Search results for: Markov chains
614 Computing Transition Intensity Using Time-Homogeneous Markov Jump Process: Case of South African HIV/AIDS Disposition
Authors: A. Bayaga
Abstract:
This research provides a technical account of estimating Transition Probability using Time-homogeneous Markov Jump Process applying by South African HIV/AIDS data from the Statistics South Africa. It employs Maximum Likelihood Estimator (MLE) model to explore the possible influence of Transition Probability of mortality cases in which case the data was based on actual Statistics South Africa. This was conducted via an integrated demographic and epidemiological model of South African HIV/AIDS epidemic. The model was fitted to age-specific HIV prevalence data and recorded death data using MLE model. Though the previous model results suggest HIV in South Africa has declined and AIDS mortality rates have declined since 2002 – 2013, in contrast, our results differ evidently with the generally accepted HIV models (Spectrum/EPP and ASSA2008) in South Africa. However, there is the need for supplementary research to be conducted to enhance the demographic parameters in the model and as well apply it to each of the nine (9) provinces of South Africa.Keywords: AIDS mortality rates, epidemiological model, time-homogeneous markov jump process, transition probability, statistics South Africa
Procedia PDF Downloads 497613 Artificial Neural Networks and Hidden Markov Model in Landslides Prediction
Authors: C. S. Subhashini, H. L. Premaratne
Abstract:
Landslides are the most recurrent and prominent disaster in Sri Lanka. Sri Lanka has been subjected to a number of extreme landslide disasters that resulted in a significant loss of life, material damage, and distress. It is required to explore a solution towards preparedness and mitigation to reduce recurrent losses associated with landslides. Artificial Neural Networks (ANNs) and Hidden Markov Model (HMMs) are now widely used in many computer applications spanning multiple domains. This research examines the effectiveness of using Artificial Neural Networks and Hidden Markov Model in landslides predictions and the possibility of applying the modern technology to predict landslides in a prominent geographical area in Sri Lanka. A thorough survey was conducted with the participation of resource persons from several national universities in Sri Lanka to identify and rank the influencing factors for landslides. A landslide database was created using existing topographic; soil, drainage, land cover maps and historical data. The landslide related factors which include external factors (Rainfall and Number of Previous Occurrences) and internal factors (Soil Material, Geology, Land Use, Curvature, Soil Texture, Slope, Aspect, Soil Drainage, and Soil Effective Thickness) are extracted from the landslide database. These factors are used to recognize the possibility to occur landslides by using an ANN and HMM. The model acquires the relationship between the factors of landslide and its hazard index during the training session. These models with landslide related factors as the inputs will be trained to predict three classes namely, ‘landslide occurs’, ‘landslide does not occur’ and ‘landslide likely to occur’. Once trained, the models will be able to predict the most likely class for the prevailing data. Finally compared two models with regards to prediction accuracy, False Acceptance Rates and False Rejection rates and This research indicates that the Artificial Neural Network could be used as a strong decision support system to predict landslides efficiently and effectively than Hidden Markov Model.Keywords: landslides, influencing factors, neural network model, hidden markov model
Procedia PDF Downloads 384612 Gendered Perceptions in Maize Supply Chains: Evidence from Uganda
Authors: Anusha De, Bjorn Van Campenhout
Abstract:
Faced with imperfect information, economic actors use judgment and perceptions in decision-making. Inaccurate perceptions or false beliefs may result in inefficient value chains, and systematic bias in perceptions may affect inclusiveness. In this paper, perceptions in Ugandan maize supply chains are studied. A random sample of maize farmers where they were asked to rate other value chain actors—agro-input dealers, assembly traders and maize millers—on a set of important attributes such as service quality, price competitiveness, ease of access, and overall reputation. These other value chain actors are tracked and asked to assess themselves on the same attributes. It is observed that input dealers, traders and millers assess themselves more favorably than farmers do. Zooming in on heterogeneity in perceptions related to gender, it is evident that women rate higher than men. The sex of the actor being rated does not affect the rating.Keywords: gender, input dealers, maize supply chain, perceptions, processors
Procedia PDF Downloads 166611 Residual Life Prediction for a System Subject to Condition Monitoring and Two Failure Modes
Authors: Akram Khaleghei, Ghosheh Balagh, Viliam Makis
Abstract:
In this paper, we investigate the residual life prediction problem for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model with unknown parameters. The parameter estimation procedure based on an EM algorithm is developed and the formulas for the conditional reliability function and the mean residual life are derived, illustrated by a numerical example.Keywords: partially observable system, hidden Markov model, competing risks, residual life prediction
Procedia PDF Downloads 415610 The Combination of the Mel Frequency Cepstral Coefficients, Perceptual Linear Prediction, Jitter and Shimmer Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech
Authors: Brahim Fares Zaidi
Abstract:
Our work aims to improve our Automatic Recognition System for Dysarthria Speech based on the Hidden Models of Markov and the Hidden Markov Model Toolkit to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients and Perceptual Linear Prediction and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.Keywords: ARSDS, HTK, HMM, MFCC, PLP
Procedia PDF Downloads 108609 Discrete State Prediction Algorithm Design with Self Performance Enhancement Capacity
Authors: Smail Tigani, Mohamed Ouzzif
Abstract:
This work presents a discrete quantitative state prediction algorithm with intelligent behavior making it able to self-improve some performance aspects. The specificity of this algorithm is the capacity of self-rectification of the prediction strategy before the final decision. The auto-rectification mechanism is based on two parallel mathematical models. In one hand, the algorithm predicts the next state based on event transition matrix updated after each observation. In the other hand, the algorithm extracts its residues trend with a linear regression representing historical residues data-points in order to rectify the first decision if needs. For a normal distribution, the interactivity between the two models allows the algorithm to self-optimize its performance and then make better prediction. Designed key performance indicator, computed during a Monte Carlo simulation, shows the advantages of the proposed approach compared with traditional one.Keywords: discrete state, Markov Chains, linear regression, auto-adaptive systems, decision making, Monte Carlo Simulation
Procedia PDF Downloads 498608 Distribution of Maximum Loss of Fractional Brownian Motion with Drift
Authors: Ceren Vardar Acar, Mine Caglar
Abstract:
In finance, the price of a volatile asset can be modeled using fractional Brownian motion (fBm) with Hurst parameter H>1/2. The Black-Scholes model for the values of returns of an asset using fBm is given as, 〖Y_t=Y_0 e^((r+μ)t+σB)〗_t^H, 0≤t≤T where Y_0 is the initial value, r is constant interest rate, μ is constant drift and σ is constant diffusion coefficient of fBm, which is denoted by B_t^H where t≥0. Black-Scholes model can be constructed with some Markov processes such as Brownian motion. The advantage of modeling with fBm to Markov processes is its capability of exposing the dependence between returns. The real life data for a volatile asset display long-range dependence property. For this reason, using fBm is a more realistic model compared to Markov processes. Investors would be interested in any kind of information on the risk in order to manage it or hedge it. The maximum possible loss is one way to measure highest possible risk. Therefore, it is an important variable for investors. In our study, we give some theoretical bounds on the distribution of maximum possible loss of fBm. We provide both asymptotical and strong estimates for the tail probability of maximum loss of standard fBm and fBm with drift and diffusion coefficients. In the investment point of view, these results explain, how large values of possible loss behave and its bounds.Keywords: maximum drawdown, maximum loss, fractional brownian motion, large deviation, Gaussian process
Procedia PDF Downloads 483607 Excitation Modeling for Hidden Markov Model-Based Speech Synthesis Based on Wavelet Analysis
Authors: M. Kiran Reddy, K. Sreenivasa Rao
Abstract:
The conventional Hidden Markov Model (HMM)-based speech synthesis system (HTS) uses only a pulse excitation model, which significantly differs from natural excitation signal. Hence, buzziness can be perceived in the speech generated using HTS. This paper proposes an efficient excitation modeling method that can significantly reduce the buzziness, and improve the quality of HMM-based speech synthesis. The proposed approach models the pitch-synchronous residual frames extracted from the residual excitation signal. Each pitch synchronous residual frame is parameterized using 30 wavelet coefficients. These 30 wavelet coefficients are found to accurately capture the perceptually important information present in the residual waveform. In synthesis phase, the residual frames are reconstructed from the generated wavelet coefficients and are pitch-synchronously overlap-added to generate the excitation signal. The proposed excitation modeling method is integrated into HMM-based speech synthesis system. Evaluation results indicate that the speech synthesized by the proposed excitation model is significantly better than the speech generated using state-of-the-art excitation modeling methods.Keywords: excitation modeling, hidden Markov models, pitch-synchronous frames, speech synthesis, wavelet coefficients
Procedia PDF Downloads 249606 Role of Water Supply in the Functioning of the MLDB Systems
Authors: Ramanpreet Kaur, Upasana Sharma
Abstract:
The purpose of this paper is to address the challenges faced by MLDB system at the piston foundry plant due to interruption in supply of water. For the MLDB system to work in Model, two sub-units must be connected to the robotic main unit. The system cannot function without robotics and water supply by the fan (WSF). Insufficient water supply is the cause of system failure. The system operates at top performance using two sub-units. If one sub-unit fails, the system capacity is reduced. Priority of repair is given to the main unit i.e. Robotic and WSF. To solve the problem, semi-Markov process and regenerative point technique are used. Relevant graphs are also included to particular case.Keywords: MLDB system, robotic, semi-Markov process, regenerative point technique
Procedia PDF Downloads 77605 Estimating Knowledge Flow Patterns of Business Method Patents with a Hidden Markov Model
Authors: Yoonjung An, Yongtae Park
Abstract:
Knowledge flows are a critical source of faster technological progress and stouter economic growth. Knowledge flows have been accelerated dramatically with the establishment of a patent system in which each patent is required by law to disclose sufficient technical information for the invention to be recreated. Patent analysis, thus, has been widely used to help investigate technological knowledge flows. However, the existing research is limited in terms of both subject and approach. Particularly, in most of the previous studies, business method (BM) patents were not covered although they are important drivers of knowledge flows as other patents. In addition, these studies usually focus on the static analysis of knowledge flows. Some use approaches that incorporate the time dimension, yet they still fail to trace a true dynamic process of knowledge flows. Therefore, we investigate dynamic patterns of knowledge flows driven by BM patents using a Hidden Markov Model (HMM). An HMM is a popular statistical tool for modeling a wide range of time series data, with no general theoretical limit in regard to statistical pattern classification. Accordingly, it enables characterizing knowledge patterns that may differ by patent, sector, country and so on. We run the model in sets of backward citations and forward citations to compare the patterns of knowledge utilization and knowledge dissemination.Keywords: business method patents, dynamic pattern, Hidden-Markov Model, knowledge flow
Procedia PDF Downloads 328604 Cooperative Communication of Energy Harvesting Synchronized-OOK IR-UWB Based Tags
Authors: M. A. Mulatu, L. C. Chang, Y. S. Han
Abstract:
Energy harvesting tags with cooperative communication capabilities are emerging as possible infrastructure for internet of things (IoT) applications. This paper studies about the \ cooperative transmission strategy for a network of energy harvesting active networked tags (EnHANTs), that is adapted to the available energy resource and identification request. We consider a network of EnHANT-equipped objects to communicate with the destination either directly or by cooperating with neighboring objects. We formulate the the problem as a Markov decision process (MDP) under synchronised On/Off keying (S-OOK) pulse modulation format. The simulation results are provided to show the the performance of the cooperative transmission policy and compared against the greedy and conservative policies of single-link transmission.Keywords: cooperative communication, transmission strategy, energy harvesting, Markov decision process, value iteration
Procedia PDF Downloads 492603 Industrial Ecology Perspectives of Food Supply Chains: A Framework of Analysis
Authors: Luciano Batista, Sylvia Saes, Nuno Fouto, Liam Fassam
Abstract:
This paper introduces the theoretical and methodological basis of an analytical framework conceived with the purpose of bringing industrial ecology perspectives into the core of the underlying disciplines supporting analyses in studies concerned with environmental sustainability aspects beyond the product cycle in a supply chain. Given the pressing challenges faced by the food sector, the framework focuses upon waste minimization through industrial linkages in food supply chains. The combination of industrial ecology practice with basic LCA elements, the waste hierarchy model, and the spatial scale of industrial symbiosis allows the standardization of qualitative analyses and associated outcomes. Such standardization enables comparative analysis not only between different stages of a supply chain, but also between different supply chains. The analytical approach proposed contributes more coherently to the wider circular economy aspiration of optimizing the flow of goods to get the most out of raw materials and cuts wastes to a minimum.Keywords: by-product synergy, food supply chain, industrial ecology, industrial symbiosis
Procedia PDF Downloads 421602 Dynamic Network Approach to Air Traffic Management
Authors: Catia S. A. Sima, K. Bousson
Abstract:
Congestion in the Terminal Maneuvering Areas (TMAs) of larger airports impacts all aspects of air traffic flow, not only at national level but may also induce arrival delays at international level. Hence, there is a need to monitor appropriately the air traffic flow in TMAs so that efficient decisions may be taken to manage their occupancy rates. It would be desirable to physically increase the existing airspace to accommodate all existing demands, but this question is entirely utopian and, given this possibility, several studies and analyses have been developed over the past decades to meet the challenges that have arisen due to the dizzying expansion of the aeronautical industry. The main objective of the present paper is to propose concepts to manage and reduce the degree of uncertainty in the air traffic operations, maximizing the interest of all involved, ensuring a balance between demand and supply, and developing and/or adapting resources that enable a rapid and effective adaptation of measures to the current context and the consequent changes perceived in the aeronautical industry. A central task is to emphasize the increase in air traffic flow management capacity to the present day, taking into account not only a wide range of methodologies but also equipment and/or tools already available in the aeronautical industry. The efficient use of these resources is crucial as the human capacity for work is limited and the actors involved in all processes related to air traffic flow management are increasingly overloaded and, as a result, operational safety could be compromised. The methodology used to answer and/or develop the issues listed above is based on the advantages promoted by the application of Markov Chain principles that enable the construction of a simplified model of a dynamic network that describes the air traffic flow behavior anticipating their changes and eventual measures that could better address the impact of increased demand. Through this model, the proposed concepts are shown to have potentials to optimize the air traffic flow management combined with the operation of the existing resources at each moment and the circumstances found in each TMA, using historical data from the air traffic operations and specificities found in the aeronautical industry, namely in the Portuguese context.Keywords: air traffic flow, terminal maneuvering area, TMA, air traffic management, ATM, Markov chains
Procedia PDF Downloads 133601 A Condition-Based Maintenance Policy for Multi-Unit Systems Subject to Deterioration
Authors: Nooshin Salari, Viliam Makis
Abstract:
In this paper, we propose a condition-based maintenance policy for multi-unit systems considering the existence of economic dependency among units. We consider a system composed of N identical units, where each unit deteriorates independently. Deterioration process of each unit is modeled as a three-state continuous time homogeneous Markov chain with two working states and a failure state. The average production rate of units varies in different working states and demand rate of the system is constant. Units are inspected at equidistant time epochs, and decision regarding performing maintenance is determined by the number of units in the failure state. If the total number of units in the failure state exceeds a critical level, maintenance is initiated, where units in failed state are replaced correctively and deteriorated state units are maintained preventively. Our objective is to determine the optimal number of failed units to initiate maintenance minimizing the long run expected average cost per unit time. The problem is formulated and solved in the semi-Markov decision process (SMDP) framework. A numerical example is developed to demonstrate the proposed policy and the comparison with the corrective maintenance policy is presented.Keywords: reliability, maintenance optimization, semi-Markov decision process, production
Procedia PDF Downloads 165600 Effect of Chain Length on Skeletonema pseudocostatum as Probed by THz Spectroscopy
Authors: Ruqyyah Mushtaq, Chiacar Gamberdella, Roberta Miroglio, Fabio Novelli, Domenica Papro, M. Paturzo, A. Rubano, Angela Sardo
Abstract:
Microalgae, particularly diatoms, are well suited for monitoring environmental health, especially in assessing the quality of seas and rivers in terms of organic matter, nutrients, and heavy metal pollution. They respond rapidly to changes in habitat quality. In this study, we focused on Skeletonema pseudocostatum, a unicellular alga that forms chains depending on environmental conditions. Specifically, we explored whether metal toxicants could affect the growth of these algal chains, potentially serving as an ecotoxicological indicator of heavy metal pollution. We utilized THz spectroscopy in conjunction with standard optical microscopy to observe the formation of these chains and their response to toxicants. Despite the strong absorption of terahertz radiation in water, we demonstrate that changes in water absorption in the terahertz range due to water-diatom interaction can provide insights into diatom chain length.Keywords: THz-TDS spectroscopy, diatoms, marine ecotoxicology, marine pollution
Procedia PDF Downloads 31599 Modified Weibull Approach for Bridge Deterioration Modelling
Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight
Abstract:
State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models
Procedia PDF Downloads 728598 Development of Entrepreneurship in Industry on the Basis of Regulation of Transnational Production Chains in the Russian Arctic
Authors: E. N. Vetrova, L.V. Lapochkina, N. V. Nikulina
Abstract:
In the national economy, entrepreneurship plays the role of a buffer between economy and policy for it contributes to improving budget effectiveness and decreasing dependence of economy on the state. Entrepreneurship in industry makes it possible to increase the added value that is formed in production chains and to decrease dependence on import. Under the current circumstances, when sanctions are being imposed, this is especially relevant for Russia and for the realization of projects in the Russian Arctic. However, development of entrepreneurship in industry requires an enlightened state policy. The purpose of the research is elaboration of recommendations for improving economic effectiveness of the realization of the Arctic projects on the basis of conceptual proposals for the development of entrepreneurship in industry. The paper presents the studies of the extractive industry role in the Russian economy and proves its raw material character. The analysis of production chains in industry on the basis of the conception of the added value global chains demonstrated a low added value formed by Russian companies. The study of changes in the structure of economy based on systemic, statistical and comparative analyses revealed no positive changes in the structure of economy over the period under consideration. This is a manifestation of ineffectiveness of the Russian industrial policy in general and within the Arctic region in particular. The authors identified the problems information and implementation of the state industrial policy in the Arctic region and in the development of national entrepreneurship, analyzed the shortcomings of the current state policy in the sphere of the Russian industry. On the basis of the conducted studies, the authors formulated conceptual approaches to change the state policy in the Arctic. The basic idea of the authors is to substantiate the focus of the state regulation on the development of entrepreneurship in industry in the process of the Russian Arctic exploration. At the same time another problem is solved–that of the development of the manufacturing industry in the southern regions of the northwestern part of Russia. The criterion of effectiveness in this case is the economic effectiveness.Keywords: entrepreneurship in industry, global chains of the added value, government regulation, industrial policies, production chains in the arctic region, economic effectiveness
Procedia PDF Downloads 386597 Dynamics of Smallholder Farmer Adoption of High Value Horticultural Crops in Indonesia
Authors: Suprehatin Suprehatin
Abstract:
Improving the participation of smallholder farmers in horticultural value chains to benefit from the rapidly growing demand for high-value agricultural products is one strategy for raising farm income. However, smallholder farmer participation in Indonesian horticultural value chains is under-researched. To address this knowledge gap, this study aims to describe the current status of horticultural crop adoption in Indonesia and analyze the motivations and dynamics of smallholder farmer participation in horticultural value chains: why some small farmers join these new and potentially profitable chains and continue their participation. This study also examines the characteristics of farmers who adopted and those who did not adopt a new horticultural crop with respect to the household (farmer), farm and institutional characteristics. The analysis was conducted using unique data from a 2013 survey of 960 Indonesian farmers on Java Island that produce a variety of agricultural products. Basic statistical analysis showed relatively low adoption rates (10%) of new horticultural crops amongst 960 selected Indonesian farmers with different decisions made in terms of number and timing of new horticultural crop adoption. Adopters were motivated mainly by higher profit, higher yield, and more cash opportunities. The result also showed that current low rates of horticultural crop adoption are associated with a variety of factors, such as lower levels of education among farmers, resource constraints, lack of information on horticultural crop production and low participation in farmer groups. These findings will be helpful for policymakers when designing policies and programs to promote greater participation of Indonesian smallholder farmers in horticultural value chains. In other words, a revitalisation of agricultural policy beyond staple food is important to seize potential benefits from the ongoing agricultural food market transformation.Keywords: farmer adoption, high value, horticultural crops, Indonesia
Procedia PDF Downloads 281596 Stability Bound of Ruin Probability in a Reduced Two-Dimensional Risk Model
Authors: Zina Benouaret, Djamil Aissani
Abstract:
In this work, we introduce the qualitative and quantitative concept of the strong stability method in the risk process modeling two lines of business of the same insurance company or an insurance and re-insurance companies that divide between them both claims and premiums with a certain proportion. The approach proposed is based on the identification of the ruin probability associate to the model considered, with a stationary distribution of a Markov random process called a reversed process. Our objective, after clarifying the condition and the perturbation domain of parameters, is to obtain the stability inequality of the ruin probability which is applied to estimate the approximation error of a model with disturbance parameters by the considered model. In the stability bound obtained, all constants are explicitly written.Keywords: Markov chain, risk models, ruin probabilities, strong stability analysis
Procedia PDF Downloads 249595 Modeling of Production Lines Systems with Layout Constraints
Authors: Sadegh Abebi
Abstract:
There are problems with estimating time of product process of products, especially when there is variable serving time, like control stage. These problems will cause overestimation of process time. Layout constraints, reworking constraints and inflexible product schedule in multi product lines, needs a precise planning to reduce volume in particular situation of line stock. In this article, by analyzing real queue systems with layout constraints and by using concepts and principles of Markov chain in queue theory, a hybrid model has been presented. This model can be a base to assess queue systems with probable parameters of service. Here by presenting a case study, the proposed model will be described. so, production lines of a home application manufacturer will be analyzed.Keywords: Queuing theory, Markov Chain, layout, line balance
Procedia PDF Downloads 625594 A New Verification Based Congestion Control Scheme in Mobile Networks
Authors: P. K. Guha Thakurta, Shouvik Roy, Bhawana Raj
Abstract:
A congestion control scheme in mobile networks is proposed in this paper through a verification based model. The model proposed in this work is represented through performance metric like buffer Occupancy, latency and packet loss rate. Based on pre-defined values, each of the metric is introduced in terms of three different states. A Markov chain based model for the proposed work is introduced to monitor the occurrence of the corresponding state transitions. Thus, the estimation of the network status is obtained in terms of performance metric. In addition, the improved performance of our proposed model over existing works is shown with experimental results.Keywords: congestion, mobile networks, buffer, delay, call drop, markov chain
Procedia PDF Downloads 441593 Crystal Structure, Vibration Study, and Calculated Frequencies by Density Functional Theory Method of Copper Phosphate Dihydrate
Authors: Soufiane Zerraf, Malika Tridane, Said Belaaouad
Abstract:
CuHPO₃.2H₂O was synthesized by the direct method. CuHPO₃.2H₂O crystallizes in the orthorhombic system, space group P2₁2₁2₁, a = 6.7036 (2) Å, b = 7.3671 (4) Å, c = 8.9749 (4) Å, Z = 4, V = 443.24 (4) ų. The crystal structure was refined to R₁= 0.0154, R₂= 0.0380 for 19018 reflections satisfying criterion I ≥ 2σ (I). The structural resolution shows the existence of chains of ions HPO₃- linked together by hydrogen bonds. The crystalline structure is formed by chains consisting of Cu[O₃(H₂O)₃] deformed octahedral, which are connected to the vertices. The chains extend parallel to b and are mutually linked by PO₃ groups. The structure is closely related to that of CuSeO₃.2H₂O and CuTeO₃.2H₂O. The experimental studies of the infrared and Raman spectra were used to confirm the presence of the phosphate ion and were compared in the (0-4000) cm-1 region with the theoretical results calculated by the density functional theory (DFT) method to provide reliable assignments of all observed bands in the experimental spectra.Keywords: crystal structure, X-ray diffraction, vibration study, thermal behavior, density functional theory
Procedia PDF Downloads 118592 Finite Dynamic Programming to Decision Making in the Use of Industrial Residual Water Treatment Plants
Authors: Oscar Vega Camacho, Andrea Vargas, Ellery Ariza
Abstract:
This paper presents the application of finite dynamic programming, specifically the "Markov Chain" model, as part of the decision making process of a company in the cosmetics sector located in the vicinity of Bogota DC. The objective of this process was to decide whether the company should completely reconstruct its waste water treatment plant or instead optimize the plant through the addition of equipment. The goal of both of these options was to make the required improvements in order to comply with parameters established by national legislation regarding the treatment of waste before it is released into the environment. This technique will allow the company to select the best option and implement a solution for the processing of waste to minimize environmental damage and the acquisition and implementation costs.Keywords: decision making, markov chain, optimization, waste water
Procedia PDF Downloads 415591 Simulating the Hot Hand Phenomenon in Basketball with Bayesian Hidden Markov Models
Authors: Gabriel Calvo, Carmen Armero, Luigi Spezia
Abstract:
A basketball player is said to have a hot hand if his/her performance is better than expected in different periods of time. A way to deal with this phenomenon is to make use of latent variables, which can indicate whether the player is ‘on fire’ or not. This work aims to model the hot hand phenomenon through a Bayesian hidden Markov model (HMM) with two states (cold and hot) and two different probability of success depending on the corresponding hidden state. This task is illustrated through a comprehensive simulation study. The simulated data sets emulate the field goal attempts in an NBA season from different profile players. This model can be a powerful tool to assess the ‘streakiness’ of each player, and it provides information about the general performance of the players during the match. Finally, the Bayesian HMM allows computing the posterior probability of any type of streak.Keywords: Bernoulli trials, field goals, latent variables, posterior distribution
Procedia PDF Downloads 192590 Application of Finite Dynamic Programming to Decision Making in the Use of Industrial Residual Water Treatment Plants
Authors: Oscar Vega Camacho, Andrea Vargas Guevara, Ellery Rowina Ariza
Abstract:
This paper presents the application of finite dynamic programming, specifically the "Markov Chain" model, as part of the decision making process of a company in the cosmetics sector located in the vicinity of Bogota DC. The objective of this process was to decide whether the company should completely reconstruct its wastewater treatment plant or instead optimize the plant through the addition of equipment. The goal of both of these options was to make the required improvements in order to comply with parameters established by national legislation regarding the treatment of waste before it is released into the environment. This technique will allow the company to select the best option and implement a solution for the processing of waste to minimize environmental damage and the acquisition and implementation costs.Keywords: decision making, Markov chain, optimization, wastewater
Procedia PDF Downloads 487589 Method to Calculate the Added Value in Supply Chains of Electric Power Meters
Authors: Andrey Vinajera-Zamora, Norge Coello-Machado, Elke Glistau
Abstract:
The objective of this research is calculate the added value in operations of electric power meters (EPM) supply chains, specifically the EPM of 220v. The tool used is composed by six steps allowing at same time the identification of calibration of EPM as the bottleneck operation according the net added value being at same time the process of higher added value. On the other hand, this methodology allows calculate the amount of money to buy the raw material. The main conclusions are related to the analyze ‘s way and calculating of added value in supply chain integrated by the echelons procurement, production and distribution or any of these.Keywords: economic value added, supply chain management, value chain, bottleneck detection
Procedia PDF Downloads 295588 Statistical Design of Synthetic VP X-bar Control Chat Using Markov Chain Approach
Authors: Ali Akbar Heydari
Abstract:
Control charts are an important tool of statistical quality control. Thesecharts are used to detect and eliminate unwanted special causes of variation that occurred during aperiod of time. The design and operation of control charts require the determination of three design parameters: the sample size (n), the sampling interval (h), and the width coefficient of control limits (k). Thevariable parameters (VP) x-bar controlchart is the x-barchart in which all the design parameters vary between twovalues. These values are a function of the most recent process information. In fact, in the VP x-bar chart, the position of each sample point on the chart establishes the size of the next sample and the timeof its sampling. The synthetic x-barcontrol chartwhich integrates the x-bar chart and the conforming run length (CRL) chart, provides significant improvement in terms of detection power over the basic x-bar chart for all levels of mean shifts. In this paper, we introduce the syntheticVP x-bar control chart for monitoring changes in the process mean. To determine the design parameters, we used a statistical design based on the minimum out of control average run length (ARL) criteria. The optimal chart parameters of the proposed chart are obtained using the Markov chain approach. A numerical example is also done to show the performance of the proposed chart and comparing it with the other control charts. The results show that our proposed syntheticVP x-bar controlchart perform better than the synthetic x-bar controlchart for all shift parameter values. Also, the syntheticVP x-bar controlchart perform better than the VP x-bar control chart for the moderate or large shift parameter values.Keywords: control chart, markov chain approach, statistical design, synthetic, variable parameter
Procedia PDF Downloads 154587 Adoption of Proactive and Reactive Supply Chain Resilience Strategies: A Comparison between Apparel and Construction Industries in Sri Lanka
Authors: Anuradha Ranawakage, Chathurani Silva
Abstract:
With the growing expansion of global businesses, supply chains are increasingly exposed to numerous disruptions. Organizations adopt various strategies to mitigate the impact of these disruptions. Depending on the variations in the conditions and characteristics of supply chains, the adoption of resilience strategies may vary across industries. However, these differences are largely unexplored in the existing literature. Hence, this study aims to evaluate the adoption of three proactive strategies: proactive collaboration, digital connectivity, integrated SC risk management, and three reactive strategies: reactive collaboration, inventory and reserve capacity, and lifeline maintenance in the apparel and construction industries in Sri Lanka. An online questionnaire was used to collect data on the implementation of resilience strategies from a sample of 162 apparel and 185 construction companies operating in Sri Lanka. This research makes a significant contribution to the field of supply chain management by assessing the extent to which different resilience strategies are functioned within the apparel and construction industries in Sri Lanka, particularly in an era after a global pandemic that significantly disrupted supply chains all around the world.Keywords: apparel, construction, proactive strategies, reactive strategies, supply chain resilience
Procedia PDF Downloads 57586 Admission Control Policy for Remanufacturing Activities with Quality Variation of Returns
Authors: Sajjad Farahani, Wilkistar Otieno, Xiaohang Yue
Abstract:
This paper develops a model for the optimal disposition decision for product returns in a remanufacturing system with limited recoverable inventory capacity. In this model, a constant demand is satisfied by remanufacturing returned products which are up to the minimum required quality grade. The quality grade of returned products is uncertain and remanufacturing cost increases as the quality level decreases, and remanufacturer wishes to determine which returned product to accept to be remanufactured for reselling, and any unaccepted returns may be salvaged at a value that increases with their quality level. Accepted returns can be stocked for remanufacturing upon demand requests, but incur a holding cost. A Markov decision problem is formulated in order to evaluate various performance measures for this system and obtain the optimal remanufacturing policy. A detailed numerical study reveals that our approach to the disposition problem outperforms the current industrial practice ignoring quality grade of returned products. In addition, we identify conditions under which this improvement is the highest.Keywords: green supply chain management, matrix geometric method, production recovery, reverse supply chains
Procedia PDF Downloads 309585 Between a Rock and a Hard Place: The Impact of Inflation on Global Supply Chains
Authors: Elad Harison
Abstract:
The paper identifies the complex links between post-COVID-19 inflationary pressures and global supply chains. Throughout the COVID-19 lockdowns and long periods after the termination of social distancing policies, consumers, notably in the U.S., have confronted and still face disruptions in the supply of goods. The study analyzes the monetary policy in the U.S. that led to the significant shift in consumer demand during a limited supply period, hence resulting in shortages and emphasizing inflationary dynamics. We argue that the monetary guidelines applied by the U.S. government further elevated the scope of supply chain disruptions.Keywords: consumer demand, COVID-19, inflation, monetary policy, supply chain
Procedia PDF Downloads 92