Search results for: Monte Carlo simulations
2192 Constructing the Density of States from the Parallel Wang Landau Algorithm Overlapping Data
Authors: Arman S. Kussainov, Altynbek K. Beisekov
Abstract:
This work focuses on building an efficient universal procedure to construct a single density of states from the multiple pieces of data provided by the parallel implementation of the Wang Landau Monte Carlo based algorithm. The Ising and Pott models were used as the examples of the two-dimensional spin lattices to construct their densities of states. Sampled energy space was distributed between the individual walkers with certain overlaps. This was made to include the latest development of the algorithm as the density of states replica exchange technique. Several factors of immediate importance for the seamless stitching process have being considered. These include but not limited to the speed and universality of the initial parallel algorithm implementation as well as the data post-processing to produce the expected smooth density of states.Keywords: density of states, Monte Carlo, parallel algorithm, Wang Landau algorithm
Procedia PDF Downloads 4122191 The Effect of Non-Normality on CB-SEM and PLS-SEM Path Estimates
Authors: Z. Jannoo, B. W. Yap, N. Auchoybur, M. A. Lazim
Abstract:
The two common approaches to Structural Equation Modeling (SEM) are the Covariance-Based SEM (CB-SEM) and Partial Least Squares SEM (PLS-SEM). There is much debate on the performance of CB-SEM and PLS-SEM for small sample size and when distributions are non-normal. This study evaluates the performance of CB-SEM and PLS-SEM under normality and non-normality conditions via a simulation. Monte Carlo Simulation in R programming language was employed to generate data based on the theoretical model with one endogenous and four exogenous variables. Each latent variable has three indicators. For normal distributions, CB-SEM estimates were found to be inaccurate for small sample size while PLS-SEM could produce the path estimates. Meanwhile, for a larger sample size, CB-SEM estimates have lower variability compared to PLS-SEM. Under non-normality, CB-SEM path estimates were inaccurate for small sample size. However, CB-SEM estimates are more accurate than those of PLS-SEM for sample size of 50 and above. The PLS-SEM estimates are not accurate unless sample size is very large.Keywords: CB-SEM, Monte Carlo simulation, normality conditions, non-normality, PLS-SEM
Procedia PDF Downloads 4102190 Julia-Based Computational Tool for Composite System Reliability Assessment
Authors: Josif Figueroa, Kush Bubbar, Greg Young-Morris
Abstract:
The reliability evaluation of composite generation and bulk transmission systems is crucial for ensuring a reliable supply of electrical energy to significant system load points. However, evaluating adequacy indices using probabilistic methods like sequential Monte Carlo Simulation can be computationally expensive. Despite this, it is necessary when time-varying and interdependent resources, such as renewables and energy storage systems, are involved. Recent advances in solving power network optimization problems and parallel computing have improved runtime performance while maintaining solution accuracy. This work introduces CompositeSystems, an open-source Composite System Reliability Evaluation tool developed in Julia™, to address the current deficiencies of commercial and non-commercial tools. This work introduces its design, validation, and effectiveness, which includes analyzing two different formulations of the Optimal Power Flow problem. The simulations demonstrate excellent agreement with existing published studies while improving replicability and reproducibility. Overall, the proposed tool can provide valuable insights into the performance of transmission systems, making it an important addition to the existing toolbox for power system planning.Keywords: open-source software, composite system reliability, optimization methods, Monte Carlo methods, optimal power flow
Procedia PDF Downloads 732189 Stochastic Modeling of Secretion Dynamics in Inner Hair Cells of the Auditory Pathway
Authors: Jessica A. Soto-Bear, Virginia González-Vélez, Norma Castañeda-Villa, Amparo Gil
Abstract:
Glutamate release of the cochlear inner hair cell (IHC) ribbon synapse is a fundamental step in transferring sound information in the auditory pathway. Otoferlin is the calcium sensor in the IHC and its activity has been related to many auditory disorders. In order to simulate secretion dynamics occurring in the IHC in a few milliseconds timescale and with high spatial resolution, we proposed an active-zone model solved with Monte Carlo algorithms. We included models for calcium buffered diffusion, calcium-binding schemes for vesicle fusion, and L-type voltage-gated calcium channels. Our results indicate that calcium influx and calcium binding is managing IHC secretion as a function of voltage depolarization, which in turn mean that IHC response depends on sound intensity.Keywords: inner hair cells, Monte Carlo algorithm, Otoferlin, secretion
Procedia PDF Downloads 2212188 Using Monte Carlo Model for Simulation of Rented Housing in Mashhad, Iran
Authors: Mohammad Rahim Rahnama
Abstract:
The study employs Monte Carlo method for simulation of rented housing in Mashhad second largest city in Iran. A total number of 334 rental residential units in Mashhad, including both apartments and houses (villa), were randomly selected from advertisements placed in Khorasan Newspapers during the months of July and August of 2015. In order to simulate the monthly rent price, the rent index was calculated through combining the mortgage and the rent price. In the next step, the relation between the variables of the floor area and that of the number of bedrooms for each unit, in both apartments and houses(villa), was calculated through multivariate regression using SPSS and was coded in XML. The initial model was called using simulation button in SPSS and was simulated using triangular and binominal algorithms. The findings revealed that the average simulated rental index was 548.5$ per month. Calculating the sensitivity of rental index to a number of bedrooms we found that firstly, 97% of units have three bedrooms, and secondly as the number of bedrooms increases from one to three, for the rent price of less than 200$, the percentage of units having one bedroom decreases from 10% to 0. Contrariwise, for units with the rent price of more than 571.4$, the percentage of bedrooms increases from 37% to 48%. In the light of these findings, it becomes clear that planning to build rental residential units, overseeing the rent prices, and granting subsidies to rental residential units, for apartments with two bedrooms, present a felicitous policy for regulating residential units in Mashhad.Keywords: Mashhad, Monte Carlo, simulation, rent price, residential unit
Procedia PDF Downloads 2752187 Modeling of System Availability and Bayesian Analysis of Bivariate Distribution
Authors: Muhammad Farooq, Ahtasham Gul
Abstract:
To meet the desired standard, it is important to monitor and analyze different engineering processes to get desired output. The bivariate distributions got a lot of attention in recent years to describe the randomness of natural as well as artificial mechanisms. In this article, a bivariate model is constructed using two independent models developed by the nesting approach to study the effect of each component on reliability for better understanding. Further, the Bayes analysis of system availability is studied by considering prior parametric variations in the failure time and repair time distributions. Basic statistical characteristics of marginal distribution, like mean median and quantile function, are discussed. We use inverse Gamma prior to study its frequentist properties by conducting Monte Carlo Markov Chain (MCMC) sampling scheme.Keywords: reliability, system availability Weibull, inverse Lomax, Monte Carlo Markov Chain, Bayesian
Procedia PDF Downloads 712186 Unsteady Three-Dimensional Adaptive Spatial-Temporal Multi-Scale Direct Simulation Monte Carlo Solver to Simulate Rarefied Gas Flows in Micro/Nano Devices
Authors: Mirvat Shamseddine, Issam Lakkis
Abstract:
We present an efficient, three-dimensional parallel multi-scale Direct Simulation Monte Carlo (DSMC) algorithm for the simulation of unsteady rarefied gas flows in micro/nanosystems. The algorithm employs a novel spatiotemporal adaptivity scheme. The scheme performs a fully dynamic multi-level grid adaption based on the gradients of flow macro-parameters and an automatic temporal adaptation. The computational domain consists of a hierarchical octree-based Cartesian grid representation of the flow domain and a triangular mesh for the solid object surfaces. The hybrid mesh, combined with the spatiotemporal adaptivity scheme, allows for increased flexibility and efficient data management, rendering the framework suitable for efficient particle-tracing and dynamic grid refinement and coarsening. The parallel algorithm is optimized to run DSMC simulations of strongly unsteady, non-equilibrium flows over multiple cores. The presented method is validated by comparing with benchmark studies and then employed to improve the design of micro-scale hotwire thermal sensors in rarefied gas flows.Keywords: DSMC, oct-tree hierarchical grid, ray tracing, spatial-temporal adaptivity scheme, unsteady rarefied gas flows
Procedia PDF Downloads 2992185 In-Farm Wood Gasification Energy Micro-Generation System in Brazil: A Monte Carlo Viability Simulation
Authors: Erich Gomes Schaitza, Antônio Francisco Savi, Glaucia Aparecida Prates
Abstract:
The penetration of renewable energy into the electricity supply in Brazil is high, one of the highest in the World. Centralized hydroelectric generation is the main source of energy, followed by biomass and wind. Surprisingly, mini and micro-generation are negligible, with less than 2,000 connections to the national grid. In 2015, a new regulatory framework was put in place to change this situation. In the agricultural sector, the framework was complemented by the offer of low interest rate loans to in-farm renewable generation. Brazil proposed to more than double its area of planted forests as part of its INDC- Intended Nationally Determined Contributions to the UNFCCC-U.N. Framework Convention on Climate Change (UNFCCC). This is an ambitious target which will be achieved only if forests are attractive to farmers. Therefore, this paper analyses whether planting forests for in-farm energy generation with a with a woodchip gasifier is economically viable for microgeneration under the new framework and at if they could be an economic driver for forest plantation. At first, a static case was analyzed with data from Eucalyptus plantations in five farms. Then, a broader analysis developed with the use of Monte Carlo technique. Planting short rotation forests to generate energy could be a viable alternative and the low interest loans contribute to that. There are some barriers to such systems such as the inexistence of a mature market for small scale equipment and of a reference network of good practices and examples.Keywords: biomass, distribuited generation, small-scale, Monte Carlo
Procedia PDF Downloads 2852184 Unit Root Tests Based On the Robust Estimator
Authors: Wararit Panichkitkosolkul
Abstract:
The unit root tests based on the robust estimator for the first-order autoregressive process are proposed and compared with the unit root tests based on the ordinary least squares (OLS) estimator. The percentiles of the null distributions of the unit root test are also reported. The empirical probabilities of Type I error and powers of the unit root tests are estimated via Monte Carlo simulation. Simulation results show that all unit root tests can control the probability of Type I error for all situations. The empirical power of the unit root tests based on the robust estimator are higher than the unit root tests based on the OLS estimator.
Keywords: autoregressive, ordinary least squares, type i error, power of the test, Monte Carlo simulation
Procedia PDF Downloads 2892183 Modeling the Transport of Charge Carriers in the Active Devices MESFET Based of GaInP by the Monte Carlo Method
Authors: N. Massoum, A. Guen. Bouazza, B. Bouazza, A. El Ouchdi
Abstract:
The progress of industry integrated circuits in recent years has been pushed by continuous miniaturization of transistors. With the reduction of dimensions of components at 0.1 micron and below, new physical effects come into play as the standard simulators of two dimensions (2D) do not consider. In fact the third dimension comes into play because the transverse and longitudinal dimensions of the components are of the same order of magnitude. To describe the operation of such components with greater fidelity, we must refine simulation tools and adapted to take into account these phenomena. After an analytical study of the static characteristics of the component, according to the different operating modes, a numerical simulation is performed of field-effect transistor with submicron gate MESFET GaInP. The influence of the dimensions of the gate length is studied. The results are used to determine the optimal geometric and physical parameters of the component for their specific applications and uses.Keywords: Monte Carlo simulation, transient electron transport, MESFET device, GaInP
Procedia PDF Downloads 4192182 Multiscale Simulation of Ink Seepage into Fibrous Structures through a Mesoscopic Variational Model
Authors: Athmane Bakhta, Sebastien Leclaire, David Vidal, Francois Bertrand, Mohamed Cheriet
Abstract:
This work presents a new three-dimensional variational model proposed for the simulation of ink seepage into paper sheets at the fiber level. The model, inspired by the Hising model, takes into account a finite volume of ink and describes the system state through gravity, cohesion, and adhesion force interactions. At the mesoscopic scale, the paper substrate is modeled using a discretized fiber structure generated using a numerical deposition procedure. A modified Monte Carlo method is introduced for the simulation of the ink dynamics. Besides, a multiphase lattice Boltzmann method is suggested to fine-tune the mesoscopic variational model parameters, and it is shown that the ink seepage behaviors predicted by the proposed model can resemble those predicted by a method relying on first principles.Keywords: fibrous media, lattice Boltzmann, modelling and simulation, Monte Carlo, variational model
Procedia PDF Downloads 1472181 Comparison of Water Equivalent Ratio of Several Dosimetric Materials in Proton Therapy Using Monte Carlo Simulations and Experimental Data
Authors: M. R. Akbari , H. Yousefnia, E. Mirrezaei
Abstract:
Range uncertainties of protons are currently a topic of interest in proton therapy. Two of the parameters that are often used to specify proton range are water equivalent thickness (WET) and water equivalent ratio (WER). Since WER values for a specific material is nearly constant at different proton energies, it is a more useful parameter to compare. In this study, WER values were calculated for different proton energies in polymethyl methacrylate (PMMA), polystyrene (PS) and aluminum (Al) using FLUKA and TRIM codes. The results were compared with analytical, experimental and simulated SEICS code data obtained from the literature. In FLUKA simulation, a cylindrical phantom, 1000 mm in height and 300 mm in diameter, filled with the studied materials was simulated. A typical mono-energetic proton pencil beam in a wide range of incident energies usually applied in proton therapy (50 MeV to 225 MeV) impinges normally on the phantom. In order to obtain the WER values for the considered materials, cylindrical detectors, 1 mm in height and 20 mm in diameter, were also simulated along the beam trajectory in the phantom. In TRIM calculations, type of projectile, energy and angle of incidence, type of target material and thickness should be defined. The mode of 'detailed calculation with full damage cascades' was selected for proton transport in the target material. The biggest difference in WER values between the codes was 3.19%, 1.9% and 0.67% for Al, PMMA and PS, respectively. In Al and PMMA, the biggest difference between each code and experimental data was 1.08%, 1.26%, 2.55%, 0.94%, 0.77% and 0.95% for SEICS, FLUKA and SRIM, respectively. FLUKA and SEICS had the greatest agreement (≤0.77% difference in PMMA and ≤1.08% difference in Al, respectively) with the available experimental data in this study. It is concluded that, FLUKA and TRIM codes have capability for Bragg curves simulation and WER values calculation in the studied materials. They can also predict Bragg peak location and range of proton beams with acceptable accuracy.Keywords: water equivalent ratio, dosimetric materials, proton therapy, Monte Carlo simulations
Procedia PDF Downloads 3232180 Estimation of Location and Scale Parameters of Extended Exponential Distribution Based on Record Statistics
Authors: E. Krishna
Abstract:
An Extended form of exponential distribution using Marshall and Olkin method is introduced.The location scale family of these distributions is considered. For location scale free family, exact expressions for single and product moments of upper record statistics are derived. The mean, variance and covariance of record values are computed for various values of the shape parameter. Using these the BLUE's of location and scale parameters are derived.The variances and covariance of estimates are obtained.Through Monte Carlo simulation the condence intervals for location and scale parameters are constructed.The Best liner unbiased Predictor (BLUP) of future records are also discussed.Keywords: BLUE, BLUP, condence interval, Marshall-Olkin distribution, Monte Carlo simulation, prediction of future records, record statistics
Procedia PDF Downloads 4172179 Monte Carlo Neutronic Calculations on Laser Inertial Fusion Energy (LIFE)
Authors: Adem Acır
Abstract:
In this study, time dependent neutronic analysis of incineration of minor actinides of a Laser Fusion Inertial Confinement Fusion Fission Energy (LIFE) engine was performed. The calculations were carried out by using MCNP codes with ENDF/B.VI neutron data library. In the neutronic calculations, TRISO particles fueled with minor actinides with natural lithium coolant were performed. The natural lithium cooled LIFE engine used 10 % TRISO fuel minor actinides composition. Tritium breeding ratios (TBR) and energy multiplication factor (M) burnup values were computed as 1.46 and 3.75, respectively. The reactor operation time was calculated as ~ 21 years. The burnup values were obtained as ~1060 GWD/MT, respectively. As a result, the very higher burnup were achieved of LIFE engine.Keywords: Monte Carlo, minor actinides, nuclear waste, LIFE engine
Procedia PDF Downloads 2932178 Bayesian Parameter Inference for Continuous Time Markov Chains with Intractable Likelihood
Authors: Randa Alharbi, Vladislav Vyshemirsky
Abstract:
Systems biology is an important field in science which focuses on studying behaviour of biological systems. Modelling is required to produce detailed description of the elements of a biological system, their function, and their interactions. A well-designed model requires selecting a suitable mechanism which can capture the main features of the system, define the essential components of the system and represent an appropriate law that can define the interactions between its components. Complex biological systems exhibit stochastic behaviour. Thus, using probabilistic models are suitable to describe and analyse biological systems. Continuous-Time Markov Chain (CTMC) is one of the probabilistic models that describe the system as a set of discrete states with continuous time transitions between them. The system is then characterised by a set of probability distributions that describe the transition from one state to another at a given time. The evolution of these probabilities through time can be obtained by chemical master equation which is analytically intractable but it can be simulated. Uncertain parameters of such a model can be inferred using methods of Bayesian inference. Yet, inference in such a complex system is challenging as it requires the evaluation of the likelihood which is intractable in most cases. There are different statistical methods that allow simulating from the model despite intractability of the likelihood. Approximate Bayesian computation is a common approach for tackling inference which relies on simulation of the model to approximate the intractable likelihood. Particle Markov chain Monte Carlo (PMCMC) is another approach which is based on using sequential Monte Carlo to estimate intractable likelihood. However, both methods are computationally expensive. In this paper we discuss the efficiency and possible practical issues for each method, taking into account the computational time for these methods. We demonstrate likelihood-free inference by performing analysing a model of the Repressilator using both methods. Detailed investigation is performed to quantify the difference between these methods in terms of efficiency and computational cost.Keywords: Approximate Bayesian computation(ABC), Continuous-Time Markov Chains, Sequential Monte Carlo, Particle Markov chain Monte Carlo (PMCMC)
Procedia PDF Downloads 2022177 Forecasting Market Share of Electric Vehicles in Taiwan Using Conjoint Models and Monte Carlo Simulation
Authors: Li-hsing Shih, Wei-Jen Hsu
Abstract:
Recently, the sale of electrical vehicles (EVs) has increased dramatically due to maturing technology development and decreasing cost. Governments of many countries have made regulations and policies in favor of EVs due to their long-term commitment to net zero carbon emissions. However, due to uncertain factors such as the future price of EVs, forecasting the future market share of EVs is a challenging subject for both the auto industry and local government. This study tries to forecast the market share of EVs using conjoint models and Monte Carlo simulation. The research is conducted in three phases. (1) A conjoint model is established to represent the customer preference structure on purchasing vehicles while five product attributes of both EV and internal combustion engine vehicles (ICEV) are selected. A questionnaire survey is conducted to collect responses from Taiwanese consumers and estimate the part-worth utility functions of all respondents. The resulting part-worth utility functions can be used to estimate the market share, assuming each respondent will purchase the product with the highest total utility. For example, attribute values of an ICEV and a competing EV are given respectively, two total utilities of the two vehicles of a respondent are calculated and then knowing his/her choice. Once the choices of all respondents are known, an estimate of market share can be obtained. (2) Among the attributes, future price is the key attribute that dominates consumers’ choice. This study adopts the assumption of a learning curve to predict the future price of EVs. Based on the learning curve method and past price data of EVs, a regression model is established and the probability distribution function of the price of EVs in 2030 is obtained. (3) Since the future price is a random variable from the results of phase 2, a Monte Carlo simulation is then conducted to simulate the choices of all respondents by using their part-worth utility functions. For instance, using one thousand generated future prices of an EV together with other forecasted attribute values of the EV and an ICEV, one thousand market shares can be obtained with a Monte Carlo simulation. The resulting probability distribution of the market share of EVs provides more information than a fixed number forecast, reflecting the uncertain nature of the future development of EVs. The research results can help the auto industry and local government make more appropriate decisions and future action plans.Keywords: conjoint model, electrical vehicle, learning curve, Monte Carlo simulation
Procedia PDF Downloads 692176 Formulating the Stochastic Finite Elements for Free Vibration Analysis of Plates with Variable Elastic Modulus
Authors: Mojtaba Aghamiri Esfahani, Mohammad Karkon, Seyed Majid Hosseini Nezhad, Reza Hosseini-Ara
Abstract:
In this study, the effect of uncertainty in elastic modulus of a plate on free vibration response is investigated. For this purpose, the elastic modulus of the plate is modeled as stochastic variable with normal distribution. Moreover, the distance autocorrelation function is used for stochastic field. Then, by applying the finite element method and Monte Carlo simulation, stochastic finite element relations are extracted. Finally, with a numerical test, the effect of uncertainty in the elastic modulus on free vibration response of a plate is studied. The results show that the effect of uncertainty in elastic modulus of the plate cannot play an important role on the free vibration response.Keywords: stochastic finite elements, plate bending, free vibration, Monte Carlo, Neumann expansion method.
Procedia PDF Downloads 3952175 Reliability Levels of Reinforced Concrete Bridges Obtained by Mixing Approaches
Authors: Adrián D. García-Soto, Alejandro Hernández-Martínez, Jesús G. Valdés-Vázquez, Reyna A. Vizguerra-Alvarez
Abstract:
Reinforced concrete bridges designed by code are intended to achieve target reliability levels adequate for the geographical environment where the code is applicable. Several methods can be used to estimate such reliability levels. Many of them require the establishment of an explicit limit state function (LSF). When such LSF is not available as a close-form expression, the simulation techniques are often employed. The simulation methods are computing intensive and time consuming. Note that if the reliability of real bridges designed by code is of interest, numerical schemes, the finite element method (FEM) or computational mechanics could be required. In these cases, it can be quite difficult (or impossible) to establish a close-form of the LSF, and the simulation techniques may be necessary to compute reliability levels. To overcome the need for a large number of simulations when no explicit LSF is available, the point estimate method (PEM) could be considered as an alternative. It has the advantage that only the probabilistic moments of the random variables are required. However, in the PEM, fitting of the resulting moments of the LSF to a probability density function (PDF) is needed. In the present study, a very simple alternative which allows the assessment of the reliability levels when no explicit LSF is available and without the need of extensive simulations is employed. The alternative includes the use of the PEM, and its applicability is shown by assessing reliability levels of reinforced concrete bridges in Mexico when a numerical scheme is required. Comparisons with results by using the Monte Carlo simulation (MCS) technique are included. To overcome the problem of approximating the probabilistic moments from the PEM to a PDF, a well-known distribution is employed. The approach mixes the PEM and other classic reliability method (first order reliability method, FORM). The results in the present study are in good agreement whit those computed with the MCS. Therefore, the alternative of mixing the reliability methods is a very valuable option to determine reliability levels when no close form of the LSF is available, or if numerical schemes, the FEM or computational mechanics are employed.Keywords: structural reliability, reinforced concrete bridges, combined approach, point estimate method, monte carlo simulation
Procedia PDF Downloads 3462174 The BNCT Project Using the Cf-252 Source: Monte Carlo Simulations
Authors: Marta Błażkiewicz-Mazurek, Adam Konefał
Abstract:
The project can be divided into three main parts: i. modeling the Cf-252 neutron source and conducting an experiment to verify the correctness of the obtained results, ii. design of the BNCT system infrastructure, iii. analysis of the results from the logical detector. Modeling of the Cf-252 source included designing the shape and size of the source as well as the energy and spatial distribution of emitted neutrons. Two options were considered: a point source and a cylindrical spatial source. The energy distribution corresponded to various spectra taken from specialized literature. Directionally isotropic neutron emission was simulated. The simulation results were compared with experimental values determined using the activation detector method using indium foils and cadmium shields. The relative fluence rate of thermal and resonance neutrons was compared in the chosen places in the vicinity of the source. The second part of the project related to the modeling of the BNCT infrastructure consisted of developing a simulation program taking into account all the essential components of this system. Materials with moderating, absorbing, and backscattering properties of neutrons were adopted into the project. Additionally, a gamma radiation filter was introduced into the beam output system. The analysis of the simulation results obtained using a logical detector located at the beam exit from the BNCT infrastructure included neutron energy and their spatial distribution. Optimization of the system involved changing the size and materials of the system to obtain a suitable collimated beam of thermal neutrons.Keywords: BNCT, Monte Carlo, neutrons, simulation, modeling
Procedia PDF Downloads 292173 Wind Fragility for Honeycomb Roof Cladding Panels Using Screw Pull-Out Capacity
Authors: Viriyavudh Sim, Woo Young Jung
Abstract:
The failure of roof cladding mostly occurs due to the failing of the connection between claddings and purlins, which is the pull-out of the screw connecting the two parts when the pull-out load, i.e. typhoon, is higher than the resistance of the connection screw. As typhoon disasters in Korea are constantly on the rise, probability risk assessment (PRA) has become a vital tool to evaluate the performance of civil structures. In this study, we attempted to determine the fragility of roof cladding with the screw connection. Experimental study was performed to evaluate the pull-out resistance of screw joints between honeycomb panels and back frames. Subsequently, by means of Monte Carlo Simulation method, probability of failure for these types of roof cladding was determined. The results that the failure of roof cladding was depends on their location on the roof, for example, the edge most panel has the highest probability of failure.Keywords: Monte Carlo Simulation, roof cladding, screw pull-out strength, wind fragility
Procedia PDF Downloads 2532172 Monte Carlo Simulation of Pion Particles
Authors: Reza Reiazi
Abstract:
Attempts to verify Geant4 hadronic physic to transport antiproton beam using standard physics list have not reach to a reasonable results because of lack of reliable cross section data or non reliable model to predict the final states of annihilated particles. Since most of the antiproton annihilation energy is carried away by recoiling nuclear fragments which are result of pions interactions with surrounding nucleons, it should be investigated if the toolkit verified for pions. Geant4 version 9.4.6.p01 was used. Dose calculation was done using 700 MeV pions hitting a water tank applying standards physic lists. We conclude Geant4 standard physics lists to predict the depth dose of Pion minus beam is not same for all investigated models. Since the nuclear fragments will deposit their energy in a small distance, they are the most important source of dose deposition in the annihilation vertex of antiproton beams.Keywords: Monte Carlo, Pion, simulation, antiproton beam
Procedia PDF Downloads 4312171 Adjusted LOLE and EENS Indices for the Consideration of Load Excess Transfer in Power Systems Adequacy Studies
Authors: François Vallée, Jean-François Toubeau, Zacharie De Grève, Jacques Lobry
Abstract:
When evaluating the capacity of a generation park to cover the load in transmission systems, traditional Loss of Load Expectation (LOLE) and Expected Energy not Served (EENS) indices can be used. If those indices allow computing the annual duration and severity of load non-covering situations, they do not take into account the fact that the load excess is generally shifted from one penury state (hour or quarter of an hour) to the following one. In this paper, a sequential Monte Carlo framework is introduced in order to compute adjusted LOLE and EENS indices. Practically, those adapted indices permit to consider the effect of load excess transfer on the global adequacy of a generation park, providing thus a more accurate evaluation of this quantity.Keywords: expected energy not served, loss of load expectation, Monte Carlo simulation, reliability, wind generation
Procedia PDF Downloads 4102170 Non-Invasive Imaging of Human Tissue Using NIR Light
Authors: Ashwani Kumar
Abstract:
Use of NIR light for imaging the biological tissue and to quantify its optical properties is a good choice over other invasive methods. Optical tomography involves two steps. One is the forward problem and the other is the reconstruction problem. The forward problem consists of finding the measurements of transmitted light through the tissue from source to detector, given the spatial distribution of absorption and scattering properties. The second step is the reconstruction problem. In X-ray tomography, there is standard method for reconstruction called filtered back projection method or the algebraic reconstruction methods. But this method cannot be applied as such, in optical tomography due to highly scattering nature of biological tissue. A hybrid algorithm for reconstruction has been implemented in this work which takes into account the highly scattered path taken by photons while back projecting the forward data obtained during Monte Carlo simulation. The reconstructed image suffers from blurring due to point spread function.Keywords: NIR light, tissue, blurring, Monte Carlo simulation
Procedia PDF Downloads 4932169 Wind Fragility for Soundproof Wall with the Variation of Section Shape of Frame
Authors: Seong Do Kim, Woo Young Jung
Abstract:
Recently, damages due to typhoons and strong wind are on the rise. Considering this issue, we evaluated the performance of soundproofing walls based on the strong wind fragility by means of numerical analysis. Among the components of the soundproof wall, aluminum frame was the most vulnerable member, thus we have considered different section of aluminum frame in the determination of wind fragility. Wind load was randomly generated using Monte Carlo Simulation method. Moreover, limit state was based on the test standard of road construction soundproofing wall. In this study, the strong wind fragility was determined by considering the influence factors of wind exposure category, soundproof wall’s installation position, and shape of aluminum frame section. Results of this study could be used to determine the section shape of the frame that has high resistance to the wind during construction of the soundproofing wall.Keywords: aluminum frame soundproofing wall, Monte Carlo simulation, numerical simulation, wind fragility
Procedia PDF Downloads 2582168 Continuous Wave Interference Effects on Global Position System Signal Quality
Authors: Fang Ye, Han Yu, Yibing Li
Abstract:
Radio interference is one of the major concerns in using the global positioning system (GPS) for civilian and military applications. Interference signals are produced not only through all electronic systems but also illegal jammers. Among different types of interferences, continuous wave (CW) interference has strong adverse impacts on the quality of the received signal. In this paper, we make more detailed analysis for CW interference effects on GPS signal quality. Based on the C/A code spectrum lines, the influence of CW interference on the acquisition performance of GPS receivers is further analysed. This influence is supported by simulation results using GPS software receiver. As the most important user parameter of GPS receivers, the mathematical expression of bit error probability is also derived in the presence of CW interference, and the expression is consistent with the Monte Carlo simulation results. The research on CW interference provides some theoretical gist and new thoughts on monitoring the radio noise environment and improving the anti-jamming ability of GPS receivers.Keywords: GPS, CW interference, acquisition performance, bit error probability, Monte Carlo
Procedia PDF Downloads 2592167 Discrete State Prediction Algorithm Design with Self Performance Enhancement Capacity
Authors: Smail Tigani, Mohamed Ouzzif
Abstract:
This work presents a discrete quantitative state prediction algorithm with intelligent behavior making it able to self-improve some performance aspects. The specificity of this algorithm is the capacity of self-rectification of the prediction strategy before the final decision. The auto-rectification mechanism is based on two parallel mathematical models. In one hand, the algorithm predicts the next state based on event transition matrix updated after each observation. In the other hand, the algorithm extracts its residues trend with a linear regression representing historical residues data-points in order to rectify the first decision if needs. For a normal distribution, the interactivity between the two models allows the algorithm to self-optimize its performance and then make better prediction. Designed key performance indicator, computed during a Monte Carlo simulation, shows the advantages of the proposed approach compared with traditional one.Keywords: discrete state, Markov Chains, linear regression, auto-adaptive systems, decision making, Monte Carlo Simulation
Procedia PDF Downloads 4982166 Simulation of a Pressure Driven Based Subsonic Steady Gaseous Flow inside a Micro Channel Using Direct Simulation Monte-Carlo Method
Authors: Asghar Ebrahimi, Elyas Lakzian
Abstract:
For the analysis of flow inside micro geometries, classical CFD methods can not accurately predict the behavior of flow. Alternatively, the gas flow through micro geometries can be investigated precisely using the direct simulation Monte Carlo (DSMC) method. In the present paper, a pressure boundary condition is utilized to simulate a gaseous flow inside a micro channel using the DSMC method. Accuracy of simulation is guaranteed by choosing proper cell dimension and number of particle per cell analysis. Also, results of simulation are compared with the results of reliable references. Good agreement with results certifies the correctness of new boundary condition implemented on the micro channel.Keywords: pressure boundary condition, DSMC, micro channel, cell dimension, particle per cell
Procedia PDF Downloads 4782165 Uncertainty Analysis of a Hardware in Loop Setup for Testing Products Related to Building Technology
Authors: Balasundaram Prasaant, Ploix Stephane, Delinchant Benoit, Muresan Cristian
Abstract:
Hardware in Loop (HIL) testing is done to test and validate a particular product especially in building technology. When it comes to building technology, it is more important to test the products for their efficiency. The test rig in the HIL simulator may contribute to some uncertainties on measured efficiency. The uncertainties include physical uncertainties and scenario-based uncertainties. In this paper, a simple uncertainty analysis framework for an HIL setup is shown considering only the physical uncertainties. The entire modeling of the HIL setup is done in Dymola. The uncertain sources are considered based on available knowledge of the components and also on expert knowledge. For the propagation of uncertainty, Monte Carlo Simulation is used since it is the most reliable and easy to use. In this article it is shown how an HIL setup can be modeled and how uncertainty propagation can be performed on it. Such an approach is not common in building energy analysis.Keywords: energy in buildings, hardware in loop testing, modelica modelling, Monte Carlo simulation, uncertainty propagation
Procedia PDF Downloads 1372164 Establishment of the Regression Uncertainty of the Critical Heat Flux Power Correlation for an Advanced Fuel Bundle
Authors: L. Q. Yuan, J. Yang, A. Siddiqui
Abstract:
A new regression uncertainty analysis methodology was applied to determine the uncertainties of the critical heat flux (CHF) power correlation for an advanced 43-element bundle design, which was developed by Canadian Nuclear Laboratories (CNL) to achieve improved economics, resource utilization and energy sustainability. The new methodology is considered more appropriate than the traditional methodology in the assessment of the experimental uncertainty associated with regressions. The methodology was first assessed using both the Monte Carlo Method (MCM) and the Taylor Series Method (TSM) for a simple linear regression model, and then extended successfully to a non-linear CHF power regression model (CHF power as a function of inlet temperature, outlet pressure and mass flow rate). The regression uncertainty assessed by MCM agrees well with that by TSM. An equation to evaluate the CHF power regression uncertainty was developed and expressed as a function of independent variables that determine the CHF power.Keywords: CHF experiment, CHF correlation, regression uncertainty, Monte Carlo Method, Taylor Series Method
Procedia PDF Downloads 4162163 Fragility Analysis of Weir Structure Subjected to Flooding Water Damage
Authors: Oh Hyeon Jeon, WooYoung Jung
Abstract:
In this study, seepage analysis was performed by the level difference between upstream and downstream of weir structure for safety evaluation of weir structure against flooding. Monte Carlo Simulation method was employed by considering the probability distribution of the adjacent ground parameter, i.e., permeability coefficient of weir structure. Moreover, by using a commercially available finite element program (ABAQUS), modeling of the weir structure is carried out. Based on this model, the characteristic of water seepage during flooding was determined at each water level with consideration of the uncertainty of their corresponding permeability coefficient. Subsequently, fragility function could be constructed based on this response from numerical analysis; this fragility function results could be used to determine the weakness of weir structure subjected to flooding disaster. They can also be used as a reference data that can comprehensively predict the probability of failur,e and the degree of damage of a weir structure.Keywords: weir structure, seepage, flood disaster fragility, probabilistic risk assessment, Monte-Carlo simulation, permeability coefficient
Procedia PDF Downloads 352