Search results for: Abdelkader Djehiche
27 Regenerative Agriculture: A Green Economy Tool for a Sustainable Crop Production
Authors: Meisam Zargar, Yurii Pleskachov, Mostafa Abdelkader, Aldaibe Ahmed, Maryam Bayat, Malek H. Walli, Shimendi Okbagabir
Abstract:
The increased need of humankind for foodstuffs highlights the intensification of agricultural production. It is necessary either to increase the size of the sown area or to look for new approaches to improve agricultural land productivity. Developing new areas for cultivation is possible due to the intensification of soil cultivation. Nevertheless, this will decrease the effectiveness of de-carbonization programs since this approach will inevitably increase greenhouse gas emissions. Therefore, searching for new solutions to conserve natural resources while obtaining stable predicted crop yields is a vital scientific and technical task. For a long time, destructive land use methods have been used in crop production. The present stage of civilization's development and implementation of new techniques and methods of tillage and crops require the solution of technological, economic, and environmental problems simultaneously with the possibility of creating conditions for the regeneration of soil resources. Implementing these approaches became possible due to the development of new technology for the cultivation of crops based on the exact selective impact on the object of processing. This technology of particular effects of TIV combines the positive accumulated experience of traditional farming systems and resource-saving approaches. Particularly high-quality indicators and cost savings with introducing TIV can be achieved when used on row crops, including vegetables and melons.Keywords: agricultural machinery, vegetable, irrigation, strip system
Procedia PDF Downloads 2926 Structural and Optical Properties of RF-Sputtered ZnS and Zn(S,O) Thin Films
Authors: Ould Mohamed Cheikh, Mounir Chaik, Hind El Aakib, Mohamed Aggour, Abdelkader Outzourhit
Abstract:
Zinc sulfide [ZnS] and oxygenated zinc sulfide Zn(O,S) thin films were deposited on glass substrates, by reactive cathodic radio-frequency (RF) sputtering. The substrates power and percentage of oxygen were varied in the range of 100W to 250W and from 5% to 20% respectively. The structural, morphological and optical properties of these thin films were investigated. The optical properties (mainly the refractive index, absorption coefficient and optical band gap) were examined by optical transmission measurements in the ultraviolet-visible-near Infrared wavelength range. XRD analysis indicated that all sputtered ZnS films were a single phase with a preferential orientation along the (111) plane of zinc blend (ZB). The crystallite size was in the range of 19.5 nm to 48.5 nm, the crystallite size varied with RF power reaching a maximum at 200 W. The Zn(O,S) films, on the other hand, were amorphous. UV-Visible, measurements showed that the ZnS film had more than 80% transmittance in the visible wavelength region while that of Zn(O,S is 85%. Moreover, it was observed that the band gap energy of the ZnS films increases slightly from 3.4 to 3.52 eV as the RF power was increased. The optical band gap of Zn(O,S), on the other hand, decreased from 4.2 to 3.89 eV as the oxygen partial pressure is increased in the sputtering atmosphere at a fixed RF-power. Scanning electron microscopy observations revealed smooth surfaces for both type of films. The X-ray reflectometry measurements on the ZnS films showed that the density of the films (3.9 g/cm3) is close that of bulk ZnS.Keywords: thin films Zn(O, S) properties, Zn(O, S) by Rf-sputtering, ZnS for solar cells, thin films for renewable energy
Procedia PDF Downloads 28225 Leachate Discharges: Review Treatment Techniques
Authors: Abdelkader Anouzla, Soukaina Bouaouda, Roukaya Bouyakhsass, Salah Souabi, Abdeslam Taleb
Abstract:
During storage and under the combined action of rainwater and natural fermentation, these wastes produce over 800.000 m3 of landfill leachates. Due to population growth and changing global economic activities, the amount of waste constantly generated increases, making more significant volumes of leachate. Leachate, when leaching into the soil, can negatively impact soil, surface water, groundwater, and the overall environment and human life. The leachate must first be treated because of its high pollutant load before being released into the environment. This article reviews the different leachate treatments in September 2022 techniques. Different techniques can be used for this purpose, such as biological, physical-chemical, and membrane methods. Young leachate is biodegradable; in contrast, these biological processes lose their effectiveness with leachate aging. They are characterized by high ammonia nitrogen concentrations that inhibit their activity. Most physical-chemical treatments serve as pre-treatment or post-treatment to complement conventional treatment processes or remove specific contaminants. After the introduction, the different types of pollutants present in leachates and their impacts have been made, followed by a discussion highlighting the advantages and disadvantages of the various treatments, whether biological, physicochemical, or membrane. From this work, due to their simplicity and reasonable cost compared to other treatment procedures, biological treatments offer the most suitable alternative to limit the effects produced by the pollutants in landfill leachates.Keywords: landfill leachate, landfill pollution, impact, wastewater
Procedia PDF Downloads 8924 Evaluation of Brca1/2 Mutational Status among Algerian Familial Breast Cancer
Authors: Arab M., Ait Abdallah M., Zeraoulia N., Boumaza H., Aoutia M., Griene L., Ait Abdelkader B.,
Abstract:
breast and ovarian cancer are respectively the first and fourth leading causes of cancer among women in Algeria. A family story of cancer in the most important risk factor, and in most cases of families with breast and /or ovarian cancer, the pattern of cancer family can be attributed to mutation in BRCA1/2genes. objectibes: the aim of our study in to investigate the spectrum of BRCA1/2 germiline mutation in familial breast and /or ovarian cancer and to determine the prevalence and the nature of BRCA1/2mutation in Algeria methods: we deremined the prevalence of BRCA1/2 mutation within a cohort of 161 probands selected according the eisinger score double stranded sanger sequencing of all coding exons of BRCA1/2including flanking intronic region were performed results: we identified a total of 23 distinct deleterious mutations (class5) 12 differents mutations in BRCA1(52%) and 11 in BRCA2(48%). 78% (18/23) were protein truncating and 22%(5/23) missens mutations.3 novel deleterious mutations have been identified, which have not been described in public mutation database. one new mutation were found in two unrelated patients. the overall mutation detection rate in our study is 28,5%(46/161).more over, an UVS c7783 located in BRCA2 is found in two unrelated probands and segregate in the 02 families/ conclusion: our results sugget of large spectrum of BRCA1/2 mutation in Algerian breast/ovarian cancer family. The nature and prevalence of BRCA1/2mutation in algerian families are ongoing in a larger study, 80 probands are to day under investigation. This study which may therefore identify the genetic particularity of Algerian breast /ovarian cancer.Keywords: BRCA1/2 mutations, hereditary breast cancer, algerian women, prvalence
Procedia PDF Downloads 17523 Analgesic and Anti-inflammatoryactivities of Camel Thorn in Experimental Animals
Authors: Abdelkader H. El Debani, Huda Gargoum, Awad G. Abdellatif
Abstract:
The aim of this study is to investigate analgesic and the anti-inflammatory effects Camel Thorn Extract (CTE) in rodents. Male albino mice weighing 20-25 gm. were divided into different groups each of 8 mice. The control was given normal saline i. p., the first group was given normal saline i. p. the 2nd, 3rd, 4th, groups received different doses of CTE (330, 660, and 1300 mg/kg) respectively and the 6th group received 5mg/kg of morphine i. p. All groups (except the control group) were given acetic acid 40 min after receiving the different treatment. The number of writhes was recorded 5 min after acetic acid injection for 15 min and the % of inhibition of writhing were calculated. Different groups of rats weighing 180- 220 gm., were divided into three groups each of 5 rats. At the beginning, the volumes of the right and left paw in animals were measured by using of the plethysmometer. The 1st group was given 660 mg /kg i. p. of CTE, the 2nd group received indomethacin (5 mg/kg i. p.). One hour later, edema was induced by sub planter injection of 0.1 ml of 1 % freshly prepared suspension of carrageenan into the right hind paws of the rats. The volume of the injected paws and contra-lateral paws were measured at 0, 0.5, 1, 2, 3, 4, and 5 hours using plethysmometer. The volume of the left paw of the rat was subtracted from the volume of the right paw of the same animal. Our results showed that 330,660 and 1300 mg/kg produced 14, 49 and 84%of inhibition of writhes, indicating that CTE has a strong analgesic activity. Our data also showed that the % of inhibition of edema at 30, 60, 120, 180, and 240 min was 14,51,71,61, and 56% in the animals given camel thorn extract whereas these figures in animals given endomethacin were 14, 24, 54, 52, and 54%. These results indicate that camel thorn has anti-inflammatory activities. The mechanism of analgesic and anti-inflammatory activities needs further investigations.Keywords: camel thorn, imdomethacin, morphine, pharmaceutical medicine
Procedia PDF Downloads 24322 Embedded System of Signal Processing on FPGA: Underwater Application Architecture
Authors: Abdelkader Elhanaoui, Mhamed Hadji, Rachid Skouri, Said Agounad
Abstract:
The purpose of this paper is to study the phenomenon of acoustic scattering by using a new method. The signal processing (Fast Fourier Transform FFT Inverse Fast Fourier Transform iFFT and BESSEL functions) is widely applied to obtain information with high precision accuracy. Signal processing has a wider implementation in general-purpose pro-cessors. Our interest was focused on the use of FPGAs (Field-Programmable Gate Ar-rays) in order to minimize the computational complexity in single processor architecture, then be accelerated on FPGA and meet real-time and energy efficiency requirements. Gen-eral-purpose processors are not efficient for signal processing. We implemented the acous-tic backscattered signal processing model on the Altera DE-SOC board and compared it to Odroid xu4. By comparison, the computing latency of Odroid xu4 and FPGA is 60 sec-onds and 3 seconds, respectively. The detailed SoC FPGA-based system has shown that acoustic spectra are performed up to 20 times faster than the Odroid xu4 implementation. FPGA-based system of processing algorithms is realized with an absolute error of about 10⁻³. This study underlines the increasing importance of embedded systems in underwater acoustics, especially in non-destructive testing. It is possible to obtain information related to the detection and characterization of submerged cells. So we have achieved good exper-imental results in real-time and energy efficiency.Keywords: DE1 FPGA, acoustic scattering, form function, signal processing, non-destructive testing
Procedia PDF Downloads 7921 Developing a Virtual Reality System to Assist in Anatomy Teaching and Evaluating the Effectiveness of That System
Authors: Tarek Abdelkader, Suresh Selvaraj, Prasad Iyer, Yong Mun Hin, Hajmath Begum, P. Gopalakrishnakone
Abstract:
Nowadays, more and more educational institutes, as well as students, rely on 3D anatomy programs as an important tool that helps students correlate the actual locations of anatomical structures in a 3D dimension. Lately, virtual reality (VR) is gaining more favor from the younger generations due to its higher interactive mode. As a result, using virtual reality as a gamified learning platform for anatomy became the current goal. We present a model where a Virtual Human Anatomy Program (VHAP) was developed to assist with the anatomy learning experience of students. The anatomy module has been built, mostly, from real patient CT scans. Segmentation and surface rendering were used to create the 3D model by direct segmentation of CT scans for each organ individually and exporting that model as a 3D file. After acquiring the 3D files for all needed organs, all the files were introduced into a Virtual Reality environment as a complete body anatomy model. In this ongoing experiment, students from different Allied Health orientations are testing the VHAP. Specifically, the cardiovascular system has been selected as the focus system of study since all of our students finished learning about it in the 1st trimester. The initial results suggest that the VHAP system is adding value to the learning process of our students, encouraging them to get more involved and to ask more questions. Involved students comments show that they are excited about the VHAP system with comments about its interactivity as well as the ability to use it solo as a self-learning aid in combination with the lectures. Some students also experienced minor side effects like dizziness.Keywords: 3D construction, health sciences, teaching pedagogy, virtual reality
Procedia PDF Downloads 15620 Heritage Management Planning, Stakeholders and Legal Problematic: The Case of the Archeological Site of Jarash in Jordan
Authors: Abdelkader Ababneh
Abstract:
Heritage management planning is increasingly important throughout the international context, particularly in the developing countries. Jordan has important and unique heritage resources due to its natural topography and climate, but also to its history and old sites. A high number of these archaeological sites are in very good state of preservation. Most natural sites and resources are privately managed while archaeological heritage sites are publicly managed within national legal texts and with some referencing to international legal documents. This study examines the development of cultural heritage management in Jarash, and questions if this heritage has been managed in an appropriate manner. The purpose of this paper is to define and review the stakeholders in charge of the management of the archaeological site of Jarash, the legal texts, laws and documents adopted to apply the site management. Relations and coordination between stakeholders and the challenge of the planning process is also the focus of this paper. A review of pertinent academic, technical studies, reports and projects literature pertaining to the heritage management planning in general and related to the site of Jarash in particular coupled with field study of the site served as the background of the information base for the study. Current context of actors, legislative framework, planning policies and initiatives for the site of Jarash reveal important and continuous challenge for managing the site. Recommendations suggest reviewing and restructuring the entity responsible of the sites management. It is also recommended to review their applied policies and a redevelopment of the legislative frame work.Keywords: heritage management, stakeholders, legal protection, Jarash
Procedia PDF Downloads 37919 Seawater Intrusion in the Coastal Aquifer of Wadi Nador (Algeria)
Authors: Abdelkader Hachemi & Boualem Remini
Abstract:
Seawater intrusion is a significant challenge faced by coastal aquifers in the Mediterranean basin. This study aims to determine the position of the sharp interface between seawater and freshwater in the aquifer of Wadi Nador, located in the Wilaya of Tipaza, Algeria. A numerical areal sharp interface model using the finite element method is developed to investigate the spatial and temporal behavior of seawater intrusion. The aquifer is assumed to be homogeneous and isotropic. The simulation results are compared with geophysical prospection data obtained through electrical methods in 2011 to validate the model. The simulation results demonstrate a good agreement with the geophysical prospection data, confirming the accuracy of the sharp interface model. The position of the sharp interface in the aquifer is found to be approximately 1617 meters from the sea. Two scenarios are proposed to predict the interface position for the year 2024: one without pumping and the other with pumping. The results indicate a noticeable retreat of the sharp interface position in the first scenario, while a slight decline is observed in the second scenario. The findings of this study provide valuable insights into the dynamics of seawater intrusion in the Wadi Nador aquifer. The predicted changes in the sharp interface position highlight the potential impact of pumping activities on the aquifer's vulnerability to seawater intrusion. This study emphasizes the importance of implementing measures to manage and mitigate seawater intrusion in coastal aquifers. The sharp interface model developed in this research can serve as a valuable tool for assessing and monitoring the vulnerability of aquifers to seawater intrusion.Keywords: seawater, intrusion, sharp interface, Algeria
Procedia PDF Downloads 7418 Role of Inherited Structures during Inversion Tectonics: An Example from Tunisia, North Africa
Authors: Aymen Arfaoui, Abdelkader Soumaya, Ali Kadri, Noureddine Ben Ayed
Abstract:
The Tunisian dorsal backland is located on the Eastern Atlas side of the Maghrebides (North Africa). The analysis of collected field data in the Rouas and Ruissate mountains area allowed us to develop new interpretations for its structural framework. Our kinematic analysis of fault-slip data reveals the presence of an extensional tectonic regime with NE-SW Shmin, characterizing the Mesozoic times. In addition, geophysical data shows that the synsedimentary normal faulting is accompanied by thickness variations of sedimentary sequences and Triassic salt movements. Then, after the Eurasia-Africa plate’s convergence during the Eocene, compressive tectonic deformations affected and reactivated the inherited NW-SE and N-S trending normal faults as dextral strike-slip and reverse faults, respectively. This tectonic inversion, with compression to the transpressional tectonic regime and NW-SE SHmax, continued during the successive shortening phases of the upper Miocene and Quaternary. The geometry of the Rouas and Ruissate belt is expressed as a fault propagation fold, affecting Jurassic and Cretaceous deposits. The Triassic evaporates constitute the decollement levels, facilitating the detachment and deformation of the sedimentary cover. The backland of this thrust belt is defined by NNE-SSW trending imbrication features that are controlled by a basement N-S fault.Keywords: Tunisian dorsal backland, fault slip data; synsedimentary faults, tectonic inversion, decollement level, fault propagation fold
Procedia PDF Downloads 14117 A Sharp Interface Model for Simulating Seawater Intrusion in the Coastal Aquifer of Wadi Nador (Algeria)
Authors: Abdelkader Hachemi, Boualem Remini
Abstract:
Seawater intrusion is a significant challenge faced by coastal aquifers in the Mediterranean basin. This study aims to determine the position of the sharp interface between seawater and freshwater in the aquifer of Wadi Nador, located in the Wilaya of Tipaza, Algeria. A numerical areal sharp interface model using the finite element method is developed to investigate the spatial and temporal behavior of seawater intrusion. The aquifer is assumed to be homogeneous and isotropic. The simulation results are compared with geophysical prospection data obtained through electrical methods in 2011 to validate the model. The simulation results demonstrate a good agreement with the geophysical prospection data, confirming the accuracy of the sharp interface model. The position of the sharp interface in the aquifer is found to be approximately 1617 meters from the sea. Two scenarios are proposed to predict the interface position for the year 2024: one without pumping and the other with pumping. The results indicate a noticeable retreat of the sharp interface position in the first scenario, while a slight decline is observed in the second scenario. The findings of this study provide valuable insights into the dynamics of seawater intrusion in the Wadi Nador aquifer. The predicted changes in the sharp interface position highlight the potential impact of pumping activities on the aquifer's vulnerability to seawater intrusion. This study emphasizes the importance of implementing measures to manage and mitigate seawater intrusion in coastal aquifers. The sharp interface model developed in this research can serve as a valuable tool for assessing and monitoring the vulnerability of aquifers to seawater intrusion.Keywords: seawater intrusion, sharp interface, coastal aquifer, algeria
Procedia PDF Downloads 11916 Modeling and Simulation of Vibratory Behavior of Hybrid Smart Composite Plate
Authors: Salah Aguib, Noureddine Chikh, Abdelmalek Khabli, Abdelkader Nour, Toufik Djedid, Lallia Kobzili
Abstract:
This study presents the behavior of a hybrid smart sandwich plate with a magnetorheological elastomer core. In order to improve the vibrational behavior of the plate, the pseudo‐fibers formed by the effect of the magnetic field on the elastomer charged by the ferromagnetic particles are oriented at 45° with respect to the direction of the magnetic field at 0°. Ritz's approach is taken to solve the physical problem. In order to verify and compare the results obtained by the Ritz approach, an analysis using the finite element method was carried out. The rheological property of the MRE material at 0° and at 45° are determined experimentally, The studied elastomer is prepared by a mixture of silicone oil, RTV141A polymer, and 30% of iron particles of total mixture, the mixture obtained is mixed for about 15 minutes to obtain an elastomer paste with good homogenization. In order to develop a magnetorheological elastomer (MRE), this paste is injected into an aluminum mold and subjected to a magnetic field. In our work, we have chosen an ideal percentage of filling of 30%, to obtain the best characteristics of the MRE. The mechanical characteristics obtained by dynamic mechanical viscoanalyzer (DMA) are used in the two numerical approaches. The natural frequencies and the modal damping of the sandwich plate are calculated and discussed for various magnetic field intensities. The results obtained by the two methods are compared. These off‐axis anisotropic MRE structures could open up new opportunities in various fields of aeronautics, aerospace, mechanical engineering and civil engineering.Keywords: hybrid smart sandwich plate, vibratory behavior, FEM, Ritz approach, MRE
Procedia PDF Downloads 6715 Effects of Microbial Biofertilization on Nodulation, Nitrogen Fixation, and Yield of Lablab purpureus
Authors: Benselama Amel, Ounane S. Mohamed, Bekki Abdelkader
Abstract:
A collection of 20 isolates from fresh Nodules of the legume plant Lablab purpureus was isolated. These isolates have been authenticated by seedling inoculation grown in jars containing sand. The results obtained after two months of culture have revealed that the 20 isolates (100% of the isolates) are able to nodulate their host plants. The results obtained were analyzed statistically by ANOVA using the software statistica and had shown that the effect of the inoculation has significantly improved all the growth parameters (the height of the plant and the dry weight of the aerial parts and roots, and the number of nodules). We have evaluated the tolerance of all strains of the collection to the major stress factors as the salinity, pH and extreme temperature. The osmotolerance reached a concentration up to 1710mm of NaCl. The strains were also able to grow on a wide range of pH, ranging from 4.5 to 9.5, and temperature, between 4°C and 40°C. Also, we tested the effect of the acidity, aluminum and ferric deficit on the Lablab-rhizobia symbiosis. Lablab purpureus has not been affected by the presence of high concentrations of aluminum. On the other hand, iron deficiency has caused a net decrease in the dry biomass of the aerial part. The results of all the phenotypic characters have been treated by the statistical Minitab software, the numerical analysis had shown that these bacterial strains are divided into two distinct groups at a level of similarity of 86 %. The SDS-PAGE was carried out to determine the profile of the total protein of the strains. The coefficients of similarity of polypeptide bands between the isolates and strains reference (Bradyrhizobium, Mesorizobium sp.) confirm that our strain belongs to the groups of rhizobia.Keywords: SDS-PAGE, rhizobia, symbiosis, phenotypic characterization, Lablab purpureus
Procedia PDF Downloads 30614 Decision Support System Based On GIS and MCDM to Identify Land Suitability for Agriculture
Authors: Abdelkader Mendas
Abstract:
The integration of MultiCriteria Decision Making (MCDM) approaches in a Geographical Information System (GIS) provides a powerful spatial decision support system which offers the opportunity to efficiently produce the land suitability maps for agriculture. Indeed, GIS is a powerful tool for analyzing spatial data and establishing a process for decision support. Because of their spatial aggregation functions, MCDM methods can facilitate decision making in situations where several solutions are available, various criteria have to be taken into account and decision-makers are in conflict. The parameters and the classification system used in this work are inspired from the FAO (Food and Agriculture Organization) approach dedicated to a sustainable agriculture. A spatial decision support system has been developed for establishing the land suitability map for agriculture. It incorporates the multicriteria analysis method ELECTRE Tri (ELimitation Et Choix Traduisant la REalité) in a GIS within the GIS program package environment. The main purpose of this research is to propose a conceptual and methodological framework for the combination of GIS and multicriteria methods in a single coherent system that takes into account the whole process from the acquisition of spatially referenced data to decision-making. In this context, a spatial decision support system for developing land suitability maps for agriculture has been developed. The algorithm of ELECTRE Tri is incorporated into a GIS environment and added to the other analysis functions of GIS. This approach has been tested on an area in Algeria. A land suitability map for durum wheat has been produced. Through the obtained results, it appears that ELECTRE Tri method, integrated into a GIS, is better suited to the problem of land suitability for agriculture. The coherence of the obtained maps confirms the system effectiveness.Keywords: multicriteria decision analysis, decision support system, geographical information system, land suitability for agriculture
Procedia PDF Downloads 63813 Effect of Phaseolus vulgaris Inoculation on P. vulgaris and Zea mays Growth and Yield Cultivated in Intercropping
Authors: Nour Elhouda Abed, Bedj Mimi, Wahid Slimani, Mourad Atif, Abdelhakim Ouzzane, Hocine Irekti, Abdelkader Bekki
Abstract:
The most frequent system of cereal production in Algeria is fallow-wheat. This is an extensive system that meets only the half needs some cereals and fodder demand. Resorption of fallow has become a strategic necessity to ensure food security in response to the instability of supply and the persistence of higher food prices on the world market. Despite several attempts to replace the fallow by crop cultures, choosing the best crop remains. Today, the agronomic and economic interests of legumes are demonstrated. However, their crop culture remains marginalized because of the weakness and instability of their performance. In the context of improving legumes and cereals crops as well as fallow resorption, we undertook to test, in the field, the effect of rhizobial inoculation of Phaseolus vulgaris in association with Zea Mays. We firstly studied the genetic diversity of rhizobial strains that nodulate P.vulgaris isolated from fifteen (15) different regions. ARDRA had shown 18 different genetic profiles. Symbiotic characterization highlighted a strain that highly significantly improved the fresh and dry weight of the host plant, in comparison to the negative control (un-inoculated) and the positive control (inoculated with the reference strain CIAT 899). In the field, the selected strain increased significantly the growth and yield of P.vulgaris and Zea Mays comparing to the non-inoculated control. However, the mix inoculation (selected strain+ Ciat 899) had not given the best parameters showing, thus, no synergy between the strains. These results indicate the replacing fallow by a crop legume in intercropping with cereals crops.Keywords: fallow, intercropping, inoculation, legumes-cereals
Procedia PDF Downloads 36612 Ethnobotanical Study on the Usage of Toxic Plants in Traditional Medicine in the City Center of Tlemcen, Algeria
Authors: Nassima Elyebdri, Asma Boumediou, Soumia Addoun
Abstract:
Traditional medicine has been part of the Algerian culture for decades. In particular, the city of Tlemcen still retains practices based on phytotherapy to the present day, as this kind of medicine fulfills the needs of its followers among the local population. The toxic plants contain diverse natural substances which supplied a lot of medicine in the pharmaceutical industry. In order to explore new medicinal sources among toxic plants, an ethnobotanical study was carried out on the use of these plants by the population, at Emir Abdelkader Square of the city of Tlemcen, a rather busy place with a high number of traditional health practitioners and herbalists. This is a descriptive and transversal study aimed at estimating the frequency of using toxic plants among the studied population, for a period of 4 months. The information was collected, using self-anonymous questionnaires, and analyzed by the IBM SPSS Statistics software used for statistical analysis. A sample of 200 people, including 120 women and 80 men, were interviewed. The mean age was 41 ± 16 years. Among those questioned, 83.5% used plants; 8% of them used toxic plants and 35% used plants that can be toxic under certain conditions. Some improvements were observed in 88% of the cases where toxic plants were used. 80 medicinal plants, belonging to 36 botanical families, were listed, identified and classified. The most frequent indications for these plants were for respiratory diseases in 64.7% of cases, and for digestive disorders in 51.5% of cases. 11% of these plants are toxic, 26% could be toxic under certain conditions. Among toxics plants, the most common ones are Berberis vulgaris with 5.4%, indicated in the treatment of uterine fibroids and thyroid, Rhamnus alaternus with 4.8% for hepatic jaundice, Nerium oleander with 3% for hemorrhoids, Ruta chalepensis with 1.2%, indicated for digestive disorders and dysmenorrhea, and Viscum album with 1.2%, indicated for respiratory diseases. The most common plants that could be toxic are Mentha pulegium (15.6%), Eucalyptus globulus (11.4%), and Pimpinella anisum (10.2%). This study revealed interesting results on the use of toxic plants, which are likely to serve as a basis for further ethno-pharmacological investigations in order to get new drug sources.Keywords: ethnobotany, phytotherapy, Tlemcen, toxic plants
Procedia PDF Downloads 32111 A General Form of Characteristics Method Applied on Minimum Length Nozzles Design
Authors: Merouane Salhi, Mohamed Roudane, Abdelkader Kirad
Abstract:
In this work, we present a new form of characteristics method, which is a technique for solving partial differential equations. Typically, it applies to first-order equations; the aim of this method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data. This latter developed under the real gas theory, because when the thermal and the caloric imperfections of a gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with the gas parameters. The gas doesn’t stay perfect. Its state equation change and it becomes for a real gas. The presented equations of the characteristics remain valid whatever area or field of study. Here we need have inserted the developed Prandtl Meyer function in the mathematical system to find a new model when the effect of stagnation pressure is taken into account. In this case, the effects of molecular size and intermolecular attraction forces intervene to correct the state equation, the thermodynamic parameters and the value of Prandtl Meyer function. However, with the assumptions that Berthelot’s state equation accounts for molecular size and intermolecular force effects, expressions are developed for analyzing the supersonic flow for thermally and calorically imperfect gas. The supersonic parameters depend directly on the stagnation parameters of the combustion chamber. The resolution has been made by the finite differences method using the corrector predictor algorithm. As results, the developed mathematical model used to design 2D minimum length nozzles under effect of the stagnation parameters of fluid flow. A comparison for air with the perfect gas PG and high temperature models on the one hand and our results by the real gas theory on the other of nozzles shapes and characteristics are made.Keywords: numerical methods, nozzles design, real gas, stagnation parameters, supersonic expansion, the characteristics method
Procedia PDF Downloads 24210 Influence of Strike-Slip Faulting in the Tectonic Evolution of North-Eastern Tunisia
Authors: Aymen Arfaoui, Abdelkader Soumaya, Ali Kadri, Noureddine Ben Ayed
Abstract:
The major contractional events characterized by strike-slip faulting, folding, and thrusting occurred in the Eocene, Late Miocene, and Quaternary along with the NE Tunisian domain between Bou Kornine-Ressas- Msella and Cap Bon Peninsula. During the Plio-Quaternary, the Grombalia and Mornag grabens show a maximum of collapse in parallelism with the NNW-SSE SHmax direction and developed as 3rd order extensive regions within a regional compressional regime. Using available tectonic and geophysical data supplemented by new fault-kinematic observations, we show that Cenozoic deformations are dominated by first order N-S faults reactivation, this sinistral wrench system is responsible for the formation of strike-slip duplexes, thrusts, folds, and grabens. Based on our new structural interpretation, the major faults of N-S Axis, Bou Kornine-Ressas-Messella (MRB), and Hammamet-Korbous (HK) form an N-S first order restraining stepover within a left-lateral strike-slip duplex. The N-S master MRB fault is dominated by contractional imbricate fans, while the parallel HK fault is characterized by a trailing of extensional imbricate fans. The Eocene and Miocene compression phases in the study area caused sinistral strike-slip reactivation of pre-existing N-S faults, reverse reactivation of NE-SW trending faults, and normal-oblique reactivation of NW-SE faults, creating a NE-SW to N-S trending system of east-verging folds and overlaps. Seismic tomography images reveal a key role for the lithospheric subvertical tear or STEP fault (Slab Transfer Edge Propagator) evidenced below this region on the development of the MRB and the HK relay zone. The presence of extensive syntectonic Pliocene sequences above this crustal scale fault may be the result of a recent lithospheric vertical motion of this STEP fault due to the rollback and lateral migration of the Calabrian slab eastward.Keywords: Tunisia, strike-slip fault, contractional duplex, tectonic stress, restraining stepover, STEP fault
Procedia PDF Downloads 1319 A Semi-Markov Chain-Based Model for the Prediction of Deterioration of Concrete Bridges in Quebec
Authors: Eslam Mohammed Abdelkader, Mohamed Marzouk, Tarek Zayed
Abstract:
Infrastructure systems are crucial to every aspect of life on Earth. Existing Infrastructure is subjected to degradation while the demands are growing for a better infrastructure system in response to the high standards of safety, health, population growth, and environmental protection. Bridges play a crucial role in urban transportation networks. Moreover, they are subjected to high level of deterioration because of the variable traffic loading, extreme weather conditions, cycles of freeze and thaw, etc. The development of Bridge Management Systems (BMSs) has become a fundamental imperative nowadays especially in the large transportation networks due to the huge variance between the need for maintenance actions, and the available funds to perform such actions. Deterioration models represent a very important aspect for the effective use of BMSs. This paper presents a probabilistic time-based model that is capable of predicting the condition ratings of the concrete bridge decks along its service life. The deterioration process of the concrete bridge decks is modeled using semi-Markov process. One of the main challenges of the Markov Chain Decision Process (MCDP) is the construction of the transition probability matrix. Yet, the proposed model overcomes this issue by modeling the sojourn times based on some probability density functions. The sojourn times of each condition state are fitted to probability density functions based on some goodness of fit tests such as Kolmogorov-Smirnov test, Anderson Darling, and chi-squared test. The parameters of the probability density functions are obtained using maximum likelihood estimation (MLE). The condition ratings obtained from the Ministry of Transportation in Quebec (MTQ) are utilized as a database to construct the deterioration model. Finally, a comparison is conducted between the Markov Chain and semi-Markov chain to select the most feasible prediction model.Keywords: bridge management system, bridge decks, deterioration model, Semi-Markov chain, sojourn times, maximum likelihood estimation
Procedia PDF Downloads 2118 Effects of the Compressive Eocene Tectonic Phase in the Bou Kornine-Ressas-Messella Structure and Surroundings (Northern Tunisia)
Authors: Aymen Arfaoui, Abdelkader Soumaya
Abstract:
The Messalla-Ressas-Bou Kornine (MRB) and Hammamet Korbous (HK) major trending North-South fault zones provide a good opportunity to show the effects of the Eocene compressive phase in northern Tunisia. They acted as paleogeographical boundaries during the Mesozoic and belonged to a significant strike-slip corridor called the «North-South Axis,» extending from the Saharan platform at the South to the Gulf of Tunis at the North. Our study area is situated in a relay zone between two significant strike-slip faults (HK and MRB), separating the Atlas domain from the Pelagian Block. We used a multidisciplinary approach, including fieldwork, stress inversion, and geophysical profiles, to argue the shortening event that affected the study region. The MRB and HK contractional duplex is a privileged area for a local stress field and stress nucleation. The stress inversion of fault slip data reveals an Eocene compression with NW-SE trending SHmax, reactivating most of the ancient Mesozoic normal faults in the region. This shortening phase is represented in the MRB belt by an angular unconformity between the Upper Eocene over various Cretaceous strata. The stress inversion data reveal a compressive tectonic with an average NW-SE trending Shmax. The major N-S faults are reactivated under this shortening as sinistral oblique faults. The orientation of SHmax deviates from NW-SE to E-W near the preexisting deep faults of MRB and HK. This E-W stress direction generated the emerging overlap of Ressas-Messella and blind thrust faults in the Cretaceous deposits. The connection of the sub-meridian reverse faults in depth creates "flower structures" under an E-W local compressive stress. In addition, we detected a reorientation of the SHmax into an N-S direction in the central part of the MRB - HK contractional duplex, creating E-W reverse faults and overlapping zones. Finally, the Eocene compression constituted the first major tectonic phase which inverted the Mesozoic preexisting extensive fault system in Northern Tunisia.Keywords: Tunisia, eocene compression, tectonic stress field, Bou Kornine-Ressas-Messella
Procedia PDF Downloads 717 Seismotectonic Deformations along Strike-Slip Fault Systems of the Maghreb Region, Western Mediterranean
Authors: Abdelkader Soumaya, Noureddine Ben Ayed, Mojtaba Rajabi, Mustapha Meghraoui, Damien Delvaux, Ali Kadri, Moritz Ziegler, Said Maouche, Ahmed Braham, Aymen Arfaoui
Abstract:
The northern Maghreb region (Western Mediterranean) is a key area to study the seismotectonic deformations across the Africa-Eurasia convergent plate boundary. On the basis of young geologic fault slip data and stress inversion of focal mechanisms, we defined a first-order transpression-compatible stress field and a second-order spatial variation of tectonic regime across the Maghreb region, with a relatively stable SHmax orientation from east to west. Therefore, the present-day active contraction of the western Africa-Eurasia plate boundary is accommodated by (1) E-W strike-slip faulting with a reverse component along the Eastern Tell and Saharan-Tunisian Atlas, (2) a predominantly NE trending thrust faulting with strike-slip component in the Western Tell part, and (3) a conjugate strike-slip faulting regime with a normal component in the Alboran/Rif domain. This spatial variation of the active stress field and the tectonic regime is relatively in agreement with the inferred stress information from neotectonic features. According to newly suggested structural models, we highlight the role of main geometrically complex shear zones in the present-day stress pattern of the Maghreb region. Then, different geometries of these major preexisting strike-slip faults and related fractures (V-shaped conjugate fractures, horsetail splays faults, and Riedel fractures) impose their component on the second- and third-order stress regimes. Smoothed present-day and Neotectonic stress maps (mean SHmax orientation) reveal that plate boundary forces acting on the Africa-Eurasia collisional plates control the long wavelength of the stress field pattern in the Maghreb. The seismotectonic deformations and the upper crustal stress field in the study area are governed by the interplay of the oblique plate convergence (i.e., Africa-Eurasia), lithosphere-mantle interaction, and preexisting tectonic weakness zones.Keywords: Maghreb, strike-slip fault, seismotectonic, focal mechanism, inversion
Procedia PDF Downloads 1226 The Millennium Development Goals and Algerian Economic Policy: Some Evidences
Authors: Abdelkader Guendouz, Fatima Zohra Adel
Abstract:
Even if both the economic and the human development are an axial pillar in its global policy, Algerian government seems to be more and more engaged in the international context aiming to reach of the so called millennium development goals, and this since its beginning. By looking closely at the Algerian economic policy, it is easy to mention the existence of several programs in which both economic and social realisations including among others, poverty reduction, enhancement of education level and conditions, woman statute and gender equity amelioration targets. The efforts of Algerian government in the field of these targets had been acheminated through three main plans, which are: -PSRE (Plan de Soutien à la Relance Economique), for the period of 2001 to 2004, initiated with about 7 billion US dollar, had been focused on three objectives, namely, poverty reduction, job creation and regional equilibrium with rural areas revitalization. -PCSC (le Programme complémentaire de soutien à la croissance économique), for the period of 2005 to 2009, with a starting funding of 114 billion US dollar. This program aims to develop public services and supporting public investments, especially in which concerns social infrastructures. Now, and at the end of the maturity of the MDGs agenda, an important question is to be asked: what are the main realizations regarding these MDGs? In order to answer this question, the present paper tries to examine the Algerian economic policy (but also the social one) by considering the MDGs challenges, for the period from 2000 to 2010, but also until 2015. This examination is focused on three main targets, namely poverty, education, and health. Firstly, statistical assessment for the Algerian economic and social situation shows that almost all MDGs had been reached during the period of 2000 to 2009 and it continues to maintain and improve them. This observation can be endorsed by invoking some achievements. Starting by the reduction of poverty, the proportion of population living with less than 1 US dollar per a day passed from 8.0 % in 2000 to 0.5 % in 2009, and 0.3 % in 2015. For education sphere, the enrolment ratio of six-year child, which is the most significant index for school attendance, is about 98 % for 2009 against 93 % in 1999, and only 43 % in 1966. Concluding with health care and relevant services; the Algerian government has accomplished big steps in providing easy access to this sector for the population. Moreover, the percentage of assisted accouchement had been raised from 91.2 % in 2000 to 97.2 % in 2009.Keywords: Algerian economic policy, MDGs, poverty, education, health
Procedia PDF Downloads 2595 Structural Analysis of Archaeoseismic Records Linked to the 5 July 408 - 410 AD Utica Strong Earthquake (NE Tunisia)
Authors: Noureddine Ben Ayed, Abdelkader Soumaya, Saïd Maouche, Ali Kadri, Mongi Gueddiche, Hayet Khayati-Ammar, Ahmed Braham
Abstract:
The archaeological monument of Utica, located in north-eastern Tunisia, was founded (8th century BC) By the Phoenicians as a port installed on the trade route connecting Phoenicia and the Straits of Gibraltar in the Mediterranean Sea. The flourishment of this city as an important settlement during the Roman period was followed by a sudden abandonment, disuse and progressive oblivion in the first half of the fifth century AD. This decadence can be attributed to the destructive earthquake of 5 July 408 - 410 AD, affecting this historic city as documented in 1906 by the seismologist Fernand De Montessus De Ballore. The magnitude of the Utica earthquake was estimated at 6.8 by the Tunisian National Institute of Meteorology (INM). In order to highlight the damage caused by this earthquake, a field survey was carried out at the Utica ruins to detect and analyse the earthquake archaeological effects (EAEs) using structural geology methods. This approach allowed us to highlight several structural damages, including: (1) folded mortar pavements, (2) cracks affecting the mosaic and walls of a water basin in the "House of the Grand Oecus", (3) displaced columns, (4) block extrusion in masonry walls, (5) undulations in mosaic pavements, (6) tilted walls. The structural analysis of these EAEs and data measurements reveal a seismic cause for all evidence of deformation in the Utica monument. The maximum horizontal strain of the ground (e.g. SHmax) inferred from the building oriented damage in Utica shows a NNW-SSE direction under a compressive tectonic regime. For the seismogenic source of this earthquake, we propose the active E-W to NE-SW trending Utique - Ghar El Melh reverse fault, passing through the Utica Monument and extending towards the Ghar El Melh Lake, as the causative tectonic structure. The active fault trace is well supported by instrumental seismicity, geophysical data (e.g., gravity, seismic profiles) and geomorphological analyses. In summary, we find that the archaeoseismic records detected at Utica are similar to those observed at many other archaeological sites affected by destructive ancient earthquakes around the world. Furthermore, the calculated orientation of the average maximum horizontal stress (SHmax) closely match the state of the actual stress field, as highlighted by some earthquake focal mechanisms in this region.Keywords: Tunisia, utica, seimogenic fault, archaeological earthquake effects
Procedia PDF Downloads 454 Optimization Principles of Eddy Current Separator for Mixtures with Different Particle Sizes
Authors: Cao Bin, Yuan Yi, Wang Qiang, Amor Abdelkader, Ali Reza Kamali, Diogo Montalvão
Abstract:
The study of the electrodynamic behavior of non-ferrous particles in time-varying magnetic fields is a promising area of research with wide applications, including recycling of non-ferrous metals, mechanical transmission, and space debris. The key technology for recovering non-ferrous metals is eddy current separation (ECS), which utilizes the eddy current force and torque to separate non-ferrous metals. ECS has several advantages, such as low energy consumption, large processing capacity, and no secondary pollution, making it suitable for processing various mixtures like electronic scrap, auto shredder residue, aluminum scrap, and incineration bottom ash. Improving the separation efficiency of mixtures with different particle sizes in ECS can create significant social and economic benefits. Our previous study investigated the influence of particle size on separation efficiency by combining numerical simulations and separation experiments. Pearson correlation analysis found a strong correlation between the eddy current force in simulations and the repulsion distance in experiments, which confirmed the effectiveness of our simulation model. The interaction effects between particle size and material type, rotational speed, and magnetic pole arrangement were examined. It offer valuable insights for the design and optimization of eddy current separators. The underlying mechanism behind the effect of particle size on separation efficiency was discovered by analyzing eddy current and field gradient. The results showed that the magnitude and distribution heterogeneity of eddy current and magnetic field gradient increased with particle size in eddy current separation. Based on this, we further found that increasing the curvature of magnetic field lines within particles could also increase the eddy current force, providing a optimized method to improving the separation efficiency of fine particles. By combining the results of the studies, a more systematic and comprehensive set of optimization guidelines can be proposed for mixtures with different particle size ranges. The separation efficiency of fine particles could be improved by increasing the rotational speed, curvature of magnetic field lines, and electrical conductivity/density of materials, as well as utilizing the eddy current torque. When designing an ECS, the particle size range of the target mixture should be investigated in advance, and the suitable parameters for separating the mixture can be fixed accordingly. In summary, these results can guide the design and optimization of ECS, and also expand the application areas for ECS.Keywords: eddy current separation, particle size, numerical simulation, metal recovery
Procedia PDF Downloads 893 Segmentation along the Strike-slip Fault System of the Chotts Belt, Southern Tunisia
Authors: Abdelkader Soumaya, Aymen Arfaoui, Noureddine Ben Ayed, Ali Kadri
Abstract:
The Chotts belt represents the southernmost folded structure in the Tunisian Atlas domain. It is dominated by inherited deep extensional E-W trending fault zones, which are reactivated as strike-slip faults during the Cenozoic compression. By examining the geological maps at different scales and based on the fieldwork data, we propose new structural interpretations for the geometries and fault kinematics in the Chotts chain. A set of ENE-WSW right-lateral en echelon folds, with curved shapes and steeply inclined southern limbs, is visible in the map view of this belt. These asymmetric tight anticlines are affected by E-W trending fault segments linked by local bends and stepovers. The revealed kinematic indicators along one of these E-W striated faults (Tafferna segment), such as breccias and gently inclined slickenlines (N094, 80N, 15°W pitch angles), show direct evidence of dextral strike-slip movement. The calculated stress tensors from corresponding faults slip data reveal an overall strike-slip tectonic regime with reverse component and NW-trending sub-horizontal σ1 axis ranking between N130 to N150. From west to east, we distinguished several types of structures along the segmented dextral fault system of the Chotts Range. The NE-SW striking fold-thrust belt (~25 km-long) between two continuously linked E-W fault segments (NW of Tozeur town) has been suggested as a local restraining bend. The central part of the Chotts chain is occupied by the ENE-striking Ksar Asker anticlines (Taferna, Torrich, and Sif Laham), which are truncated by a set of E-W strike-slip fault segments. Further east, the fault segments of Hachichina and Sif Laham connected across the NW-verging asymmetric fold-thrust system of Bir Oum Ali, which can be interpreted as a left-stepping contractional bend (~20 km-long). The oriental part of the Chotts belt corresponds to an array of subparallel E-W oriented fault segments (i.e., Beidha, Bouloufa, El Haidoudi-Zemlet El Beidha) with similar lengths (around 10 km). Each of these individual separated segments is associated with curved ENE-trending en echelon right-stepping anticlines. These folds are affected by a set of conjugate R and R′ shear-type faults indicating a dextral strike-lip motion. In addition, the relay zones between these E-W overstepping fault segments define local releasing stepovers dominated by NW-SE subsidiary faults. Finally, the Chotts chain provides well-exposed examples of strike-slip tectonics along E-W distributed fault segments. Each fault zone shows a typical strike-slip architecture, including parallel fault segments connecting via local stepovers or bends. Our new structural interpretations for this region reveal a great influence of the E-W deep fault segments on regional tectonic deformations and stress field during the Cenozoic shortening.Keywords: chotts belt, tunisian atlas, strike-slip fault, stepovers, fault segments
Procedia PDF Downloads 692 Archaeoseismological Evidence for a Possible Destructive Earthquake in the 7th Century AD at the Ancient Sites of Bulla Regia and Chemtou (NW Tunisia): Seismotectonic and Structural Implications
Authors: Abdelkader Soumaya, Noureddine Ben Ayed, Ali Kadri, Said Maouche, Hayet Khayati Ammar, Ahmed Braham
Abstract:
The historic sites of Bulla Regia and Chemtou are among the most important archaeological monuments in northwestern Tunisia, which flourished as large, wealthy settlements during the Roman and Byzantine periods (2nd to 7th centuries AD). An archaeoseismological study provides the first indications about the impact of a possible ancient strong earthquake in the destruction of these cities. Based on previous archaeological excavation results, including numismatic evidence, pottery, economic meltdown and urban transformation, the abrupt ruin and destruction of the cities of Bulla Regia and Chemtou can be bracketed between 613 and 647 AD. In this study, we carried out the first attempt to use the analysis of earthquake archaeological effects (EAEs) that were observed during our field investigations in these two historic cities. The damage includes different types of EAEs: folds on regular pavements, displaced and deformed vaults, folded walls, tilted walls, collapsed keystones in arches, dipping broken corners, displaced-fallen columns, block extrusions in walls, penetrative fractures in brick-made walls and open fractures on regular pavements. These deformations are spread over 10 different sectors or buildings and include 56 measured EAEs. The structural analysis of the identified EAEs can indicate an ancient destructive earthquake that probably destroyed the Bulla Regia and Chemtou archaeological sites. We then analyzed these measurements using structural geological analysis to obtain the maximum horizontal strain of the ground (e.g., S ₕₘₐₓ) on each building-oriented damage. After the collection and analysis of these strain datasets, we proceed to plot the orientation of Sₕₘₐₓ trajectories on the map of the archaeological site (Bulla Regia). We concluded that the obtained Sₕₘₐₓ trajectories within this site could then be related to the mean direction of ground motion (oscillatory movement of the ground) triggered by a seismic event, as documented for some historical earthquakes across the world. These Sₕₘₐₓ orientations closely match the current active stress field, as highlighted by some instrumental events in northern Tunisia. In terms of the seismic source, we strongly suggest that the reactivation of a neotectonic strike-slip fault trending N50E must be responsible for this probable historic earthquake and the recent instrumental seismicity in this area. This fault segment, affecting the folded quaternary deposits south of Jebel Rebia, passes through the monument of Bulla Regia. Stress inversion of the observed and measured data along this fault shows an N150 - 160 trend of Sₕₘₐₓ under a transpressional tectonic regime, which is quite consistent with the GPS data and the state of the current stress field in this region.Keywords: NW Tunisia, archaeoseismology, earthquake archaeological effect, bulla regia - Chemtou, seismotectonic, neotectonic fault
Procedia PDF Downloads 491 Geodynamic Evolution of the Tunisian Dorsal Backland (Central Mediterranean) from the Cenozoic to Present
Authors: Aymen Arfaoui, Abdelkader Soumaya, Noureddine Ben Ayed
Abstract:
The study region is located in the Tunisian Dorsal Backland (Central Mediterranean), which is the easternmost part of the Saharan Atlas mountain range, trending southwest-northeast. Based on our fieldwork, seismic tomography images, seismicity, and previous studies, we propose an interpretation of the relationship between the surface deformation and fault kinematics in the study area and the internal dynamic processes acting in the Central Mediterranean from the Cenozoic to the present. The subduction and dynamics of internal forces beneath the complicated Maghrebides mobile belt have an impact on the Tertiary and Quaternary tectonic regimes in the Pelagian and Atlassic foreland that is part of our study region. The left lateral reactivation of the major "Tunisian N-S Axis fault" and the development of a compressional relay between the Hammamet Korbous and Messella-Ressas faults are possibly a result of tectonic stresses due to the slab roll-back following the Africa/Eurasia convergence. After the slab segmentation and its eastward migration (5–4 Ma) and the formation of the Strait of Sicily "rift zone" further east, a transtensional tectonic regime has been installed in this area. According to seismic tomography images, the STEP fault of the "North-South Axis" at Hammamet-Korbous coincides with the western edge of the "Slab windows" of the Sicilian Channel and the eastern boundary of the positive anomalies attributed to the residual Slab of Tunisia. On the other hand, significant E-W Plio-Quaternary tectonic activity may be observed along the eastern portion of this STEP fault system in the Grombalia zone as a result of recent vertical lithospheric motion in response to the lateral slab migration eastward to Sicily Channel. According to SKS fast splitting directions, the upper mantle flow pattern beneath Tunisian Dorsal is parallel to the NE-SW to E-W orientation of the Shmin identified in the study area, similar to the Plio-Quaternary extensional orientation in the Central Mediterranean. Additionally, the removal of the lithosphere and the subsequent uplift of the sub-lithospheric mantle beneath the topographic highs of the Dorsal and its surroundings may be the cause of the dominant extensional to transtensional Quaternary regime. The occurrence of strike-slip and extensional seismic events in the Pelagian block reveals that the regional transtensional tectonic regime persists today. Finally, we believe that the geodynamic history of the study area since the Cenozoic is primarily influenced by the preexisting weak zones, the African slab detachment, and the upper mantle flow pattern in the central Mediterranean.Keywords: Tunisia, lithospheric discontinuity (STEP fault), geodynamic evolution, Tunisian dorsal backland, strike-slip fault, seismic tomography, seismicity, central Mediterranean
Procedia PDF Downloads 79