption conditions, cluster 1 firms excel better in financial performance, whereas cluster 2 firms excel better in market performance. The study provides theoretical and empirical evidence of how resilience and environmental sustainability can be configured to achieve specific performance objectives under different disruption conditions.Keywords: resilience, environmental sustainability, developing economy, transportation disruption
Procedia PDF Downloads 6618314 Analysis of Expression Data Using Unsupervised Techniques
Authors: M. A. I Perera, C. R. Wijesinghe, A. R. Weerasinghe
Abstract:
his study was conducted to review and identify the unsupervised techniques that can be employed to analyze gene expression data in order to identify better subtypes of tumors. Identifying subtypes of cancer help in improving the efficacy and reducing the toxicity of the treatments by identifying clues to find target therapeutics. Process of gene expression data analysis described under three steps as preprocessing, clustering, and cluster validation. Feature selection is important since the genomic data are high dimensional with a large number of features compared to samples. Hierarchical clustering and K Means are often used in the analysis of gene expression data. There are several cluster validation techniques used in validating the clusters. Heatmaps are an effective external validation method that allows comparing the identified classes with clinical variables and visual analysis of the classes.Keywords: cancer subtypes, gene expression data analysis, clustering, cluster validation
Procedia PDF Downloads 14718313 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network
Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar
Abstract:
Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network
Procedia PDF Downloads 51618312 Improved Active Constellation Extension for the PAPR Reduction of FBMC-OQAM Signals
Authors: Mounira Laabidi, Rafik Zayani, Ridha Bouallegue, Daniel Roviras
Abstract:
The Filter Bank multicarrier with Offset Quadrature Amplitude Modulation (FBMC-OQAM) has been introduced to overcome the poor spectral characteristics and the waste in both bandwidth and energy caused by the use of the cyclic prefix. However, the FBMC-OQAM signals suffer from the high Peak to Average Power Ratio (PAPR) problem. Due to the overlapping structure of the FBMC-OQAM signals, directly applying the PAPR reduction schemes conceived for the OFDM one turns out to be ineffective. In this paper, we address the problem of PAPR reduction for FBMC-OQAM systems by suggesting a new scheme based on an improved version of Active Constellation Extension scheme (ACE) of OFDM. The proposed scheme, named Rolling Window ACE, takes into consideration the overlapping naturally emanating from the FBMC-OQAM signals.Keywords: ACE, FBMC, OQAM, OFDM, PAPR, rolling-window
Procedia PDF Downloads 54418311 Regression Approach for Optimal Purchase of Hosts Cluster in Fixed Fund for Hadoop Big Data Platform
Authors: Haitao Yang, Jianming Lv, Fei Xu, Xintong Wang, Yilin Huang, Lanting Xia, Xuewu Zhu
Abstract:
Given a fixed fund, purchasing fewer hosts of higher capability or inversely more of lower capability is a must-be-made trade-off in practices for building a Hadoop big data platform. An exploratory study is presented for a Housing Big Data Platform project (HBDP), where typical big data computing is with SQL queries of aggregate, join, and space-time condition selections executed upon massive data from more than 10 million housing units. In HBDP, an empirical formula was introduced to predict the performance of host clusters potential for the intended typical big data computing, and it was shaped via a regression approach. With this empirical formula, it is easy to suggest an optimal cluster configuration. The investigation was based on a typical Hadoop computing ecosystem HDFS+Hive+Spark. A proper metric was raised to measure the performance of Hadoop clusters in HBDP, which was tested and compared with its predicted counterpart, on executing three kinds of typical SQL query tasks. Tests were conducted with respect to factors of CPU benchmark, memory size, virtual host division, and the number of element physical host in cluster. The research has been applied to practical cluster procurement for housing big data computing.Keywords: Hadoop platform planning, optimal cluster scheme at fixed-fund, performance predicting formula, typical SQL query tasks
Procedia PDF Downloads 23218310 Direct Blind Separation Methods for Convolutive Images Mixtures
Authors: Ahmed Hammed, Wady Naanaa
Abstract:
In this paper, we propose a general approach to deal with the problem of a convolutive mixture of images. We use a direct blind source separation method by adding only one non-statistical justified constraint describing the relationships between different mixing matrix at the aim to make its resolution easy. This method can be applied, provided that this constraint is known, to degraded document affected by the overlapping of text-patterns and images. This is due to chemical and physical reactions of the materials (paper, inks,...) occurring during the documents aging, and other unpredictable causes such as humidity, microorganism infestation, human handling, etc. We will demonstrate that this problem corresponds to a convolutive mixture of images. Subsequently, we will show how the validation of our method through numerical examples. We can so obtain clear images from unreadable ones which can be caused by pages superposition, a phenomenon similar to that we find every often in archival documents.Keywords: blind source separation, convoluted mixture, degraded documents, text-patterns overlapping
Procedia PDF Downloads 32218309 Determination of Genotypic Relationship among 12 Sugarcane (Saccharum officinarum) Varieties
Authors: Faith Eweluegim Enahoro-Ofagbe, Alika Eke Joseph
Abstract:
Information on genetic variation within a population is crucial for utilizing heterozygosity for breeding programs that aim to improve crop species. The study was conducted to ascertain the genotypic similarities among twelve sugarcane (Saccharum officinarum) varieties to group them for purposes of hybridizations for cane yield improvement. The experiment was conducted at the University of Benin, Faculty of Agriculture Teaching and Research Farm, Benin City. Twelve sugarcane varieties obtained from National Cereals Research Institute, Badeggi, Niger State, Nigeria, were planted in three replications in a randomized complete block design. Each variety was planted on a five-row plot of 5.0 m in length. Data were collected on 12 agronomic traits, including; the number of millable cane, cane girth, internode length, number of male and female flowers (fuss), days to flag leaf, days to flowering, brix%, cane yield, and others. There were significant differences, according to the findings among the twelve genotypes for the number of days to flag leaf, number of male and female flowers (fuss), and cane yield. The relationship between the twelve sugarcane varieties was expressed using hierarchical cluster analysis. The twelve genotypes were grouped into three major clusters based on hierarchical classification. Cluster I had five genotypes, cluster II had four, and cluster III had three. Cluster III was dominated by varieties characterized by higher cane yield, number of leaves, internode length, brix%, number of millable stalks, stalk/stool, cane girth, and cane length. Cluster II contained genotypes with early maturity characteristics, such as early flowering, early flag leaf development, growth rate, and the number of female and male flowers (fuss). The maximum inter-cluster distance between clusters III and I indicated higher genetic diversity between the two groups. Hybridization between the two groups could result in transgressive recombinants for agronomically important traits.Keywords: sugarcane, Saccharum officinarum, genotype, cluster analysis, principal components analysis
Procedia PDF Downloads 8018308 Effective Nutrition Label Use on Smartphones
Authors: Vladimir Kulyukin, Tanwir Zaman, Sarat Kiran Andhavarapu
Abstract:
Research on nutrition label use identifies four factors that impede comprehension and retention of nutrition information by consumers: label’s location on the package, presentation of information within the label, label’s surface size, and surrounding visual clutter. In this paper, a system is presented that makes nutrition label use more effective for nutrition information comprehension and retention. The system’s front end is a smartphone application. The system’s back end is a four node Linux cluster for image recognition and data storage. Image frames captured on the smartphone are sent to the back end for skewed or aligned barcode recognition. When barcodes are recognized, corresponding nutrition labels are retrieved from a cloud database and presented to the user on the smartphone’s touchscreen. Each displayed nutrition label is positioned centrally on the touchscreen with no surrounding visual clutter. Wikipedia links to important nutrition terms are embedded to improve comprehension and retention of nutrition information. Standard touch gestures (e.g., zoom in/out) available on mainstream smartphones are used to manipulate the label’s surface size. The nutrition label database currently includes 200,000 nutrition labels compiled from public web sites by a custom crawler. Stress test experiments with the node cluster are presented. Implications for proactive nutrition management and food policy are discussed.Keywords: mobile computing, cloud computing, nutrition label use, nutrition management, barcode scanning
Procedia PDF Downloads 37218307 Efficacy of Teachers' Cluster Meetings on Teachers' Lesson Note Preparation and Teaching Performance in Oyo State, Nigeria
Authors: Olusola Joseph Adesina, Sunmaila Oyetunji Raimi, Olufemi Akinloye Bolaji, Abiodun Ezekiel Adesina
Abstract:
The quality of education and the standard of a nation cannot rise above the quality of the teacher (NPE, 2004). Efforts at improving the falling standard of education in the country call for the need-based assessment of the primary tier of education in Nigeria. It was revealed that the teachers’ standard of performance and pupils’ achievement was below average. Teachers’ cluster meeting intervention was therefore recommended as a step towards enhancing the teachers’ professional competency, efficient and effective proactive and interactive lesson presentation. The study thus determined the impact of the intervention on teachers’ professional performance (lesson note preparation and teaching performance) in Oyo State, Nigeria. The main and interaction effects of the gender of the teachers as moderator variable were also determined. Three null hypotheses guided the study. Pre-test, posttest control group quazi experimental design was adopted for the study. Three hundred intact classes from three hundred different schools were randomly selected into treatment and control groups. Two response instruments-Classroom Lesson Note Preparation Checklist (CLNPC; r = 0.89) Cluster Lesson Observation Checklist (CLOC; r = 0.86) were used for data collection. Mean, Standard deviation and Analysis of Covariance (ANCOVA) were used to analyse the collected data. The results showed that the teachers’ cluster meeting have significant impact on teachers’ lesson note preparation (F(1,295) = 31.607; p < 0.05; η2 = .097) and teaching performance (F(1,295) = 20.849; p < 0.05; η2 = .066) in the core subjects of primary schools in Oyo State, Nigeria. The study therefore recommended among others that teachers’ cluster meeting should be sustained for teachers’ professional development in the State.Keywords: teachers’ cluster meeting, teacher lesson note preparation, teaching performance, teachers’ gender, primary schools in Oyo state
Procedia PDF Downloads 34418306 Clustering Based and Centralized Routing Table Topology of Control Protocol in Mobile Wireless Sensor Networks
Authors: Mbida Mohamed, Ezzati Abdellah
Abstract:
A strong challenge in the wireless sensor networks (WSN) is to save the energy and have a long life time in the network without having a high rate of loss information. However, topology control (TC) protocols are designed in a way that the network is divided and having a standard system of exchange packets between nodes. In this article, we will propose a clustering based and centralized routing table protocol of TC (CBCRT) which delegates a leader node that will encapsulate a single routing table in every cluster nodes. Hence, if a node wants to send packets to the sink, it requests the information's routing table of the current cluster from the node leader in order to root the packet.Keywords: mobile wireless sensor networks, routing, topology of control, protocols
Procedia PDF Downloads 272