Search results for: word-association test
286 Redefining Doctors' Role in Terms of Medical Errors and Consumer Protection Act to Be in Line with Medical Ethics
Authors: Manushi Srivastava
Abstract:
Introduction: Doctor’s role, and relation with respect to patient care is at the core of medical ethics. The rapid pace of medical advances along with increasing consumer awareness about their rights and hike in cost of effective health care demand a robust, transparent and patient-friendly medical care system. However, doctors’ role performance is still in the frame of activity-passivity model of Doctor-Patient Relationship (DPR) where doctors act as parent and use to instruct their patients, without their consensus that is not going to help in the 21st century. Thus the current situation is a new challenge for traditional doctor-patient relationship after the introduction of Consumer Protection Act (CPA) in medical profession and the same is evidenced by increasing cases of medical litigation. To strengthen this system of medical services, the doctor plays a vital role, and the same should be reviewed in the present context. Objective: To understand the opinion of consultants regarding medical negligence and effect of Consumer Protection Act in terms of current practices of patient care. Method: This is a cross-sectional study in which both quantitative and qualitative methods are applied. Total 69 consultants were selected from multi-specialty hospitals of densely populated Varanasi city catering a population of about 1.8 million. Two-stage sampling was used for selection of respondents. At the first stage, selection of major wards (Medicine, Surgery, Ophthalmology, Gynaecology, Orthopaedics, and Paediatrics) was carried out, which are more susceptible to medical negligence. At the second stage, selection of consultants from the respective wards was carried out. In-depth Interviews were conducted with the help of semi-structured schedule. Two case studies of medical negligence were also carried out as part of the qualitative study. Analysis: Data were analyzed with the help of SPSS software (21.0 trial version). Semi-structured research tool was used to know consultant’s opinion about the pattern of medical negligence cases, litigations and claims made by patient community and inclusion of government medical services in CPA. Statistical analysis was done to describe data, and non-parametric test was used to observe the association between the variables. Analysis of Verbatim was used in case-study. Findings and Conclusion: Majority (92.8%) of consultants felt changes in the behaviour of community (patient) after implementation of CPA, as it had increased awareness about their rights. Less than half of the consultants opined that Medical Negligence is an Unintentional act of doctors and generally occurs due to communication gap and behavioural problem between doctor and patients. Experienced consultants ( > 10 years) pointed out that unethical practice by doctors and mal-intention of patient to harass doctors were additional reasons of Medical Negligence. In-depth interview revealed that now patients’ community expects more transparency and hence they demand cafeteria approach in diagnosis and management of cases. Thus as study results, we propose ‘Agreement Model’ of DPR to re-ensure ethical practice in medical profession.Keywords: doctors, communication, consumer protection act (CPA), medical error
Procedia PDF Downloads 159285 Solutions for Food-Safe 3D Printing
Authors: Geremew Geidare Kailo, Igor Gáspár, András Koris, Ivana Pajčin, Flóra Vitális, Vanja Vlajkov
Abstract:
Three-dimension (3D) printing, a very popular additive manufacturing technology, has recently undergone rapid growth and replaced the use of conventional technology from prototyping to producing end-user parts and products. The 3D Printing technology involves a digital manufacturing machine that produces three-dimensional objects according to designs created by the user via 3D modeling or computer-aided design/manufacturing (CAD/CAM) software. The most popular 3D printing system is Fused Deposition Modeling (FDM) or also called Fused Filament Fabrication (FFF). A 3D-printed object is considered food safe if it can have direct contact with the food without any toxic effects, even after cleaning, storing, and reusing the object. This work analyzes the processing timeline of the filament (material for 3D printing) from unboxing to the extrusion through the nozzle. It is an important task to analyze the growth of bacteria on the 3D printed surface and in gaps between the layers. By default, the 3D-printed object is not food safe after longer usage and direct contact with food (even though they use food-safe filaments), but there are solutions for this problem. The aim of this work was to evaluate the 3D-printed object from different perspectives of food safety. Firstly, testing antimicrobial 3D printing filaments from a food safety aspect since the 3D Printed object in the food industry may have direct contact with the food. Therefore, the main purpose of the work is to reduce the microbial load on the surface of a 3D-printed part. Coating with epoxy resin was investigated, too, to see its effect on mechanical strength, thermal resistance, surface smoothness and food safety (cleanability). Another aim of this study was to test new temperature-resistant filaments and the effect of high temperature on 3D printed materials to see if they can be cleaned with boiling or similar hi-temp treatment. This work proved that all three mentioned methods could improve the food safety of the 3D printed object, but the size of this effect variates. The best result we got was with coating with epoxy resin, and the object was cleanable like any other injection molded plastic object with a smooth surface. Very good results we got by boiling the objects, and it is good to see that nowadays, more and more special filaments have a food-safe certificate and can withstand boiling temperatures too. Using antibacterial filaments reduced bacterial colonies to 1/5, but the biggest advantage of this method is that it doesn’t require any post-processing. The object is ready out of the 3D printer. Acknowledgements: The research was supported by the Hungarian and Serbian bilateral scientific and technological cooperation project funded by the Hungarian National Office for Research, Development and Innovation (NKFI, 2019-2.1.11-TÉT-2020-00249) and the Ministry of Education, Science and Technological Development of the Republic of Serbia. The authors acknowledge the Hungarian University of Agriculture and Life Sciences’s Doctoral School of Food Science for the support in this studyKeywords: food safety, 3D printing, filaments, microbial, temperature
Procedia PDF Downloads 142284 Strontium and Selenium Doped Bioceramic Incorporated Hydrogel for Faster Apatite Growth and Bone Regeneration Applications
Authors: Nonita Sarin, K.J.Singh, Anuj Kumar, Davinder Singh
Abstract:
Polymeric 3D hydrogels have pivotal role in bone tissue regeneration applications. Hydrogels behave similar to the living tissues because they have large water imbibing capacity in swollen state and adjust their shape according to the tissues during tissue formation after implantation. On the other hand, hydrogels are very soft, fragile and lack mechanical strength. Incorporation of bioceramics can improve mechanical strength. Furthermore, bioceramics synthesized by sol gel technique may enhance the apatite formation and degradation rates which can lead to the increase in faster rates for new bone and tissue regeneration. Simulated body fluid (SBF) induces the poly-condensation of silanol groups which leads to formation of silica matrix and provide active sites for the precipitation of Ca2+ and PO43- ions to form apatite layer which is similar to mineral form of bone. Therefore, authors have synthesized bioceramic incorporated Polyacrylamide-carboxymethylcellulose hydrogels by free radical polymerization and bioceramic compositions of xSrO-(36-x)CaO-45SiO2-ySeO3-(12-y)P2O5-7MgO (where x=0,4 and y=0,2 mol%) were synthesized by sol gel technique. Bioceramics incorporated in polymer matrix induces quicker apatite formation during immersion in SBF by raising the pH with the release of alkaline ions during ion exchange process and the apatite formation takes place in alkaline medium. The behavior of samples PABC-0 (without bioceramics) and PABC-20 (with 20 wt% bioceramics) were evaluated by X-Ray Diffraction and FTIR. In term of bioactivity, it was observed that PABC-20 has shown hydroxyapatite (HA) formation on 1st day of immersion whereas, PABC-0 was shown apatite formation on 7th day of immersion in SBF. The rapid rate of HA growth on 1st day of immersion in SBF signifies easy regeneration of damaged bone tissues. Degradation studies have been undertaken in Phosphate Buffer Saline and PABC-20 exhibited slower degradation rate up to 9%as compared to PABC-0 up to 18%. Slower degradation rate is suitable for new tissue regeneration and cell attachment. Also, Zeta potential studies have been employed to check the surface charge and it has been observed that samples carry negative charge when immersed in SBF. In addition, the swelling test of the samples have been performed and relative swelling ratio % observed for PABC-0 is 607% and PABC-20 is 305%. This indicates that the incorporation of bioceramics leads to the filling up of the voids in between the polymer matrix which in result reduces porosity and increase the mechanical strength by filling the voids. The porosity of PABC-0 is 84% and PABC-20 is 72%. PABC-20 sample demonstrates that bioceramics incorporation reduce the porosity and improves mechanical strength. Also, maximum in vitro cell viability up to 98% with MG63 cell line has been observed which indicate that the bioceramic incorporated hydrogel(PABC-20) provide the alkaline medium which is suitable environment for cell growth.Keywords: hydrogels, hydroxyapatite, MG63 cell line, zeta potential
Procedia PDF Downloads 140283 Impact of Wastewater Irrigation on Soil Quality and Productivity of Tuberose (Polianthes tuberosa L. cv. Prajwal)
Authors: D. S. Gurjar, R. Kaur, K. P. Singh, R. Singh
Abstract:
A greater volume of wastewater generate from urban areas in India. Due to the adequate availability, less energy requirement and nutrient richness, farmers of urban and peri-urban areas are deliberately using wastewater to grow high value vegetable crops. Wastewater contains pathogens and toxic pollutants, which can enter in the food chain system while using wastewater for irrigating vegetable crops. Hence, wastewater can use for growing commercial flower crops that may avoid food chain contamination. Tuberose (Polianthes tuberosa L.) is one of the most important commercially grown, cultivated over 30, 000 ha area, flower crop in India. Its popularity is mainly due to the sweet fragrance as well as the long keeping quality of the flower spikes. The flower spikes of tuberose has high market price and usually blooms during summer and rainy seasons when there is meager supply of other flowers in the market. It has high irrigation water requirement and fresh water supply is inadequate in tuberose growing areas of India. Therefore, wastewater may fulfill the water and nutrients requirements and may enhance the productivity of tuberose. Keeping in view, the present study was carried out at WTC farm of ICAR-Indian Agricultural Research Institute, New Delhi in 2014-15. Prajwal was the variety of test crop. The seven treatments were taken as T-1. Wastewater irrigation at 0.6 ID/CPE, T-2: Wastewater irrigation at 0.8 ID/CPE, T-3: Wastewater irrigation at 1.0 ID/CPE, T-4: Wastewater irrigation at 1.2 ID/CPE, T-5: Wastewater irrigation at 1.4 ID/CPE, T-6: Conjunctive use of Groundwater and Wastewater irrigation at 1.0 ID/CPE in cyclic mode, T-7: Control (Groundwater irrigation at 1.0 ID/CPE) in randomized block design with three replication. Wastewater and groundwater samples were collected on monthly basis (April 2014 to March 2015) and analyzed for different parameters of irrigation quality (pH, EC, SAR, RSC), pollution hazard (BOD, toxic heavy metals and Faecal coliforms) and nutrients potential (N, P, K, Cu, Fe, Mn, Zn) as per standard methods. After harvest of tuberose crop, soil samples were also collected and analyzed for different parameters of soil quality as per standard methods. The vegetative growth and flower parameters were recorded at flowering stage of tuberose plants. Results indicated that wastewater samples had higher nutrient potential, pollution hazard as compared to groundwater used in experimental crop. Soil quality parameters such as pH EC, available phosphorous & potassium and heavy metals (Cu, Fe, Mn, Zn, Cd. Pb, Ni, Cr, Co, As) were not significantly changed whereas organic carbon and available nitrogen were significant higher in the treatments where wastewater irrigations were given at 1.2 and 1.4 ID/CPE as compared to groundwater irrigations. Significantly higher plant height (68.47 cm), leaves per plant (78.35), spike length (99.93 cm), rachis length (37.40 cm), numbers of florets per spike (56.53), cut spike yield (0.93 lakh/ha) and loose flower yield (8.5 t/ha) were observed in the treatment of Wastewater irrigation at 1.2 ID/CPE. Study concluded that given quality of wastewater improves the productivity of tuberose without an adverse impact on soil quality/health. However, its long term impacts need to be further evaluated.Keywords: conjunctive use, irrigation, tuberose, wastewater
Procedia PDF Downloads 331282 Photonic Dual-Microcomb Ranging with Extreme Speed Resolution
Authors: R. R. Galiev, I. I. Lykov, A. E. Shitikov, I. A. Bilenko
Abstract:
Dual-comb interferometry is based on the mixing of two optical frequency combs with slightly different lines spacing which results in the mapping of the optical spectrum into the radio-frequency domain for future digitizing and numerical processing. The dual-comb approach enables diverse applications, including metrology, fast high-precision spectroscopy, and distance range. Ordinary frequency-modulated continuous-wave (FMCW) laser-based Light Identification Detection and Ranging systems (LIDARs) suffer from two main disadvantages: slow and unreliable mechanical, spatial scan and a rather wide linewidth of conventional lasers, which limits speed measurement resolution. Dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds, along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for an in-flight sampling of gun projectiles moving at 150 meters per second, was previously demonstrated. Nevertheless, pump lasers with EDFA amplifiers made the device bulky and expensive. An alternative approach is a direct coupling of the laser to a reference microring cavity. Backscattering can tune the laser to the eigenfrequency of the cavity via the so-called self-injection locked (SIL) effect. Moreover, the nonlinearity of the cavity allows a solitonic frequency comb generation in the very same cavity. In this work, we developed a fully integrated, power-efficient, electrically driven dual-micro comb source based on the semiconductor lasers SIL to high-quality integrated Si3N4 microresonators. We managed to obtain robust 1400-1700 nm combs generation with a 150 GHz or 1 THz lines spacing and measure less than a 1 kHz Lorentzian withs of stable, MHz spaced beat notes in a GHz band using two separated chips, each pumped by its own, self-injection locked laser. A deep investigation of the SIL dynamic allows us to find out the turn-key operation regime even for affordable Fabry-Perot multifrequency lasers used as a pump. It is important that such lasers are usually more powerful than DFB ones, which were also tested in our experiments. In order to test the advantages of the proposed techniques, we experimentally measured a minimum detectable speed of a reflective object. It has been shown that the narrow line of the laser locked to the microresonator provides markedly better velocity accuracy, showing velocity resolution down to 16 nm/s, while the no-SIL diode laser only allowed 160 nm/s with good accuracy. The results obtained are in agreement with the estimations and open up ways to develop LIDARs based on compact and cheap lasers. Our implementation uses affordable components, including semiconductor laser diodes and commercially available silicon nitride photonic circuits with microresonators.Keywords: dual-comb spectroscopy, LIDAR, optical microresonator, self-injection locking
Procedia PDF Downloads 73281 Iron-Metal-Organic Frameworks: Potential Application as Theranostics for Inhalable Therapy of Tuberculosis
Authors: Gabriela Wyszogrodzka, Przemyslaw Dorozynski, Barbara Gil, Maciej Strzempek, Bartosz Marszalek, Piotr Kulinowski, Wladyslaw Piotr Weglarz, Elzbieta Menaszek
Abstract:
MOFs (Metal-Organic Frameworks) belong to a new group of porous materials with a hybrid organic-inorganic construction. Their structure is a network consisting of metal cations or clusters (acting as metallic centers, nodes) and the organic linkers between nodes. The interest in MOFs is primarily associated with the use of their well-developed surface and large porous. Possibility to build MOFs of biocompatible components let to use them as potential drug carriers. Furthermore, forming MOFs structure from cations possessing paramagnetic properties (e.g. iron cations) allows to use them as MRI (Magnetic Resonance Imaging) contrast agents. The concept of formation of particles that combine the ability to transfer active substance with imaging properties has been called theranostic (from words combination therapy and diagnostics). By building MOF structure from iron cations it is possible to use them as theranostic agents and monitoring the distribution of the active substance after administration in real time. In the study iron-MOF: Fe-MIL-101-NH2 was chosen, consisting of iron cluster in nodes of the structure and amino-terephthalic acid as a linker. The aim of the study was to investigate the possibility of applying Fe-MIL-101-NH2 as inhalable theranostic particulate system for the first-line anti-tuberculosis antibiotic – isoniazid. The drug content incorporated into Fe-MIL-101-NH2 was evaluated by dissolution study using spectrophotometric method. Results showed isoniazid encapsulation efficiency – ca. 12.5% wt. Possibility of Fe-MIL-101-NH2 application as the MRI contrast agent was demonstrated by magnetic resonance tomography. FeMIL-101-NH2 effectively shortening T1 and T2 relaxation times (increasing R1 and R2 relaxation rates) linearly with the concentrations of suspended material. Images obtained using multi-echo magnetic resonance imaging sequence revealed possibility to use FeMIL-101-NH2 as positive and negative contrasts depending on applied repetition time. MOFs micronization via ultrasound was evaluated by XRD, nitrogen adsorption, FTIR, SEM imaging and did not influence their crystal shape and size. Ultrasonication let to break the aggregates and achieve very homogeneously looking SEM images. MOFs cytotoxicity was evaluated in in vitro test with a highly sensitive resazurin based reagent PrestoBlue™ on L929 fibroblast cell line. After 24h no inhibition of cell proliferation was observed. All results proved potential possibility of application of ironMOFs as an isoniazid carrier and as MRI contrast agent in inhalatory treatment of tuberculosis. Acknowledgments: Authors gratefully acknowledge the National Science Center Poland for providing financial support, grant no 2014/15/B/ST5/04498.Keywords: imaging agents, metal-organic frameworks, theranostics, tuberculosis
Procedia PDF Downloads 251280 Clinical Validation of an Automated Natural Language Processing Algorithm for Finding COVID-19 Symptoms and Complications in Patient Notes
Authors: Karolina Wieczorek, Sophie Wiliams
Abstract:
Introduction: Patient data is often collected in Electronic Health Record Systems (EHR) for purposes such as providing care as well as reporting data. This information can be re-used to validate data models in clinical trials or in epidemiological studies. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. Mentioning a disease in a discharge letter does not necessarily mean that a patient suffers from this disease. Many of them discuss a diagnostic process, different tests, or discuss whether a patient has a certain disease. The COVID-19 dataset in this study used natural language processing (NLP), an automated algorithm which extracts information related to COVID-19 symptoms, complications, and medications prescribed within the hospital. Free-text patient clinical patient notes are rich sources of information which contain patient data not captured in a structured form, hence the use of named entity recognition (NER) to capture additional information. Methods: Patient data (discharge summary letters) were exported and screened by an algorithm to pick up relevant terms related to COVID-19. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. A list of 124 Systematized Nomenclature of Medicine (SNOMED) Clinical Terms has been provided in Excel with corresponding IDs. Two independent medical student researchers were provided with a dictionary of SNOMED list of terms to refer to when screening the notes. They worked on two separate datasets called "A” and "B”, respectively. Notes were screened to check if the correct term had been picked-up by the algorithm to ensure that negated terms were not picked up. Results: Its implementation in the hospital began on March 31, 2020, and the first EHR-derived extract was generated for use in an audit study on June 04, 2020. The dataset has contributed to large, priority clinical trials (including International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) by bulk upload to REDcap research databases) and local research and audit studies. Successful sharing of EHR-extracted datasets requires communicating the provenance and quality, including completeness and accuracy of this data. The results of the validation of the algorithm were the following: precision (0.907), recall (0.416), and F-score test (0.570). Percentage enhancement with NLP extracted terms compared to regular data extraction alone was low (0.3%) for relatively well-documented data such as previous medical history but higher (16.6%, 29.53%, 30.3%, 45.1%) for complications, presenting illness, chronic procedures, acute procedures respectively. Conclusions: This automated NLP algorithm is shown to be useful in facilitating patient data analysis and has the potential to be used in more large-scale clinical trials to assess potential study exclusion criteria for participants in the development of vaccines.Keywords: automated, algorithm, NLP, COVID-19
Procedia PDF Downloads 102279 Mycophenolate-Induced Disseminated TB in a PPD-Negative Patient
Authors: Megan L. Srinivas
Abstract:
Individuals with underlying rheumatologic diseases such as dermatomyositis may not adequately respond to tuberculin (PPD) skin tests, creating false negative results. These illnesses are frequently treated with immunosuppressive therapy making proper identification of TB infection imperative. A 59-year-old Filipino man was diagnosed with dermatomyositis on the basis of rash, electromyography, and muscle biopsy. He was initially treated with IVIG infusions and transitioned to oral prednisone and mycophenolate. The patient’s symptoms improved on this regimen. Six months after starting mycophenolate, the patient began having fevers, night sweats, and productive cough without hemoptysis. He moved from the Philippines 5 years prior to dermatomyositis diagnosis, denied sick contacts, and was PPD negative both at immigration and immediately prior to starting mycophenolate treatment. A third PPD was negative following the onset of these new symptoms. He was treated for community-acquired pneumonia, but symptoms worsened over 10 days and he developed watery diarrhea and a growing non-tender, non-mobile mass on the left side of his neck. A chest x-ray demonstrated a cavitary lesion in right upper lobe suspicious for TB that had not been present one month earlier. Chest CT corroborated this finding also exhibiting necrotic hilar and paratracheal lymphadenopathy. Neck CT demonstrated the left-sided mass as cervical chain lymphadenopathy. Expectorated sputum and stool samples contained acid-fast bacilli (AFB), cultures showing TB bacteria. Fine-needle biopsy of the neck mass (scrofula) also exhibited AFB. An MRI brain showed nodular enhancement suspected to be a tuberculoma. Mycophenolate was discontinued and dermatomyositis treatment was switched to oral prednisone with a 3-day course of IVIG. The patient’s infection showed sensitivity to standard RIPE (rifampin, isoniazid, pyrazinamide, and ethambutol) treatment. Within a week of starting RIPE, the patient’s diarrhea subsided, scrofula diminished, and symptoms significantly improved. By the end of treatment week 3, the patient’s sputum no longer contained AFB; he was removed from isolation, and was discharged to continue RIPE at home. He was discharged on oral prednisone, which effectively addressed his dermatomyositis. This case illustrates the unreliability of PPD tests in patients with long-term inflammatory diseases such as dermatomyositis. Other immunosuppressive therapies (adalimumab, etanercept, and infliximab) have been affiliated with conversion of latent TB to disseminated TB. Mycophenolate is another immunosuppressive agent with similar mechanistic properties. Thus, it is imperative that patients with long-term inflammatory diseases and high-risk TB factors initiating immunosuppressive therapy receive a TB blood test (such as a quantiferon gold assay) prior to the initiation of therapy to ensure that latent TB is unmasked before it can evolve into a disseminated form of the disease.Keywords: dermatomyositis, immunosuppressant medications, mycophenolate, disseminated tuberculosis
Procedia PDF Downloads 206278 The Derivation of a Four-Strain Optimized Mohr's Circle for Use in Experimental Reinforced Concrete Research
Authors: Edvard P. G. Bruun
Abstract:
One of the best ways of improving our understanding of reinforced concrete is through large-scale experimental testing. The gathered information is critical in making inferences about structural mechanics and deriving the mathematical models that are the basis for finite element analysis programs and design codes. An effective way of measuring the strains across a region of a specimen is by using a system of surface mounted Linear Variable Differential Transformers (LVDTs). While a single LVDT can only measure the linear strain in one direction, by combining several measurements at known angles a Mohr’s circle of strain can be derived for the whole region under investigation. This paper presents a method that can be used by researchers, which improves the accuracy and removes experimental bias in the calculation of the Mohr’s circle, using four rather than three independent strain measurements. Obtaining high quality strain data is essential, since knowing the angular deviation (shear strain) and the angle of principal strain in the region are important properties in characterizing the governing structural mechanics. For example, the Modified Compression Field Theory (MCFT) developed at the University of Toronto, is a rotating crack model that requires knowing the direction of the principal stress and strain, and then calculates the average secant stiffness in this direction. But since LVDTs can only measure average strains across a plane (i.e., between discrete points), localized cracking and spalling that typically occur in reinforced concrete, can lead to unrealistic results. To build in redundancy and improve the quality of the data gathered, the typical experimental setup for a large-scale shell specimen has four independent directions (X, Y, H, and V) that are instrumented. The question now becomes, which three should be used? The most common approach is to simply discard one of the measurements. The problem is that this can produce drastically different answers, depending on the three strain values that are chosen. To overcome this experimental bias, and to avoid simply discarding valuable data, a more rigorous approach would be to somehow make use of all four measurements. This paper presents the derivation of a method to draw what is effectively a Mohr’s circle of 'best-fit', which optimizes the circle by using all four independent strain values. The four-strain optimized Mohr’s circle approach has been utilized to process data from recent large-scale shell tests at the University of Toronto (Ruggiero, Proestos, and Bruun), where analysis of the test data has shown that the traditional three-strain method can lead to widely different results. This paper presents the derivation of the method and shows its application in the context of two reinforced concrete shells tested in pure torsion. In general, the constitutive models and relationships that characterize reinforced concrete are only as good as the experimental data that is gathered – ensuring that a rigorous and unbiased approach exists for calculating the Mohr’s circle of strain during an experiment, is of utmost importance to the structural research community.Keywords: reinforced concrete, shell tests, Mohr’s circle, experimental research
Procedia PDF Downloads 235277 Validation and Fit of a Biomechanical Bipedal Walking Model for Simulation of Loads Induced by Pedestrians on Footbridges
Authors: Dianelys Vega, Carlos Magluta, Ney Roitman
Abstract:
The simulation of loads induced by walking people in civil engineering structures is still challenging It has been the focus of considerable research worldwide in the recent decades due to increasing number of reported vibration problems in pedestrian structures. One of the most important key in the designing of slender structures is the Human-Structure Interaction (HSI). How moving people interact with structures and the effect it has on their dynamic responses is still not well understood. To rely on calibrated pedestrian models that accurately estimate the structural response becomes extremely important. However, because of the complexity of the pedestrian mechanisms, there are still some gaps in knowledge and more reliable models need to be investigated. On this topic several authors have proposed biodynamic models to represent the pedestrian, whether these models provide a consistent approximation to physical reality still needs to be studied. Therefore, this work comes to contribute to a better understanding of this phenomenon bringing an experimental validation of a pedestrian walking model and a Human-Structure Interaction model. In this study, a bi-dimensional bipedal walking model was used to represent the pedestrians along with an interaction model which was applied to a prototype footbridge. Numerical models were implemented in MATLAB. In parallel, experimental tests were conducted in the Structures Laboratory of COPPE (LabEst), at Federal University of Rio de Janeiro. Different test subjects were asked to walk at different walking speeds over instrumented force platforms to measure the walking force and an accelerometer was placed at the waist of each subject to measure the acceleration of the center of mass at the same time. By fitting the step force and the center of mass acceleration through successive numerical simulations, the model parameters are estimated. In addition, experimental data of a walking pedestrian on a flexible structure was used to validate the interaction model presented, through the comparison of the measured and simulated structural response at mid span. It was found that the pedestrian model was able to adequately reproduce the ground reaction force and the center of mass acceleration for normal and slow walking speeds, being less efficient for faster speeds. Numerical simulations showed that biomechanical parameters such as leg stiffness and damping affect the ground reaction force, and the higher the walking speed the greater the leg length of the model. Besides, the interaction model was also capable to estimate with good approximation the structural response, that remained in the same order of magnitude as the measured response. Some differences in frequency spectra were observed, which are presumed to be due to the perfectly periodic loading representation, neglecting intra-subject variabilities. In conclusion, this work showed that the bipedal walking model could be used to represent walking pedestrians since it was efficient to reproduce the center of mass movement and ground reaction forces produced by humans. Furthermore, although more experimental validations are required, the interaction model also seems to be a useful framework to estimate the dynamic response of structures under loads induced by walking pedestrians.Keywords: biodynamic models, bipedal walking models, human induced loads, human structure interaction
Procedia PDF Downloads 132276 The Relationship between Depression, HIV Stigma and Adherence to Antiretroviral Therapy among Adult Patients Living with HIV at a Tertiary Hospital in Durban, South Africa: The Mediating Roles of Self-Efficacy and Social Support
Authors: Muziwandile Luthuli
Abstract:
Although numerous factors predicting adherence to antiretroviral therapy (ART) among people living with HIV/AIDS (PLWHA) have been broadly studied on both regional and global level, up-to-date adherence of patients to ART remains an overarching, dynamic and multifaceted problem that needs to be investigated over time and across various contexts. There is a rarity of empirical data in the literature on interactive mechanisms by which psychosocial factors influence adherence to ART among PLWHA within the South African context. Therefore, this study was designed to investigate the relationship between depression, HIV stigma, and adherence to ART among adult patients living with HIV at a tertiary hospital in Durban, South Africa, and the mediating roles of self-efficacy and social support. The health locus of control theory and the social support theory were the underlying theoretical frameworks for this study. Using a cross-sectional research design, a total of 201 male and female adult patients aged between 18-75 years receiving ART at a tertiary hospital in Durban, KwaZulu-Natal were sampled, using time location sampling (TLS). A self-administered questionnaire was employed to collect the data in this study. Data were analysed through SPSS version 27. Several statistical analyses were conducted in this study, namely univariate statistical analysis, correlational analysis, Pearson’s chi-square analysis, cross-tabulation analysis, binary logistic regression analysis, and mediational analysis. Univariate analysis indicated that the sample mean age was 39.28 years (SD=12.115), while most participants were females 71.0% (n=142), never married 74.2% (n=147), and most were also secondary school educated 48.3% (n=97), as well as unemployed 65.7% (n=132). The prevalence rate of participants who had high adherence to ART was 53.7% (n=108), and 46.3% (n=93) of participants had low adherence to ART. Chi-square analysis revealed that employment status was the only statistically significant socio-demographic influence of adherence to ART in this study (χ2 (3) = 8.745; p < .033). Chi-square analysis showed that there was a statistically significant difference found between depression and adherence to ART (χ2 (4) = 16.140; p < .003), while between HIV stigma and adherence to ART, no statistically significant difference was found (χ2 (1) = .323; p >.570). Binary logistic regression indicated that depression was statistically associated with adherence to ART (OR= .853; 95% CI, .789–.922, P < 001), while the association between self-efficacy and adherence to ART was statistically significant (OR= 1.04; 95% CI, 1.001– 1.078, P < .045) after controlling for the effect of depression. However, the findings showed that the effect of depression on adherence to ART was not significantly mediated by self-efficacy (Sobel test for indirect effect, Z= 1.01, P > 0.31). Binary logistic regression showed that the effect of HIV stigma on adherence to ART was not statistically significant (OR= .980; 95% CI, .937– 1.025, P > .374), but the effect of social support on adherence to ART was statistically significant, only after the effect of HIV stigma was controlled for (OR= 1.017; 95% CI, 1.000– 1.035, P < .046). This study promotes behavioral and social change effected through evidence-based interventions by emphasizing the need for additional research that investigates the interactive mechanisms by which psychosocial factors influence adherence to ART. Depression is a significant predictor of adherence to ART. Thus, to alleviate the psychosocial impact of depression on adherence to ART, effective interventions must be devised, along with special consideration of self-efficacy and social support. Therefore, this study is helpful in informing and effecting change in health policy and healthcare services through its findingsKeywords: ART adherence, depression, HIV/AIDS, PLWHA
Procedia PDF Downloads 180275 Surface Acoustic Waves Nebulisation of Liposomes Manufactured in situ for Pulmonary Drug Delivery
Authors: X. King, E. Nazarzadeh, J. Reboud, J. Cooper
Abstract:
Pulmonary diseases, such as asthma, are generally treated by the inhalation of aerosols that has the advantage of reducing the off-target (e.g., toxicity) effects associated with systemic delivery in blood. Effective respiratory drug delivery requires a droplet size distribution between 1 and 5 µm. Inhalation of aerosols with wide droplet size distribution, out of this range, results in deposition of drug in not-targeted area of the respiratory tract, introducing undesired side effects on the patient. In order to solely deliver the drug in the lower branches of the lungs and release it in a targeted manner, a control mechanism to produce the aerosolized droplets is required. To regulate the drug release and to facilitate the uptake from cells, drugs are often encapsulated into protective liposomes. However, a multistep process is required for their formation, often performed at the formulation step, therefore limiting the range of available drugs or their shelf life. Using surface acoustic waves (SAWs), a pulmonary drug delivery platform was produced, which enabled the formation of defined size aerosols and the formation of liposomes in situ. SAWs are mechanical waves, propagating along the surface of a piezoelectric substrate. They were generated using an interdigital transducer on lithium niobate with an excitation frequency of 9.6 MHz at a power of 1W. Disposable silicon superstrates were etched using photolithography and dry etch processes to create an array of cylindrical through-holes with different diameters and pitches. Superstrates were coupled with the SAW substrate through water-based gel. As the SAW propagates on the superstrate, it enables nebulisation of a lipid solution deposited onto it. The cylindrical cavities restricted the formation of large drops in the aerosol, while at the same time unilamellar liposomes were created. SAW formed liposomes showed a higher monodispersity compared to the control sample, as well as displayed, a faster production rate. To test the aerosol’s size, dynamic light scattering and laser diffraction methods were used, both showing the size control of the aerosolised particles. The use of silicon superstate with cavity size of 100-200 µm, produced an aerosol with a mean droplet size within the optimum range for pulmonary drug delivery, containing the liposomes in which the medicine could be loaded. Additionally, analysis of liposomes with Cryo-TEM showed formation of vesicles with narrow size distribution between 80-100 nm and optimal morphology in order to be used for drug delivery. Encapsulation of nucleic acids in liposomes through the developed SAW platform was also investigated. In vitro delivery of siRNA and DNA Luciferase were achieved using A549 cell line, lung carcinoma from human. In conclusion, SAW pulmonary drug delivery platform was engineered, in order to combine multiple time consuming steps (formation of liposomes, drug loading, nebulisation) into a unique platform with the aim of specifically delivering the medicament in a targeted area, reducing the drug’s side effects.Keywords: acoustics, drug delivery, liposomes, surface acoustic waves
Procedia PDF Downloads 124274 Legume Grain as Alternative to Soya Bean Meal in Small Ruminant Diets
Authors: Abidi Sourour, Ben Salem Hichem, Zoghlemi Aziza, Mezni Mejid, Nasri Saida
Abstract:
In Tunisia, there is an urgent need to maintain food security by reversing soil degradation and improving crop and livestock productivity. Conservation Agriculture (CA) can be helpful in enhancing crop productivity and soil health. However, the demand for crop residues as animal feed are among the major constraints for the adoption of CA. Thus, the objective of this trial is to test the nutritional value of new forage mixture hays as alternative to cereal residues. Two tri-specific cereal-legume mixture were studied and compared to the classic Vetch-Oat one. They were implemented at farm level in four regions characterized by sub-humi climatic: V70-A15-T15 (Vetch70% - Oat15% -Triticale15%) installed in two sites (Zhir and safasaf), V60-A7-T33 (Vetch60% - Oat7% -Triticale33%) and V70-A30 (Vetch70%-Oat30%). Results revealed a significant variation between mixtures V70-A15-T15 installed at Safsafa, recorded the highest forage yield with 12t DM ha-1 than V60A7T33 and V70A30 installed, respectively in ksar cheikh and Fernana with 11.6 and 11.2.tMSha-1. The same mixture installed in Safsafa gave 22% less yields than the one installed in Safsafa. In fact, the month of March was dry in Z'hir. Moreover, these yields in DM can be comparable to those observed by Yucel and Avci (2009). The CP contents of the samples studied vary significantly between the mixtures (P<0.0003). V70-A15-T15 installed in Safsaf and V70A30 present higher contents of CP (respectively 14.4 and 13.7% DM) compared to the other mixtures. These contents are explained by the high proportion of vetch in the fourth mixture and by the low proportion of weeds in the second. In all cases, the hay produced from these mixtures is significantly richer in protein than that of oats in pure culture (Abdelraheem et al., 2019). The positive correlation between the CP content and the proportion of vetch explains this superior quality. The NDF and ADF contents were similar for all mixtures. These values were similar to those reported in the literature (Abidi and Benyoussef, 2019; Haj-Ayed and al., 2000). In general, the Land Equivalent Ratio (LER) was significantly greater than 1 for the vetch-oat-triticale mixture at Zhiir and Safsafa and also for the vetch-oat a at Fernana, proving that they are more productive in intercropping than in pure culture. For the Ksar Cheikh site, the LER value of the vetch-oat-triticale mixture is maintained at around 1. Proving the absence of the advantage of mixture culture compared to pure culture. This proves the massive presence of weeds interferes with the two partners of the mixture increases. The LER for the vetch-oat mixture reached its maximum in March 13 and decreases in April but remained above 1. This proves that the tutoring power of oats showed itself in a constant way until an advanced stage since the variety used is characterized by very thick stems, protecting it from the risk of lodging. These forages mixture present a promising option, a high nutritional quality that could reduce the use of concentrate and, therefore, the cost of feed. With such feed value, these mixtures allow good animal performance.Keywords: soybean, lupine, vetch, lamb-ADG, meat
Procedia PDF Downloads 90273 Hybrid Data-Driven Drilling Rate of Penetration Optimization Scheme Guided by Geological Formation and Historical Data
Authors: Ammar Alali, Mahmoud Abughaban, William Contreras Otalvora
Abstract:
Optimizing the drilling process for cost and efficiency requires the optimization of the rate of penetration (ROP). ROP is the measurement of the speed at which the wellbore is created, in units of feet per hour. It is the primary indicator of measuring drilling efficiency. Maximization of the ROP can indicate fast and cost-efficient drilling operations; however, high ROPs may induce unintended events, which may lead to nonproductive time (NPT) and higher net costs. The proposed ROP optimization solution is a hybrid, data-driven system that aims to improve the drilling process, maximize the ROP, and minimize NPT. The system consists of two phases: (1) utilizing existing geological and drilling data to train the model prior, and (2) real-time adjustments of the controllable dynamic drilling parameters [weight on bit (WOB), rotary speed (RPM), and pump flow rate (GPM)] that direct influence on the ROP. During the first phase of the system, geological and historical drilling data are aggregated. After, the top-rated wells, as a function of high instance ROP, are distinguished. Those wells are filtered based on NPT incidents, and a cross-plot is generated for the controllable dynamic drilling parameters per ROP value. Subsequently, the parameter values (WOB, GPM, RPM) are calculated as a conditioned mean based on physical distance, following Inverse Distance Weighting (IDW) interpolation methodology. The first phase is concluded by producing a model of drilling best practices from the offset wells, prioritizing the optimum ROP value. This phase is performed before the commencing of drilling. Starting with the model produced in phase one, the second phase runs an automated drill-off test, delivering live adjustments in real-time. Those adjustments are made by directing the driller to deviate two of the controllable parameters (WOB and RPM) by a small percentage (0-5%), following the Constrained Random Search (CRS) methodology. These minor incremental variations will reveal new drilling conditions, not explored before through offset wells. The data is then consolidated into a heat-map, as a function of ROP. A more optimum ROP performance is identified through the heat-map and amended in the model. The validation process involved the selection of a planned well in an onshore oil field with hundreds of offset wells. The first phase model was built by utilizing the data points from the top-performing historical wells (20 wells). The model allows drillers to enhance decision-making by leveraging existing data and blending it with live data in real-time. An empirical relationship between controllable dynamic parameters and ROP was derived using Artificial Neural Networks (ANN). The adjustments resulted in improved ROP efficiency by over 20%, translating to at least 10% saving in drilling costs. The novelty of the proposed system lays is its ability to integrate historical data, calibrate based geological formations, and run real-time global optimization through CRS. Those factors position the system to work for any newly drilled well in a developing field event.Keywords: drilling optimization, geological formations, machine learning, rate of penetration
Procedia PDF Downloads 131272 Solomon 300 OD (Betacyfluthrin+Imidacloprid): A Combi-Product for the Management of Insect-Pests of Chilli (Capsicum annum L.)
Authors: R. S. Giraddi, B. Thirupam Reddy, D. N. Kambrekar
Abstract:
Chilli (Capsicum annum L.) an important commercial vegetable crop is ravaged by a number of insect-pests during both vegetative and reproductive phase resulting into significant crop loss.Thrips, Scirtothripsdorsalis, mite, Polyphagotarsonemuslatus and whitefly, Bemisiatabaci are the key sap feeding insects, their infestation leads to leaf curl, stunted growth and yield loss.During flowering and fruit formation stage, gall midge fly, Asphondyliacapparis (Rubsaaman) infesting flower buds and young fruits andHelicoverpaarmigera (Hubner) feeding on matured green fruits are the important insect pests causing significant crop loss.The pest is known to infest both flower buds and young fruits resulting into malformation of flower buds and twisting of fruits.In order to manage these insect-pests a combi product consisting of imidacloprid and betacyfluthrin (Soloman 300 OD) was evaluated for its bio-efficacy, phytotoxicity and effect on predator activity.Imidacloprid, a systemic insecticide belonging to neo-nicotinoid group, is effective against insect pests such as aphids, whiteflies (sap feeders) and other insectsviz., termites and soil insects.Beta-Cyfluthrin is an insecticide of synthetic pyrethroid group which acts by contact action and ingestion. It acts on the insects' nervous system as sodium channel blocker consequently a disorder of the nervous system occurs leading finally to the death. The field experiments were taken up during 2015 and 2016 at the Main Agricultural Research Station of University of Agricultural Sciences, Dharwad, Karnataka, India.The trials were laid out in a Randomized Block Design (RBD) with three replications using popular land race of Byadagi crop variety.Results indicated that the product at 21.6 + 50.4% gai/ha (240 ml/ha) and 27.9 + 65% gai/ha (310 ml/ha) was found quite effective in controlling thrips (0.00 to 0.66 thrips per six leaves) as against the standard check insecticide recommended for thrips by the University of Agricultural Sciences, Dharwad wherein the density of thrips recorded was significantly higher (1.00 to 2.00 Nos./6 leaves). Similarly, the test insecticide was quite effective against other target insects, whiteflies, fruit borer and gall midge fly as indicated by lower insect population observed in the treatments as compared to standard insecticidal control. The predatory beetle activity was found to be normal in all experimental plots. Highest green fruit yield of 5100-5500 kg/ha was recorded in Soloman 300 OD applied crop at 310 ml/ha rate as compared to 4750 to 5050 kg/ha recorded in check. At present 6-8 sprays of insecticides are recommended for management of these insect-pests on the crop. If combi-products are used in pest management programmes, it is possible to reduce insecticide usages in crop ecosystem.Keywords: Imidacloprid, Betacyfluthrin, gallmidge fly, thrips, chilli
Procedia PDF Downloads 166271 Using Business Interactive Games to Improve Management Skills
Authors: Nuno Biga
Abstract:
Continuous processes’ improvement is a permanent challenge for managers of any organization. Lean management means that efficiency gains can be obtained through a systematic framework able to explore synergies between processes, eliminate waste of time, and other resources. Leaderships in organizations determine the efficiency of the teams through their influence on collaborators, their motivation, and consolidation of ownership (group) feeling. The “organization health” depends on the leadership style, which is directly influenced by the intrinsic characteristics of each personality and leadership ability (leadership competencies). Therefore, it’s important that managers can correct in advance any deviation from expected leadership exercises. Top management teams must assume themselves as regulatory agents of leadership within the organization, ensuring monitoring of actions and the alignment of managers in accordance with the humanist standards anchored in a visible Code of Ethics and Conduct. This article is built around an innovative model of “Business Interactive Games” (BI GAMES) that simulates a real-life management environment. It shows that the strategic management of operations depends on a complex set of endogenous and exogenous variables to the intervening agents that require specific skills and a set of critical processes to monitor. BI GAMES are designed for each management reality and have already been applied successfully in several contexts over the last five years comprising the educational and enterprise ones. Results from these experiences are used to demonstrate how serious games in working living labs contributed to improve the organizational environment by focusing on the evaluation of players’ (agents’) skills, empower its capabilities, and the critical factors that create value in each context. The implementation of the BI GAMES simulator highlights that leadership skills are decisive for the performance of teams, regardless of the sector of activity and the specificities of each organization whose operation is intended to simulate. The players in the BI GAMES can be managers or employees of different roles in the organization or students in the learning context. They interact with each other and are asked to decide/make choices in the presence of several options for the follow-up operation, for example, when the costs and benefits are not fully known but depend on the actions of external parties (e.g., subcontracted enterprises and actions of regulatory bodies). Each team must evaluate resources used/needed in each operation, identify bottlenecks in the system of operations, assess the performance of the system through a set of key performance indicators, and set a coherent strategy to improve efficiency. Through the gamification and the serious games approach, organizational managers will be able to confront the scientific approach in strategic decision-making versus their real-life approach based on experiences undertaken. Considering that each BI GAME’s team has a leader (chosen by draw), the performance of this player has a direct impact on the results obtained. Leadership skills are thus put to the test during the simulation of the functioning of each organization, allowing conclusions to be drawn at the end of the simulation, including its discussion amongst participants.Keywords: business interactive games, gamification, management empowerment skills, simulation living labs
Procedia PDF Downloads 112270 Simulation and Thermal Evaluation of Containers Using PCM in Different Weather Conditions of Chile: Energy Savings in Lightweight Constructions
Authors: Paula Marín, Mohammad Saffari, Alvaro de Gracia, Luisa F. Cabeza, Svetlana Ushak
Abstract:
Climate control represents an important issue when referring to energy consumption of buildings and associated expenses, both in installation or operation periods. The climate control of a building relies on several factors. Among them, localization, orientation, architectural elements, sources of energy used, are considered. In order to study the thermal behaviour of a building set up, the present study proposes the use of energy simulation program Energy Plus. In recent years, energy simulation programs have become important tools for evaluation of thermal/energy performance of buildings and facilities. Besides, the need to find new forms of passive conditioning in buildings for energy saving is a critical component. The use of phase change materials (PCMs) for heat storage applications has grown in importance due to its high efficiency. Therefore, the climatic conditions of Northern Chile: high solar radiation and extreme temperature fluctuations ranging from -10°C to 30°C (Calama city), low index of cloudy days during the year are appropriate to take advantage of solar energy and use passive systems in buildings. Also, the extensive mining activities in northern Chile encourage the use of large numbers of containers to harbour workers during shifts. These containers are constructed with lightweight construction systems, requiring heating during night and cooling during day, increasing the HVAC electricity consumption. The use of PCM can improve thermal comfort and reduce the energy consumption. The objective of this study was to evaluate the thermal and energy performance of containers of 2.5×2.5×2.5 m3, located in four cities of Chile: Antofagasta, Calama, Santiago, and Concepción. Lightweight envelopes, typically used in these building prototypes, were evaluated considering a container without PCM inclusion as the reference building and another container with PCM-enhanced envelopes as a test case, both of which have a door and a window in the same wall, orientated in two directions: North and South. To see the thermal response of these containers in different seasons, the simulations were performed considering a period of one year. The results show that higher energy savings for the four cities studied are obtained when the distribution of door and window in the container is in the north direction because of higher solar radiation incidence. The comparison of HVAC consumption and energy savings in % for north direction of door and window are summarised. Simulation results show that in the city of Antofagasta 47% of heating energy could be saved and in the cities of Calama and Concepción the biggest savings in terms of cooling could be achieved since PCM reduces almost all the cooling demand. Currently, based on simulation results, four containers have been constructed and sized with the same structural characteristics carried out in simulations, that are, containers with/without PCM, with door and window in one wall. Two of these containers will be placed in Antofagasta and two containers in a copper mine near to Calama, all of them will be monitored for a period of one year. The simulation results will be validated with experimental measurements and will be reported in the future.Keywords: energy saving, lightweight construction, PCM, simulation
Procedia PDF Downloads 286269 A Conceptual Model of Sex Trafficking Dynamics in the Context of Pandemics and Provisioning Systems
Authors: Brian J. Biroscak
Abstract:
In the United States (US), “sex trafficking” is defined at the federal level in the Trafficking Victims Protection Act of 2000 as encompassing a number of processes such as recruitment, transportation, and provision of a person for the purpose of a commercial sex act. It involves the use of force, fraud, or coercion, or in which the person induced to perform such act has not attained 18 years of age. Accumulating evidence suggests that sex trafficking is exacerbated by social and environmental stressors (e.g., pandemics). Given that “provision” is a key part of the definition, “provisioning systems” may offer a useful lens through which to study sex trafficking dynamics. Provisioning systems are the social systems connecting individuals, small groups, entities, and embedded communities as they seek to satisfy their needs and wants for goods, services, experiences and ideas through value-based exchange in communities. This project presents a conceptual framework for understanding sex trafficking dynamics in the context of the COVID pandemic. The framework is developed as a system dynamics simulation model based on published evidence, social and behavioral science theory, and key informant interviews with stakeholders from the Protection, Prevention, Prosecution, and Partnership sectors in one US state. This “4 P Paradigm” has been described as fundamental to the US government’s anti-trafficking strategy. The present research question is: “How do sex trafficking systems (e.g., supply, demand and price) interact with other provisioning systems (e.g., networks of organizations that help sexually exploited persons) to influence trafficking over time vis-à-vis the COVID pandemic?” Semi-structured interviews with stakeholders (n = 19) were analyzed based on grounded theory and combined for computer simulation. The first step (Problem Definition) was completed by open coding video-recorded interviews, supplemented by a literature review. The model depicts provision of sex trafficking services for victims and survivors as declining in March 2020, coincidental with COVID, but eventually rebounding. The second modeling step (Dynamic Hypothesis Formulation) was completed by open- and axial coding of interview segments, as well as consulting peer-reviewed literature. Part of the hypothesized explanation for changes over time is that the sex trafficking system behaves somewhat like a commodities market, with each of the other subsystems exhibiting delayed responses but collectively keeping trafficking levels below what they would be otherwise. Next steps (Model Building & Testing) led to a ‘proof of concept’ model that can be used to conduct simulation experiments and test various action ideas, by taking model users outside the entire system and seeing it whole. If sex trafficking dynamics unfold as hypothesized, e.g., oscillated post-COVID, then one potential leverage point is to address the lack of information feedback loops between the actual occurrence and consequences of sex trafficking and those who seek to prevent its occurrence, prosecute the traffickers, protect the victims and survivors, and partner with the other anti-trafficking advocates. Implications for researchers, administrators, and other stakeholders are discussed.Keywords: pandemics, provisioning systems, sex trafficking, system dynamics modeling
Procedia PDF Downloads 79268 Biocompatible Hydrogel Materials Containing Cytostatics for Cancer Treatment
Authors: S. Kudlacik-Kramarczyk, M. Kedzierska, B. Tyliszczak
Abstract:
Recently, the continuous development of medicine and related sciences has been observed. Particular emphasis is directed on the development of biomaterials, i.e., non-toxic, biocompatible and biodegradable materials that may improve the effectiveness of treatment as well as the comfort of patients. This is particularly important in the case of cancer treatment. Currently, there are many methods of cancer treatment based primarily on chemotherapy and the surgical removal of the tumor, but it is worth noting that these therapies also cause many side effects. Among women, the most common cancer is breast cancer. It may be completely cured, but the consequence of treatment is partial or complete breast mastectomy and radiation therapy, which results in severe skin burns. The skin of the patient after radiation therapy is very burned, and therefore requires intensive care and high frequency of dressing changes. The traditional dressing adheres to the burn wounds and does not absorb adequate amount of exudate from injuries and the patient is forced to change the dressing every 2 hours. Therefore, the main purpose was to develop an innovative combination of dressing material with drug carriers that may be used in anti-cancer therapy. The innovation of this solution is the combination of these two products into one system, i.e., a transdermal system with the possibility of a controlled release of the drug- cytostatic. Besides, the possibility of modifying the hydrogel matrix with aloe vera juice provides this material with new features favorable from the point of view of healing processes of burn wounds resulting from the radiation therapy. In this study, hydrogel materials containing protein spheres with the active substance have been obtained as a result of photopolymerization process. The reaction mixture consisting of the protein (albumin) spheres incorporated with cytostatic, chitosan, adequate crosslinking agent and photoinitiator has been subjected to the UV radiation for 2 minutes. Prepared materials have been subjected to the numerous studies including the analysis of cytotoxicity using murine fibroblasts L929. Analysis was conducted based on the mitochondrial activity test (MTT reduction assay) which involves the determining the number of cells characterized by proper metabolism. Hydrogel materials obtained using different amount of crosslinking agents have been subjected to the cytotoxicity analysis. According to the standards, tested material is defined as cytotoxic when the viability of cells after 24 h incubation with this material is lower than 70%. In the research, hydrogel polymer materials containing protein spheres incorporated with the active substance, i.e. a cytostatic, have been developed. Such a dressing may support the treatment of cancer due to the content of the anti-cancer drug - cytostatic, and may also provide a soothing effect on the healing of the burn wounds resulted from the radiation therapy due to the content of aloe vera juice in the hydrogel matrix. Based on the conducted cytotoxicity studies, it may be concluded that the obtained materials do not adversely affect the tested cell lines, therefore they can be subjected to more advanced analyzes.Keywords: hydrogel polymers, cytostatics, drug carriers, cytotoxicity
Procedia PDF Downloads 132267 Sublethal Effects of Industrial Effluents on Fish Fingerlings (Clarias gariepinus) from Ologe Lagoon Environs, Lagos, Nigeria
Authors: Akintade O. Adeboyejo, Edwin O. Clarke, Oluwatoyin Aderinola
Abstract:
The present study is on the sub-lethal toxicity of industrial effluents (IE) from the environment of Ologe Lagoon, Lagos, Nigeria on the African catfish fingerlings Clarias gariepinus. The fish were cultured in varying concentrations of industrial effluents: 0% (control), 5%, 15%, 25%, and 35%. Trials were carried out in triplicates for twelve (12) weeks. The culture system was a static renewable bioassay and was carried out in the fisheries laboratory of the Lagos State University, Ojo-Lagos. Weekly physico-chemical parameters: Temperature (0C), pH, Conductivity (ppm) and Dissolved Oxygen (DO in mg/l) were measured in each treatment tank. Length (cm) and weight (g) data were obtained weekly and used to calculate various growth parameters: mean weight gain (MWG), percentage weight gain (PWG), daily weight gain (DWG), specific growth rate (SGR) and survival. Haematological (Packed Cell Volume (PCV), Red blood cells (RBC), White Blood Cell (WBC), Neutrophil and Lymphocytes etc) and histological alterations were measured after 12 weeks. The physico-chemical parameters showed that the pH ranged from 7.82±0.25–8.07±0.02. DO range from 1.92±0.66-4.43±1.24 mg/l. The conductivity values increased with increase in concentration of I.E. While the temperature remained stable with mean value range between 26.08±2.14–26.38±2.28. The DO showed significant differences at P<0.05. There was progressive increase in length and weight of fish during the culture period. The fish placed in the control had highest increase in both weight and length while fish in 35% had the least. MWG ranged from 16.59–35.96, DWG is from 0.3–0.48, SGR varied from 1.0–1.86 and survival was 100%. Haematological results showed that C. gariepinus had PCV ranging from 13.0±1.7-27.7±0.6, RBC ranged from 4.7±0.6–9.1±0.1, and Neutrophil ranged from 26.7±4.6–61.0±1.0 amongst others. The highest values of these parameters were obtained in the control and lowest at 35%. While the reverse effects were observed for WBC and lymphocytes. This study has shown that effluents may affect the health status of the test organism and impair vital processes if exposure continues for a long period of time. The histological examination revealed several lesions as expressed by the gills and livers. The histopathology of the gills in the control tanks had normal tissues with no visible lesion, but at higher concentrations, there were: lifting of epithelium, swollen lamellae and gill arch infiltration, necrosis and gill arch destruction. While in the liver: control (0%) show normal liver cells, at higher toxic level, there were: vacoulation, destruction of the hepatic parenchyma, tissue becoming eosinophilic (i.e. tending towards Carcinogenicity) and severe disruption of the hepatic cord architecture. The study has shown that industrial effluents from the study area may affect fish health status and impair vital processes if exposure continues for a long period of time even at lower concentrations (Sublethal).Keywords: sublethal toxicity, industrial effluents, clarias gariepinus, ologe lagoon
Procedia PDF Downloads 610266 The Use of Online Multimedia Platforms to Deliver a Regional Medical Schools Finals Revision Course During the COVID-19 Pandemic
Authors: Matthew Edmunds, Andrew Hunter, Clare Littlewood, Wisha Gul, Gabriel Heppenstall-Harris, Thomas Humphries
Abstract:
Background: Revision courses for medical students undertaking their final examinations are commonplace throughout the UK. Traditionally these take the form of a series of lectures over multiple weeks or a single day of intensive lectures. The COVID-19 pandemic, however, has required medical educators to create new teaching formats to ensure they adhere to social distancing requirements. It has provided an unexpected opportunity to accelerate the development of students proficiency in the use of ‘technology-enabled communication platforms’, as mandated in the 2018 GMC Outcomes of Graduates. Recent advances in technology have made distance learning possible, whilst also providing novel and more engaging learning opportunities for students. Foundation Year 2 doctors at Aintree University Hospital developed an online series of videos to help prepare medical students in the North West and byond for their final medical school examinations. Method: Eight hour-long videos covering the key topics in medicine and surgery were posted on the Peer Learning Liverpool Youtube channel. These videos were created using new technology such as the screen and audio recording platform, Loom. Each video compromised at least 20 single best answer (SBA) questions, in keeping with the format in most medical school finals. Explanations of the answers were provided, and additional important material was covered. Students were able to ask questions by commenting on the videos, with the authors replying as soon as possible. Feedback was collated using an online Google form. Results: An average of 327 people viewed each video, with 113 students filling in the feedback form. 65.5% of respondents were within one month of their final medical school examinations. The average rating for how well prepared the students felt for their finals was 6.21/10 prior to the course and 8.01/10 after the course. A paired t-test demonstrated a mean increase of 1.80 (95% CI 1.66-1.93). Overall, 98.2% said the online format worked well or very well, and 99.1% would recommend the course to a peer. Conclusions: Based on the feedback received, the online revision course was successful both in terms of preparing students for their final examinations, and with regards to how well the online format worked. Free-text qualitative feedback highlighted advantages such as; students could learn at their own pace, revisit key concepts important to them, and practice exam style questions via the case-based format. Limitations identified included inconsistent audiovisual quality, and requests for a live online Q&A session following the conclusion of the course. This course will be relaunched later in the year with increased opportunities for students to access live feedback. The success of this online course has shown the roll that technology can play in medical education. As well as providing novel teaching modes, online learning allows students to access resources that otherwise would not be available locally, and ensure that they do not miss out on teaching that was previously provided face to face, in the current climate of social distancing.Keywords: COVID-19 pandemic, Medical School, Online learning, Revision course
Procedia PDF Downloads 153265 Impact of Informal Institutions on Development: Analyzing the Socio-Legal Equilibrium of Relational Contracts in India
Authors: Shubhangi Roy
Abstract:
Relational Contracts (informal understandings not enforceable by law) are a common feature of most economies. However, their dominance is higher in developing countries. Such informality of economic sectors is often co-related to lower economic growth. The aim of this paper is to investigate whether informal arrangements i.e. relational contracts are a cause or symptom of lower levels of economic and/or institutional development. The methodology followed involves an initial survey of 150 test subjects in Northern India. The subjects are all members of occupations where they frequently transact ensuring uniformity in transaction volume. However, the subjects are from varied socio-economic backgrounds to ensure sufficient variance in transaction values allowing us to understand the relationship between the amount of money involved to the method of transaction used, if any. Questions asked are quantitative and qualitative with an aim to observe both the behavior and motivation behind such behavior. An overarching similarity observed during the survey across all subjects’ responses is that in an economy like India with pervasive corruption and delayed litigation, economy participants have created alternative social sanctions to deal with non-performers. In a society that functions predominantly on caste, class and gender classifications, these sanctions could, in fact, be more cumbersome for a potential rule-breaker than the legal ramifications. It, therefore, is a symptom of weak formal regulatory enforcement and dispute settlement mechanism. Additionally, the study bifurcates such informal arrangements into two separate systems - a) when it exists in addition to and augments a legal framework creating an efficient socio-legal equilibrium or; b) in conflict with the legal system in place. This categorization is an important step in regulating informal arrangements. Instead of considering the entire gamut of such arrangements as counter-development, it helps decision-makers understand when to dismantle (latter) and when to pivot around existing informal systems (former). The paper hypothesizes that those social arrangements that support the formal legal frameworks allow for cheaper enforcement of regulations with lower enforcement costs burden on the state mechanism. On the other hand, norms which contradict legal rules will undermine the formal framework. Law infringement, in presence of these norms, will have no impact on the reputation of the business or individual outside of the punishment imposed under the law. It is especially exacerbated in the Indian legal system where enforcement of penalties for non-performance of contracts is low. In such a situation, the social norm will be adhered to more strictly by the individuals rather than the legal norms. This greatly undermines the role of regulations. The paper concludes with recommendations that allow policy-makers and legal systems to encourage the former category of informal arrangements while discouraging norms that undermine legitimate policy objectives. Through this investigation, we will be able to expand our understanding of tools of market development beyond regulations. This will allow academics and policymakers to harness social norms for less disruptive and more lasting growth.Keywords: distribution of income, emerging economies, relational contracts, sample survey, social norms
Procedia PDF Downloads 165264 Developing Writing Skills of Learners with Persistent Literacy Difficulties through the Explicit Teaching of Grammar in Context: Action Research in a Welsh Secondary School
Authors: Jean Ware, Susan W. Jones
Abstract:
Background: The benefits of grammar instruction in the teaching of writing is contested in most English speaking countries. A majority of Anglophone countries abandoned the teaching of grammar in the 1950s based on the conclusions that it had no positive impact on learners’ development of reading, writing, and language. Although the decontextualised teaching of grammar is not helpful in improving writing, a curriculum with a focus on grammar in an embedded and meaningful way can help learners develop their understanding of the mechanisms of language. Although British learners are generally not taught grammar rules explicitly, learners in schools in France, the Netherlands, and Germany are taught explicitly about the structure of their own language. Exposing learners to grammatical analysis can help them develop their understanding of language. Indeed, if learners are taught that each part of speech has an identified role in the sentence. This means that rather than have to memorise lists of words or spelling patterns, they can focus on determining each word or phrase’s task in the sentence. These processes of categorisation and deduction are higher order thinking skills. When considering definitions of dyslexia available in Great Britain, the explicit teaching of grammar in context could help learners with persistent literacy difficulties. Indeed, learners with dyslexia often develop strengths in problem solving; the teaching of grammar could, therefore, help them develop their understanding of language by using analytical and logical thinking. Aims: This study aims at gaining a further understanding of how the explicit teaching of grammar in context can benefit learners with persistent literacy difficulties. The project is designed to identify ways of adapting existing grammar focussed teaching materials so that learners with specific learning difficulties such as dyslexia can use them to further develop their writing skills. It intends to improve educational practice through action, analysis and reflection. Research Design/Methods: The project, therefore, uses an action research design and multiple sources of evidence. The data collection tools used were standardised test data, teacher assessment data, semi-structured interviews, learners’ before and after attempts at a writing task at the beginning and end of the cycle, documentary data and lesson observation carried out by a specialist teacher. Existing teaching materials were adapted for use with five Year 9 learners who had experienced persistent literacy difficulties from primary school onwards. The initial adaptations included reducing the amount of content to be taught in each lesson, and pre teaching some of the metalanguage needed. Findings: Learners’ before and after attempts at the writing task were scored by a colleague who did not know the order of the attempts. All five learners’ scores were higher on the second writing task. Learners reported that they had enjoyed the teaching approach. They also made suggestions to be included in the second cycle, as did the colleague who carried out observations. Conclusions: Although this is a very small exploratory study, these results suggest that adapting grammar focused teaching materials shows promise for helping learners with persistent literacy difficulties develop their writing skills.Keywords: explicit teaching of grammar in context, literacy acquisition, persistent literacy difficulties, writing skills
Procedia PDF Downloads 156263 Barriers to Tuberculosis Detection in Portuguese Prisons
Authors: M. F. Abreu, A. I. Aguiar, R. Gaio, R. Duarte
Abstract:
Background: Prison establishments constitute high-risk environments for the transmission and spread of tuberculosis (TB), given their epidemiological context and the difficulty of implementing preventive and control measures. Guidelines for control and prevention of tuberculosis in prisons have been described as incomplete and heterogeneous internationally, due to several identified obstacles, for example scarcity of human resources and funding of prisoner health services. In Portugal, a protocol was created in 2014 with the aim to define and standardize procedures of detection and prevention of tuberculosis within prisons. Objective: The main objective of this study was to identify and describe barriers to tuberculosis detection in prisons of Porto and Lisbon districts in Portugal. Methods: A cross-sectional study was conducted from 2ⁿᵈ January 2018 till 30ᵗʰ June 2018. Semi-structured questionnaires were applied to health care professionals working in the prisons of the districts of Porto (n=6) and Lisbon (n=8). As inclusion criteria we considered having work experience in the area of tuberculosis (either in diagnosis, treatment, or follow up). The questionnaires were self-administered, in paper format. Descriptive analyses of the questionnaire variables were made using frequencies and median. Afterwards, a hierarchical agglomerative clusters analysis was performed. After obtaining the clusters, the chi-square test was applied to study the association between the variables collected and the clusters. The level of significance considered was 0.05. Results: From the total of 186 health professionals, 139 met the criteria of inclusion and 82 health professionals were interviewed (62,2% of participation). Most were female, nurses, with a median age of 34 years, with term employment contract. From the cluster analysis, two groups were identified with different characteristics and behaviors for the procedures of this protocol. Statistically significant results were found in: elements of cluster 1 (78% of the total participants) work in prisons for a longer time (p=0.003), 45,3% work > 4 years while 50% of the elements of cluster 2 work for less than a year, and more frequently answered they know and apply the procedures of the protocol (p=0.000). Both clusters answered frequently the need of having theoretical-practical training for TB (p=0.000), especially in the areas of diagnosis, treatment and prevention and that there is scarcity of funding to prisoner health services (p=0.000). Regarding procedures for TB screening (periodic and contact screening) and procedures for transferring a prisoner with this disease, cluster 1 also answered more frequently to perform them (p=0.000). They also referred that the material/equipment for TB screening is accessible and available (p=0.000). From this clusters we identified as barriers scarcity of human resources, the need to theoretical-practical training for tuberculosis, inexperience in working in health services prisons and limited knowledge of protocol procedures. Conclusions: The barriers found in this study are the same described internationally. This protocol is mostly being applied in portuguese prisons. The study also showed the need to invest in human and material resources. This investigation bridged gaps in knowledge that could help prison health services optimize the care provided for early detection and adherence of prisoners to treatment of tuberculosis.Keywords: barriers, health care professionals, prisons, protocol, tuberculosis
Procedia PDF Downloads 146262 A Mathematical Model for Studying Landing Dynamics of a Typical Lunar Soft Lander
Authors: Johns Paul, Santhosh J. Nalluveettil, P. Purushothaman, M. Premdas
Abstract:
Lunar landing is one of the most critical phases of lunar mission. The lander is provided with a soft landing system to prevent structural damage of lunar module by absorbing the landing shock and also assure stability during landing. Presently available software are not capable to simulate the rigid body dynamics coupled with contact simulation and elastic/plastic deformation analysis. Hence a separate mathematical model has been generated for studying the dynamics of a typical lunar soft lander. Parameters used in the analysis includes lunar surface slope, coefficient of friction, initial touchdown velocity (vertical and horizontal), mass and moment of inertia of lander, crushing force due to energy absorbing material in the legs, number of legs and geometry of lander. The mathematical model is capable to simulate plastic and elastic deformation of honey comb, frictional force between landing leg and lunar soil, surface contact simulation, lunar gravitational force, rigid body dynamics and linkage dynamics of inverted tripod landing gear. The non linear differential equations generated for studying the dynamics of lunar lander is solved by numerical method. Matlab programme has been used as a computer tool for solving the numerical equations. The position of each kinematic joint is defined by mathematical equations for the generation of equation of motion. All hinged locations are defined by position vectors with respect to body fixed coordinate. The vehicle rigid body rotations and motions about body coordinate are only due to the external forces and moments arise from footpad reaction force due to impact, footpad frictional force and weight of vehicle. All these force are mathematically simulated for the generation of equation of motion. The validation of mathematical model is done by two different phases. First phase is the validation of plastic deformation of crushable elements by employing conservation of energy principle. The second phase is the validation of rigid body dynamics of model by simulating a lander model in ADAMS software after replacing the crushable elements to elastic spring element. Simulation of plastic deformation along with rigid body dynamics and contact force cannot be modeled in ADAMS. Hence plastic element of primary strut is replaced with a spring element and analysis is carried out in ADAMS software. The same analysis is also carried out using the mathematical model where the simulation of honeycomb crushing is replaced by elastic spring deformation and compared the results with ADAMS analysis. The rotational motion of linkages and 6 degree of freedom motion of lunar Lander about its CG can be validated by ADAMS software by replacing crushing element to spring element. The model is also validated by the drop test results of 4 leg lunar lander. This paper presents the details of mathematical model generated and its validation.Keywords: honeycomb, landing leg tripod, lunar lander, primary link, secondary link
Procedia PDF Downloads 351261 Assessment of Environmental Mercury Contamination from an Old Mercury Processing Plant 'Thor Chemicals' in Cato Ridge, KwaZulu-Natal, South Africa
Authors: Yohana Fessehazion
Abstract:
Mercury is a prominent example of a heavy metal contaminant in the environment, and it has been extensively investigated for its potential health risk in humans and other organisms. In South Africa, massive mercury contamination happened in1980s when the England-based mercury reclamation processing plant relocated to Cato Ridge, KwaZulu-Natal Province, and discharged mercury waste into the Mngceweni River. This mercury waste discharge resulted in high mercury concentration that exceeded the acceptable levels in Mngceweni River, Umgeni River, and human hair of the nearby villagers. This environmental issue raised the alarm, and over the years, several environmental assessments were reported the dire environmental crises resulting from the Thor Chemicals (now known as Metallica Chemicals) and urged the immediate removal of the around 3,000 tons of mercury waste stored in the factory storage facility over two decades. Recently theft of some containers with the toxic substance from the Thor Chemicals warehouse and the subsequent fire that ravaged the facility furtherly put the factory on the spot escalating the urgency of left behind deadly mercury waste removal. This project aims to investigate the mercury contamination leaking from an old Thor Chemicals mercury processing plant. The focus will be on sediments, water, terrestrial plants, and aquatic weeds such as the prominent water hyacinth weeds in the nearby water systems of Mngceweni River, Umgeni River, and Inanda Dam as a bio-indicator and phytoremediator for mercury pollution. Samples will be collected in spring around October when the condition is favourable for microbial activity to methylate mercury incorporated in sediments and blooming season for some aquatic weeds, particularly water hyacinth. Samples of soil, sediment, water, terrestrial plant, and aquatic weed will be collected per sample site from the point of source (Thor Chemicals), Mngceweni River, Umgeni River, and the Inanda Dam. One-way analysis of variance (ANOVA) tests will be conducted to determine any significant differences in the Hg concentration among all sampling sites, followed by Least Significant Difference post hoc test to determine if mercury contamination varies with the gradient distance from the source point of pollution. The flow injection atomic spectrometry (FIAS) analysis will also be used to compare the mercury sequestration between the different plant tissues (roots and stems). The principal component analysis is also envisaged for use to determine the relationship between the source of mercury pollution and any of the sampling points (Umgeni and Mngceweni Rivers and the Inanda Dam). All the Hg values will be expressed in µg/L or µg/g in order to compare the result with the previous studies and regulatory standards. Sediments are expected to have relatively higher levels of Hg compared to the soils, and aquatic macrophytes, water hyacinth weeds are expected to accumulate a higher concentration of mercury than terrestrial plants and crops.Keywords: mercury, phytoremediation, Thor chemicals, water hyacinth
Procedia PDF Downloads 223260 Evaluation of Sustained Improvement in Trauma Education Approaches for the College of Emergency Nursing Australasia Trauma Nursing Program
Authors: Pauline Calleja, Brooke Alexander
Abstract:
In 2010 the College of Emergency Nursing Australasia (CENA) undertook sole administration of the Trauma Nursing Program (TNP) across Australia. The original TNP was developed from recommendations by the Review of Trauma and Emergency Services-Victoria. While participant and faculty feedback about the program was positive, issues were identified that were common for industry training programs in Australia. These issues included didactic approaches, with many lectures and little interaction/activity for participants. Participants were not necessarily encouraged to undertake deep learning due to the teaching and learning principles underpinning the course, and thus participants described having to learn by rote, and only gain a surface understanding of principles that were not always applied to their working context. In Australia, a trauma or emergency nurse may work in variable contexts that impact on practice, especially where resources influence scope and capacity of hospitals to provide trauma care. In 2011, a program review was undertaken resulting in major changes to the curriculum, teaching, learning and assessment approaches. The aim was to improve learning including a greater emphasis on pre-program preparation for participants, the learning environment and clinically applicable contextualized outcomes participants experienced. Previously if participants wished to undertake assessment, they were given a take home examination. The assessment had poor uptake and return, and provided no rigor since assessment was not invigilated. A new assessment structure was enacted with an invigilated examination during course hours. These changes were implemented in early 2012 with great improvement in both faculty and participant satisfaction. This presentation reports on a comparison of participant evaluations collected from courses post implementation in 2012 and in 2015 to evaluate if positive changes were sustained. Methods: Descriptive statistics were applied in analyzing evaluations. Since all questions had more than 20% of cells with a count of <5, Fisher’s Exact Test was used to identify significance (p = <0.05) between groups. Results: A total of fourteen group evaluations were included in this analysis, seven CENA TNP groups from 2012 and seven from 2015 (randomly chosen). A total of 173 participant evaluations were collated (n = 81 from 2012 and 92 from 2015). All course evaluations were anonymous, and nine of the original 14 questions were applicable for this evaluation. All questions were rated by participants on a five-point Likert scale. While all items showed improvement from 2012 to 2015, significant improvement was noted in two items. These were in regard to the content being delivered in a way that met participant learning needs and satisfaction with the length and pace of the program. Evaluation of written comments supports these results. Discussion: The aim of redeveloping the CENA TNP was to improve learning and satisfaction for participants. These results demonstrate that initial improvements in 2012 were able to be maintained and in two essential areas significantly improved. Changes that increased participant engagement, support and contextualization of course materials were essential for CENA TNP evolution.Keywords: emergency nursing education, industry training programs, teaching and learning, trauma education
Procedia PDF Downloads 272259 In Vitro Propagation of Vanilla Planifolia Using Nodal Explants and Varied Concentrations of Naphthaleneacetic acid (NAA) and 6-Benzylaminopurine (BAP).
Authors: Jessica Arthur, Duke Amegah, Kingsley Akenten Wiafe
Abstract:
Background: Vanilla planifolia is the only edible fruit of the orchid family (Orchidaceae) among the over 35,000 Orchidaceae species found worldwide. In Ghana, Vanilla was discovered in the wild, but it is underutilized for commercial production, most likely due to a lack of knowledge on the best NAA and BAP combinations for in vitro propagation to promote successfully regenerated plant acclimatization. The growing interest and global demand for elite Vanilla planifolia plants and natural vanilla flavour emphasize the need for an effective industrial-scale micropropagation protocol. Tissue culture systems are increasingly used to grow disease-free plants and reliable in vitro methods can also produce plantlets with typically modest proliferation rates. This study sought to develop an efficient protocol for in vitro propagation of vanilla using nodal explants by testing different concentrations of NAA and BAP, for the proliferation of the entire plant. Methods: Nodal explants with dormant axillary buds were obtained from year-old laboratory-grown Vanilla planifolia plants. MS media was prepared with a nutrient stock solution (containing macronutrients, micronutrients, iron solution and vitamins) and semi-solidified using phytagel. It was supplemented with different concentrations of NAA and BAP to induce multiple shoots and roots (0.5mg/L BAP with NAA at 0, 0.5, 1, 1.5, 2.0mg/L and vice-versa). The explants were sterilized, cultured in labelled test tubes and incubated at 26°C ± 2°C with 16/8 hours light/dark cycle. Data on shoot and root growth, leaf number, node number, and survival percentage were collected over three consecutive two-week periods. The data were square root transformed and subjected to ANOVA and LSD at a 5% significance level using the R statistical package. Results: Shoots emerged at 8 days and roots at 12 days after inoculation with 94% survival rate. It was discovered that for the NAA treatments, MS media supplemented with 2.00 mg/l NAA resulted in the highest shoot length (10.45cm), maximum root number (1.51), maximum shoot number (1.47) and the highest number of leaves (1.29). MS medium containing 1.00 mg/l NAA produced the highest number of nodes (1.62) and root length (14.27cm). Also, a similar growth pattern for the BAP treatments was observed. MS medium supplemented with 1.50 mg/l BAP resulted in the highest shoot length (14.98 cm), the highest number of nodes (4.60), the highest number of leaves (1.75) and the maximum shoot number (1.57). MS medium containing 0.50 mg/l BAP and 1.0 mg/l BAP generated a maximum root number (1.44) and the highest root length (13.25cm), respectively. However, the best concentration combination for maximizing shoot and root was media containing 1.5mg/l BAP combined with 0.5mg/l NAA, and 1.0mg/l NAA combined with 0.5mg/l of BAP respectively. These concentrations were optimum for in vitro growth and production of Vanilla planifolia. Significance: This study presents a standardized protocol for labs to produce clean vanilla plantlets, enhancing cultivation in Ghana and beyond. It provides insights into Vanilla planifolia's growth patterns and hormone responses, aiding future research and cultivation.Keywords: Vanilla planifolia, In vitro propagation, plant hormones, MS media
Procedia PDF Downloads 67258 Study of Biomechanical Model for Smart Sensor Based Prosthetic Socket Design System
Authors: Wei Xu, Abdo S. Haidar, Jianxin Gao
Abstract:
Prosthetic socket is a component that connects the residual limb of an amputee with an artificial prosthesis. It is widely recognized as the most critical component that determines the comfort of a patient when wearing the prosthesis in his/her daily activities. Through the socket, the body weight and its associated dynamic load are distributed and transmitted to the prosthesis during walking, running or climbing. In order to achieve a good-fit socket for an individual amputee, it is essential to obtain the biomechanical properties of the residual limb. In current clinical practices, this is achieved by a touch-and-feel approach which is highly subjective. Although there have been significant advancements in prosthetic technologies such as microprocessor controlled knee and ankle joints in the last decade, the progress in designing a comfortable socket has been rather limited. This means that the current process of socket design is still very time-consuming, and highly dependent on the expertise of the prosthetist. Supported by the state-of-the-art sensor technologies and numerical simulations, a new socket design system is being developed to help prosthetists achieve rapid design of comfortable sockets for above knee amputees. This paper reports the research work related to establishing biomechanical models for socket design. Through numerical simulation using finite element method, comprehensive relationships between pressure on residual limb and socket geometry were established. This allowed local topological adjustment for the socket so as to optimize the pressure distributions across the residual limb. When the full body weight of a patient is exerted on the residual limb, high pressures and shear forces between the residual limb and the socket occur. During numerical simulations, various hyperplastic models, namely Ogden, Yeoh and Mooney-Rivlin, were used, and their effectiveness in representing the biomechanical properties of soft tissues of the residual limb was evaluated. This also involved reverse engineering, which resulted in an optimal representative model under compression test. To validate the simulation results, a range of silicone models were fabricated. They were tested by an indentation device which yielded the force-displacement relationships. Comparisons of results obtained from FEA simulations and experimental tests showed that the Ogden model did not fit well the soft tissue material indentation data, while the Yeoh model gave the best representation of the soft tissue mechanical behavior under indentation. Compared with hyperplastic model, the result showed that elastic model also had significant errors. In addition, normal and shear stress distributions on the surface of the soft tissue model were obtained. The effect of friction in compression testing and the influence of soft tissue stiffness and testing boundary conditions were also analyzed. All these have contributed to the overall goal of designing a good-fit socket for individual above knee amputees.Keywords: above knee amputee, finite element simulation, hyperplastic model, prosthetic socket
Procedia PDF Downloads 205257 Cobb Angle Measurement from Coronal X-Rays Using Artificial Neural Networks
Authors: Andrew N. Saylor, James R. Peters
Abstract:
Scoliosis is a complex 3D deformity of the thoracic and lumbar spines, clinically diagnosed by measurement of a Cobb angle of 10 degrees or more on a coronal X-ray. The Cobb angle is the angle made by the lines drawn along the proximal and distal endplates of the respective proximal and distal vertebrae comprising the curve. Traditionally, Cobb angles are measured manually using either a marker, straight edge, and protractor or image measurement software. The task of measuring the Cobb angle can also be represented by a function taking the spine geometry rendered using X-ray imaging as input and returning the approximate angle. Although the form of such a function may be unknown, it can be approximated using artificial neural networks (ANNs). The performance of ANNs is affected by many factors, including the choice of activation function and network architecture; however, the effects of these parameters on the accuracy of scoliotic deformity measurements are poorly understood. Therefore, the objective of this study was to systematically investigate the effect of ANN architecture and activation function on Cobb angle measurement from the coronal X-rays of scoliotic subjects. The data set for this study consisted of 609 coronal chest X-rays of scoliotic subjects divided into 481 training images and 128 test images. These data, which included labeled Cobb angle measurements, were obtained from the SpineWeb online database. In order to normalize the input data, each image was resized using bi-linear interpolation to a size of 500 × 187 pixels, and the pixel intensities were scaled to be between 0 and 1. A fully connected (dense) ANN with a fixed cost function (mean squared error), batch size (10), and learning rate (0.01) was developed using Python Version 3.7.3 and TensorFlow 1.13.1. The activation functions (sigmoid, hyperbolic tangent [tanh], or rectified linear units [ReLU]), number of hidden layers (1, 3, 5, or 10), and number of neurons per layer (10, 100, or 1000) were varied systematically to generate a total of 36 network conditions. Stochastic gradient descent with early stopping was used to train each network. Three trials were run per condition, and the final mean squared errors and mean absolute errors were averaged to quantify the network response for each condition. The network that performed the best used ReLU neurons had three hidden layers, and 100 neurons per layer. The average mean squared error of this network was 222.28 ± 30 degrees2, and the average mean absolute error was 11.96 ± 0.64 degrees. It is also notable that while most of the networks performed similarly, the networks using ReLU neurons, 10 hidden layers, and 1000 neurons per layer, and those using Tanh neurons, one hidden layer, and 10 neurons per layer performed markedly worse with average mean squared errors greater than 400 degrees2 and average mean absolute errors greater than 16 degrees. From the results of this study, it can be seen that the choice of ANN architecture and activation function has a clear impact on Cobb angle inference from coronal X-rays of scoliotic subjects.Keywords: scoliosis, artificial neural networks, cobb angle, medical imaging
Procedia PDF Downloads 129