Search results for: source flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9063

Search results for: source flow

153 Investigating Role of Autophagy in Cispaltin Induced Stemness and Chemoresistance in Oral Squamous Cell Carcinoma

Authors: Prajna Paramita Naik, Sujit Kumar Bhutia

Abstract:

Background: Regardless of the development multimodal treatment strategies, oral squamous cell carcinoma (OSCC) is often associated with a high rate of recurrence, metastasis and chemo- and radio- resistance. The present study inspected the relevance of CD44, ABCB1 and ADAM17 expression as a putative stem cell compartment in oral squamous cell carcinoma (OSCC) and deciphered the role of autophagy in regulating the expression of aforementioned proteins, stemness and chemoresistance. Methods: A retrospective analysis of CD44, ABCB1 and ADAM17 expression with respect to the various clinicopathological factors of sixty OSCC patients were determined via immunohistochemistry. The correlation among CD44, ABCB1 and ADAM17 expression was established. Sphere formation assay, flow cytometry and fluorescence microscopy were conducted to elucidate the stemness and chemoresistance nature of established cisplatin-resistant oral cancer cells (FaDu). The pattern of expression of CD44, ABCB1 and ADAM17 in parental (FaDu-P) and resistant FaDu cells (FaDu-CDDP-R) were investigated through fluorescence microscopy. Western blot analysis of autophagy marker proteins was performed to compare the status of autophagy in parental and resistant FaDu cell. To investigate the role of autophagy in chemoresistance and stemness, sphere formation assay, immunofluorescence and Western blot analysis was performed post transfection with siATG14 and the level of expression of autophagic proteins, mitochondrial protein and stemness-associated proteins were analyzed. The statistical analysis was performed by GraphPad Prism 4.0 software. p-value was defined as follows: not significant (n.s.): p > 0.05;*: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001 were considered statistically significant. Results: In OSCC, high CD44, ABCB1 and ADAM17 expression were significantly correlated with higher tumor grades and poor differentiation. However, the expression of these proteins was not related to the age and sex of OSCC patients. Moreover, the expression of CD44, ABCB1 and ADAM17 were positively correlated with each other. In vitro and OSCC tissue double labeling experiment data showed that CD44+ cells were highly associated with ABCB1 and ADAM17 expression. Further, FaDu-CDDP-R cells showed higher sphere forming capacity along with increased fraction of the CD44+ population and β-catenin expression FaDu-CDDP-R cells also showed accelerated expression of CD44, ABCB1 and ADAM17. A comparatively higher autophagic flux was observed in FaDu-CDDP-R against FaDu-P cells. The expression of mitochondrial proteins was noticeably reduced in resistant cells as compared to parental cells indicating the occurrence of autophagy-mediated mitochondrial degradation in oral cancer. Moreover, inhibition of autophagy was coupled with the decreased formation of orospheres suggesting autophagy-mediated stemness in oral cancer. Blockade of autophagy was also found to induce the restoration of mitochondrial proteins in FaDu-CDDP-R cells indicating the involvement of mitophagy in chemoresistance. Furthermore, a reduced expression of CD44, ABCB1 and ADAM17 was also observed in ATG14 deficient cells FaDu-P and FaDu-CDDP-R cells. Conclusion: The CD44+ ⁄ABCB1+ ⁄ADAM17+ expression in OSCC might be associated with chemoresistance and a putative CSC compartment. Further, the present study highlights the contribution of mitophagy in chemoresistance and confirms the potential involvement of autophagic regulation in acquisition of stem-like characteristics in OSCC.

Keywords: ABCB1, ADAM17, autophagy, CD44, chemoresistance, mitophagy, OSCC, stemness

Procedia PDF Downloads 194
152 Experimental Study of the Behavior of Elongated Non-spherical Particles in Wall-Bounded Turbulent Flows

Authors: Manuel Alejandro Taborda Ceballos, Martin Sommerfeld

Abstract:

Transport phenomena and dispersion of non-spherical particle in turbulent flows are found everywhere in industrial application and processes. Powder handling, pollution control, pneumatic transport, particle separation are just some examples where the particle encountered are not only spherical. These types of multiphase flows are wall bounded and mostly highly turbulent. The particles found in these processes are rarely spherical but may have various shapes (e.g., fibers, and rods). Although research related to the behavior of regular non-spherical particles in turbulent flows has been carried out for many years, it is still necessary to refine models, especially near walls where the interaction fiber-wall changes completely its behavior. Imaging-based experimental studies on dispersed particle-laden flows have been applied for many decades for a detailed experimental analysis. These techniques have the advantages that they provide field information in two or three dimensions, but have a lower temporal resolution compared to point-wise techniques such as PDA (phase-Doppler anemometry) and derivations therefrom. The applied imaging techniques in dispersed two-phase flows are extensions from classical PIV (particle image velocimetry) and PTV (particle tracking velocimetry) and the main emphasis was simultaneous measurement of the velocity fields of both phases. In a similar way, such data should also provide adequate information for validating the proposed models. Available experimental studies on the behavior of non-spherical particles are uncommon and mostly based on planar light-sheet measurements. Especially for elongated non-spherical particles, however, three-dimensional measurements are needed to fully describe their motion and to provide sufficient information for validation of numerical computations. For further providing detailed experimental results allowing a validation of numerical calculations of non-spherical particle dispersion in turbulent flows, a water channel test facility was built around a horizontal closed water channel. Into this horizontal main flow, a small cross-jet laden with fiber-like particles was injected, which was also solely driven by gravity. The dispersion of the fibers was measured by applying imaging techniques based on a LED array for backlighting and high-speed cameras. For obtaining the fluid velocity fields, almost neutrally buoyant tracer was used. The discrimination between tracer and fibers was done based on image size which was also the basis to determine fiber orientation with respect to the inertial coordinate system. The synchronous measurement of fluid velocity and fiber properties also allow the collection of statistics of fiber orientation, velocity fields of tracer and fibers, the angular velocity of the fibers and the orientation between fiber and instantaneous relative velocity. Consequently, an experimental study the behavior of elongated non-spherical particles in wall bounded turbulent flows was achieved. The development of a comprehensive analysis was succeeded, especially near the wall region, where exists hydrodynamic wall interaction effects (e.g., collision or lubrication) and abrupt changes of particle rotational velocity. This allowed us to predict numerically afterwards the behavior of non-spherical particles within the frame of the Euler/Lagrange approach, where the particles are therein treated as “point-particles”.

Keywords: crossflow, non-spherical particles, particle tracking velocimetry, PIV

Procedia PDF Downloads 86
151 Correlation of Clinical and Sonographic Findings with Cytohistology for Diagnosis of Ovarian Tumours

Authors: Meenakshi Barsaul Chauhan, Aastha Chauhan, Shilpa Hurmade, Rajeev Sen, Jyotsna Sen, Monika Dalal

Abstract:

Introduction: Ovarian masses are common forms of neoplasm in women and represent 2/3rd of gynaecological malignancies. A pre-operative suggestion of malignancy can guide the gynecologist to refer women with suspected pelvic mass to a gynecological oncologist for appropriate therapy and optimized treatment, which can improve survival. In the younger age group preoperative differentiation into benign or malignant pathology can decide for conservative or radical surgery. Imaging modalities have a definite role in establishing the diagnosis. By using International Ovarian Tumor Analysis (IOTA) classification with sonography, costly radiological methods like Magnetic Resonance Imaging (MRI) / computed tomography (CT) scan can be reduced, especially in developing countries like India. Thus, this study is being undertaken to evaluate the role of clinical methods and sonography for diagnosis of the nature of the ovarian tumor. Material And Methods: This prospective observational study was conducted on 40 patients presenting with ovarian masses, in the Department of Obstetrics and Gynaecology, at a tertiary care center in northern India. Functional cysts were excluded. Ultrasonography and color Doppler were performed on all the cases.IOTA rules were applied, which take into account locularity, size, presence of solid components, acoustic shadow, dopper flow etc . Magnetic Resonance Imaging (MRI) / computed tomography (CT) scans abdomen and pelvis were done in cases where sonography was inconclusive. In inoperable cases, Fine needle aspiration cytology (FNAC) was done. The histopathology report after surgery and cytology report after FNAC was correlated statistically with the pre-operative diagnosis made clinically and sonographically using IOTA rules. Statistical Analysis: Descriptive measures were analyzed by using mean and standard deviation and the Student t-test was applied and the proportion was analyzed by applying the chi-square test. Inferential measures were analyzed by sensitivity, specificity, negative predictive value, and positive predictive value. Results: Provisional diagnosis of the benign tumor was made in 16(42.5%) and of the malignant tumor was made in 24(57.5%) patients on the basis of clinical findings. With IOTA simple rules on sonography, 15(37.5%) were found to be benign, while 23 (57.5%) were found to be malignant and findings were inconclusive in 2 patients (5%). FNAC/Histopathology reported that benign ovarian tumors were 14 (35%) and 26(65%) were malignant, which was taken as the gold standard. The clinical finding alone was found to have a sensitivity of 66.6% and a specificity of 90.9%. USG alone had a sensitivity of 86% and a specificity of 80%. When clinical findings and IOTA simple rules of sonography were combined (excluding inconclusive masses), the sensitivity and specificity were 83.3% and 92.3%, respectively. While including inconclusive masses, sensitivity came out to be 91.6% and specificity was 89.2. Conclusion: IOTA's simple sonography rules are highly sensitive and specific in the prediction of ovarian malignancy and also easy to use and easily reproducible. Thus, combining clinical examination with USG will help in the better management of patients in terms of time, cost and better prognosis. This will also avoid the need for costlier modalities like CT, and MRI.

Keywords: benign, international ovarian tumor analysis classification, malignant, ovarian tumours, sonography

Procedia PDF Downloads 80
150 Impact of Transgenic Adipose Derived Stem Cells in the Healing of Spinal Cord Injury of Dogs

Authors: Imdad Ullah Khan, Yongseok Yoon, Kyeung Uk Choi, Kwang Rae Jo, Namyul Kim, Eunbee Lee, Wan Hee Kim, Oh-Kyeong Kweon

Abstract:

The primary spinal cord injury (SCI) causes mechanical damage to the neurons and blood vessels. It leads to secondary SCI, which activates multiple pathological pathways, which expand neuronal damage at the injury site. It is characterized by vascular disruption, ischemia, excitotoxicity, oxidation, inflammation, and apoptotic cell death. It causes nerve demyelination and disruption of axons, which perpetuate a loss of impulse conduction through the injured spinal cord. It also leads to the production of myelin inhibitory molecules, which with a concomitant formation of an astroglial scar, impede axonal regeneration. The pivotal role regarding the neuronal necrosis is played by oxidation and inflammation. During an early stage of spinal cord injury, there occurs an abundant expression of reactive oxygen species (ROS) due to defective mitochondrial metabolism and abundant migration of phagocytes (macrophages, neutrophils). ROS cause lipid peroxidation of the cell membrane, and cell death. Abundant migration of neutrophils, macrophages, and lymphocytes collectively produce pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1beta (IL-1β), matrix metalloproteinase, superoxide dismutase, and myeloperoxidases which synergize neuronal apoptosis. Therefore, it is crucial to control inflammation and oxidation injury to minimize the nerve cell death during secondary spinal cord injury. Therefore, in response to oxidation and inflammation, heme oxygenase-1 (HO-1) is induced by the resident cells to ameliorate the milieu. In the meanwhile, neurotrophic factors are induced to promote neuroregeneration. However, it seems that anti-stress enzyme (HO-1) and neurotrophic factor (BDNF) do not significantly combat the pathological events during secondary spinal cord injury. Therefore, optimum healing can be induced if anti-inflammatory and neurotrophic factors are administered in a higher amount through an exogenous source. During the first experiment, the inflammation and neuroregeneration were selectively targeted. HO-1 expressing MSCs (HO-1 MSCs) and BDNF expressing MSCs (BDNF MSC) were co-transplanted in one group (combination group) of dogs with subacute spinal cord injury to selectively control the expression of inflammatory cytokines by HO-1 and induce neuroregeneration by BDNF. We compared the combination group with the HO-1 MSCs group, BDNF MSCs group, and GFP MSCs group. We found that the combination group showed significant improvement in functional recovery. It showed increased expression of neural markers and growth-associated proteins (GAP-43) than in other groups, which depicts enhanced neuroregeneration/neural sparing due to reduced expression of pro-inflammatory cytokines such as TNF-alpha, IL-6 and COX-2; and increased expression of anti-inflammatory markers such as IL-10 and HO-1. Histopathological study revealed reduced intra-parenchymal fibrosis in the injured spinal cord segment in the combination group than in other groups. Thus it was concluded that selectively targeting the inflammation and neuronal growth with the combined use of HO-1 MSCs and BDNF MSCs more favorably promote healing of the SCI. HO-1 MSCs play a role in controlling the inflammation, which favors the BDNF induced neuroregeneration at the injured spinal cord segment of dogs.

Keywords: HO-1 MSCs, BDNF MSCs, neuroregeneration, inflammation, anti-inflammation, spinal cord injury, dogs

Procedia PDF Downloads 118
149 International Coffee Trade in Solidarity with the Zapatista Rebellion: Anthropological Perspectives on Commercial Ethics within Political Antagonistic Movements

Authors: Miria Gambardella

Abstract:

The influence of solidarity demonstrations towards the Zapatista National Liberation Army has been constantly present over the years, both locally and internationally, guaranteeing visibility to the cause, shaping the movement’s choices, and influencing its hopes of impact worldwide. Most of the coffee produced by the autonomous cooperatives from Chiapas is exported, therefore making coffee trade the main income from international solidarity networks. The question arises about the implications of the relations established between the communities in resistance in Southeastern Mexico and international solidarity movements, specifically on the strategies adopted to conciliate army's demands for autonomy and economic asymmetries between Zapatista cooperatives producing coffee and European collectives who hold purchasing power. In order to deepen the inquiry on those topics, a year-long multi-site investigation was carried out. The first six months of fieldwork were based in Barcelona, where Zapatista coffee was first traded in Spain and where one of the historical and most important European solidarity groups can be found. The last six months of fieldwork were carried out directly in Chiapas, in contact with coffee producers, Zapatista political authorities, international activists as well as vendors, and the rest of the network implicated in coffee production, roasting, and sale. The investigation was based on qualitative research methods, including participatory observation, focus groups, and semi-structured interviews. The analysis did not only focus on retracing the steps of the market chain as if it could be considered a linear and unilateral process, but it rather aimed at exploring actors’ reciprocal perceptions, roles, and dynamics of power. Demonstrations of solidarity and the money circulation they imply aim at changing the system in place and building alternatives, among other things, on the economic level. This work analyzes the formulation of discourse and the organization of solidarity activities that aim at building opportunities for action within a highly politicized economic sphere to which access must be regularly legitimized. The meaning conveyed by coffee is constructed on a symbolic level by the attribution of moral criteria to transactions. The latter participate in the construction of imaginaries that circulate through solidarity movements with the Zapatista rebellion. Commercial exchanges linked to solidarity networks turned out to represent much more than monetary transactions. The social, cultural, and political spheres are invested by ethics, which penetrates all aspects of militant action. It is at this level that the boundaries of different collective actors connect, contaminating each other: merely following the money flow would have been limiting in order to account for a reality within which imaginary is one of the main currencies. The notions of “trust”, “dignity” and “reciprocity” are repeatedly mobilized to negotiate discontinuous and multidirectional flows in the attempt to balance and justify commercial relations in a politicized context that characterizes its own identity through demonizing “market economy” and its dehumanizing powers.

Keywords: coffee trade, economic anthropology, international cooperation, Zapatista National Liberation Army

Procedia PDF Downloads 87
148 Implementation of Smart Card Automatic Fare Collection Technology in Small Transit Agencies for Standards Development

Authors: Walter E. Allen, Robert D. Murray

Abstract:

Many large transit agencies have adopted RFID technology and electronic automatic fare collection (AFC) or smart card systems, but small and rural agencies remain tied to obsolete manual, cash-based fare collection. Small countries or transit agencies can benefit from the implementation of smart card AFC technology with the promise of increased passenger convenience, added passenger satisfaction and improved agency efficiency. For transit agencies, it reduces revenue loss, improves passenger flow and bus stop data. For countries, further implementation into security, distribution of social services or currency transactions can provide greater benefits. However, small countries or transit agencies cannot afford expensive proprietary smart card solutions typically offered by the major system suppliers. Deployment of Contactless Fare Media System (CFMS) Standard eliminates the proprietary solution, ultimately lowering the cost of implementation. Acumen Building Enterprise, Inc. chose the Yuma County Intergovernmental Public Transportation Authority (YCIPTA) existing proprietary YCAT smart card system to implement CFMS. The revised system enables the purchase of fare product online with prepaid debit or credit cards using the Payment Gateway Processor. Open and interoperable smart card standards for transit have been developed. During the 90-day Pilot Operation conducted, the transit agency gathered the data from the bus AcuFare 200 Card Reader, loads (copies) the data to a USB Thumb Drive and uploads the data to the Acumen Host Processing Center for consolidation of the data into the transit agency master data file. The transition from the existing proprietary smart card data format to the new CFMS smart card data format was transparent to the transit agency cardholders. It was proven that open standards and interoperability design can work and reduce both implementation and operational costs for small transit agencies or countries looking to expand smart card technology. Acumen was able to avoid the implementation of the Payment Card Industry (PCI) Data Security Standards (DSS) which is expensive to develop and costly to operate on a continuing basis. Due to the substantial additional complexities of implementation and the variety of options presented to the transit agency cardholder, Acumen chose to implement only the Directed Autoload. To improve the implementation efficiency and the results for a similar undertaking, it should be considered that some passengers lack credit cards and are averse to technology. There are more than 1,300 small and rural agencies in the United States. This grows by 10 fold when considering small countries or rural locations throughout Latin American and the world. Acumen is evaluating additional countries, sites or transit agency that can benefit from the smart card systems. Frequently, payment card systems require extensive security procedures for implementation. The Project demonstrated the ability to purchase fare value, rides and passes with credit cards on the internet at a reasonable cost without highly complex security requirements.

Keywords: automatic fare collection, near field communication, small transit agencies, smart cards

Procedia PDF Downloads 283
147 Development of DEMO-FNS Hybrid Facility and Its Integration in Russian Nuclear Fuel Cycle

Authors: Yury S. Shpanskiy, Boris V. Kuteev

Abstract:

Development of a fusion-fission hybrid facility based on superconducting conventional tokamak DEMO-FNS runs in Russia since 2013. The main design goal is to reach the technical feasibility and outline prospects of industrial hybrid technologies providing the production of neutrons, fuel nuclides, tritium, high-temperature heat, electricity and subcritical transmutation in Fusion-Fission Hybrid Systems. The facility should operate in a steady-state mode at the fusion power of 40 MW and fission reactions of 400 MW. Major tokamak parameters are the following: major radius R=3.2 m, minor radius a=1.0 m, elongation 2.1, triangularity 0.5. The design provides the neutron wall loading of ~0.2 MW/m², the lifetime neutron fluence of ~2 MWa/m², with the surface area of the active cores and tritium breeding blanket ~100 m². Core plasma modelling showed that the neutron yield ~10¹⁹ n/s is maximal if the tritium/deuterium density ratio is 1.5-2.3. The design of the electromagnetic system (EMS) defined its basic parameters, accounting for the coils strength and stability, and identified the most problematic nodes in the toroidal field coils and the central solenoid. The EMS generates toroidal, poloidal and correcting magnetic fields necessary for the plasma shaping and confinement inside the vacuum vessel. EMC consists of eighteen superconducting toroidal field coils, eight poloidal field coils, five sections of a central solenoid, correction coils, in-vessel coils for vertical plasma control. Supporting structures, the thermal shield, and the cryostat maintain its operation. EMS operates with the pulse duration of up to 5000 hours at the plasma current up to 5 MA. The vacuum vessel (VV) is an all-welded two-layer toroidal shell placed inside the EMS. The free space between the vessel shells is filled with water and boron steel plates, which form the neutron protection of the EMS. The VV-volume is 265 m³, its mass with manifolds is 1800 tons. The nuclear blanket of DEMO-FNS facility was designed to provide functions of minor actinides transmutation, tritium production and enrichment of spent nuclear fuel. The vertical overloading of the subcritical active cores with MA was chosen as prospective. Analysis of the device neutronics and the hybrid blanket thermal-hydraulic characteristics has been performed for the system with functions covering transmutation of minor actinides, production of tritium and enrichment of spent nuclear fuel. A study of FNS facilities role in the Russian closed nuclear fuel cycle was performed. It showed that during ~100 years of operation three FNS facilities with fission power of 3 GW controlled by fusion neutron source with power of 40 MW can burn 98 tons of minor actinides and 198 tons of Pu-239 can be produced for startup loading of 20 fast reactors. Instead of Pu-239, up to 25 kg of tritium per year may be produced for startup of fusion reactors using blocks with lithium orthosilicate instead of fissile breeder blankets.

Keywords: fusion-fission hybrid system, conventional tokamak, superconducting electromagnetic system, two-layer vacuum vessel, subcritical active cores, nuclear fuel cycle

Procedia PDF Downloads 147
146 Temporal and Spacial Adaptation Strategies in Aerodynamic Simulation of Bluff Bodies Using Vortex Particle Methods

Authors: Dario Milani, Guido Morgenthal

Abstract:

Fluid dynamic computation of wind caused forces on bluff bodies e.g light flexible civil structures or high incidence of ground approaching airplane wings, is one of the major criteria governing their design. For such structures a significant dynamic response may result, requiring the usage of small scale devices as guide-vanes in bridge design to control these effects. The focus of this paper is on the numerical simulation of the bluff body problem involving multiscale phenomena induced by small scale devices. One of the solution methods for the CFD simulation that is relatively successful in this class of applications is the Vortex Particle Method (VPM). The method is based on a grid free Lagrangian formulation of the Navier-Stokes equations, where the velocity field is modeled by particles representing local vorticity. These vortices are being convected due to the free stream velocity as well as diffused. This representation yields the main advantages of low numerical diffusion, compact discretization as the vorticity is strongly localized, implicitly accounting for the free-space boundary conditions typical for this class of FSI problems, and a natural representation of the vortex creation process inherent in bluff body flows. When the particle resolution reaches the Kolmogorov dissipation length, the method becomes a Direct Numerical Simulation (DNS). However, it is crucial to note that any solution method aims at balancing the computational cost against the accuracy achievable. In the classical VPM method, if the fluid domain is discretized by Np particles, the computational cost is O(Np2). For the coupled FSI problem of interest, for example large structures such as long-span bridges, the aerodynamic behavior may be influenced or even dominated by small structural details such as barriers, handrails or fairings. For such geometrically complex and dimensionally large structures, resolving the complete domain with the conventional VPM particle discretization might become prohibitively expensive to compute even for moderate numbers of particles. It is possible to reduce this cost either by reducing the number of particles or by controlling its local distribution. It is also possible to increase the accuracy of the solution without increasing substantially the global computational cost by computing a correction of the particle-particle interaction in some regions of interest. In this paper different strategies are presented in order to extend the conventional VPM method to reduce the computational cost whilst resolving the required details of the flow. The methods include temporal sub stepping to increase the accuracy of the particles convection in certain regions as well as dynamically re-discretizing the particle map to locally control the global and the local amount of particles. Finally, these methods will be applied on a test case and the improvements in the efficiency as well as the accuracy of the proposed extension to the method are presented. The important benefits in terms of accuracy and computational cost of the combination of these methods will be thus presented as long as their relevant applications.

Keywords: adaptation, fluid dynamic, remeshing, substepping, vortex particle method

Procedia PDF Downloads 262
145 Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: transformers, generative ai, gene expression design, classification

Procedia PDF Downloads 59
144 Simulation-based Decision Making on Intra-hospital Patient Referral in a Collaborative Medical Alliance

Authors: Yuguang Gao, Mingtao Deng

Abstract:

The integration of independently operating hospitals into a unified healthcare service system has become a strategic imperative in the pursuit of hospitals’ high-quality development. Central to the concept of group governance over such transformation, exemplified by a collaborative medical alliance, is the delineation of shared value, vision, and goals. Given the inherent disparity in capabilities among hospitals within the alliance, particularly in the treatment of different diseases characterized by Disease Related Groups (DRG) in terms of effectiveness, efficiency and resource utilization, this study aims to address the centralized decision-making of intra-hospital patient referral within the medical alliance to enhance the overall production and quality of service provided. We first introduce the notion of production utility, where a higher production utility for a hospital implies better performance in treating patients diagnosed with that specific DRG group of diseases. Then, a Discrete-Event Simulation (DES) framework is established for patient referral among hospitals, where patient flow modeling incorporates a queueing system with fixed capacities for each hospital. The simulation study begins with a two-member alliance. The pivotal strategy examined is a "whether-to-refer" decision triggered when the bed usage rate surpasses a predefined threshold for either hospital. Then, the decision encompasses referring patients to the other hospital based on DRG groups’ production utility differentials as well as bed availability. The objective is to maximize the total production utility of the alliance while minimizing patients’ average length of stay and turnover rate. Thus the parameter under scrutiny is the bed usage rate threshold, influencing the efficacy of the referral strategy. Extending the study to a three-member alliance, which could readily be generalized to multi-member alliances, we maintain the core setup while introducing an additional “which-to-refer" decision that involves referring patients with specific DRG groups to the member hospital according to their respective production utility rankings. The overarching goal remains consistent, for which the bed usage rate threshold is once again a focal point for analysis. For the two-member alliance scenario, our simulation results indicate that the optimal bed usage rate threshold hinges on the discrepancy in the number of beds between member hospitals, the distribution of DRG groups among incoming patients, and variations in production utilities across hospitals. Transitioning to the three-member alliance, we observe similar dependencies on these parameters. Additionally, it becomes evident that an imbalanced distribution of DRG diagnoses and further disparity in production utilities among member hospitals may lead to an increase in the turnover rate. In general, it was found that the intra-hospital referral mechanism enhances the overall production utility of the medical alliance compared to individual hospitals without partnership. Patients’ average length of stay is also reduced, showcasing the positive impact of the collaborative approach. However, the turnover rate exhibits variability based on parameter setups, particularly when patients are redirected within the alliance. In conclusion, the re-structuring of diagnostic disease groups within the medical alliance proves instrumental in improving overall healthcare service outcomes, providing a compelling rationale for the government's promotion of patient referrals within collaborative medical alliances.

Keywords: collaborative medical alliance, disease related group, patient referral, simulation

Procedia PDF Downloads 59
143 Internet of Things, Edge and Cloud Computing in Rock Mechanical Investigation for Underground Surveys

Authors: Esmael Makarian, Ayub Elyasi, Fatemeh Saberi, Olusegun Stanley Tomomewo

Abstract:

Rock mechanical investigation is one of the most crucial activities in underground operations, especially in surveys related to hydrocarbon exploration and production, geothermal reservoirs, energy storage, mining, and geotechnics. There is a wide range of traditional methods for driving, collecting, and analyzing rock mechanics data. However, these approaches may not be suitable or work perfectly in some situations, such as fractured zones. Cutting-edge technologies have been provided to solve and optimize the mentioned issues. Internet of Things (IoT), Edge, and Cloud Computing technologies (ECt & CCt, respectively) are among the most widely used and new artificial intelligence methods employed for geomechanical studies. IoT devices act as sensors and cameras for real-time monitoring and mechanical-geological data collection of rocks, such as temperature, movement, pressure, or stress levels. Structural integrity, especially for cap rocks within hydrocarbon systems, and rock mass behavior assessment, to further activities such as enhanced oil recovery (EOR) and underground gas storage (UGS), or to improve safety risk management (SRM) and potential hazards identification (P.H.I), are other benefits from IoT technologies. EC techniques can process, aggregate, and analyze data immediately collected by IoT on a real-time scale, providing detailed insights into the behavior of rocks in various situations (e.g., stress, temperature, and pressure), establishing patterns quickly, and detecting trends. Therefore, this state-of-the-art and useful technology can adopt autonomous systems in rock mechanical surveys, such as drilling and production (in hydrocarbon wells) or excavation (in mining and geotechnics industries). Besides, ECt allows all rock-related operations to be controlled remotely and enables operators to apply changes or make adjustments. It must be mentioned that this feature is very important in environmental goals. More often than not, rock mechanical studies consist of different data, such as laboratory tests, field operations, and indirect information like seismic or well-logging data. CCt provides a useful platform for storing and managing a great deal of volume and different information, which can be very useful in fractured zones. Additionally, CCt supplies powerful tools for predicting, modeling, and simulating rock mechanical information, especially in fractured zones within vast areas. Also, it is a suitable source for sharing extensive information on rock mechanics, such as the direction and size of fractures in a large oil field or mine. The comprehensive review findings demonstrate that digital transformation through integrated IoT, Edge, and Cloud solutions is revolutionizing traditional rock mechanical investigation. These advanced technologies have empowered real-time monitoring, predictive analysis, and data-driven decision-making, culminating in noteworthy enhancements in safety, efficiency, and sustainability. Therefore, by employing IoT, CCt, and ECt, underground operations have experienced a significant boost, allowing for timely and informed actions using real-time data insights. The successful implementation of IoT, CCt, and ECt has led to optimized and safer operations, optimized processes, and environmentally conscious approaches in underground geological endeavors.

Keywords: rock mechanical studies, internet of things, edge computing, cloud computing, underground surveys, geological operations

Procedia PDF Downloads 63
142 Fueling Efficient Reporting And Decision-Making In Public Health With Large Data Automation In Remote Areas, Neno Malawi

Authors: Wiseman Emmanuel Nkhomah, Chiyembekezo Kachimanga, Julia Huggins, Fabien Munyaneza

Abstract:

Background: Partners In Health – Malawi introduced one of Operational Researches called Primary Health Care (PHC) Surveys in 2020, which seeks to assess progress of delivery of care in the district. The study consists of 5 long surveys, namely; Facility assessment, General Patient, Provider, Sick Child, Antenatal Care (ANC), primarily conducted in 4 health facilities in Neno district. These facilities include Neno district hospital, Dambe health centre, Chifunga and Matope. Usually, these annual surveys are conducted from January, and the target is to present final report by June. Once data is collected and analyzed, there are a series of reviews that take place before reaching final report. In the first place, the manual process took over 9 months to present final report. Initial findings reported about 76.9% of the data that added up when cross-checked with paper-based sources. Purpose: The aim of this approach is to run away from manually pulling the data, do fresh analysis, and reporting often associated not only with delays in reporting inconsistencies but also with poor quality of data if not done carefully. This automation approach was meant to utilize features of new technologies to create visualizations, reports, and dashboards in Power BI that are directly fished from the data source – CommCare hence only require a single click of a ‘refresh’ button to have the updated information populated in visualizations, reports, and dashboards at once. Methodology: We transformed paper-based questionnaires into electronic using CommCare mobile application. We further connected CommCare Mobile App directly to Power BI using Application Program Interface (API) connection as data pipeline. This provided chance to create visualizations, reports, and dashboards in Power BI. Contrary to the process of manually collecting data in paper-based questionnaires, entering them in ordinary spreadsheets, and conducting analysis every time when preparing for reporting, the team utilized CommCare and Microsoft Power BI technologies. We utilized validations and logics in CommCare to capture data with less errors. We utilized Power BI features to host the reports online by publishing them as cloud-computing process. We switched from sharing ordinary report files to sharing the link to potential recipients hence giving them freedom to dig deep into extra findings within Power BI dashboards and also freedom to export to any formats of their choice. Results: This data automation approach reduced research timelines from the initial 9 months’ duration to 5. It also improved the quality of the data findings from the original 76.9% to 98.9%. This brought confidence to draw conclusions from the findings that help in decision-making and gave opportunities for further researches. Conclusion: These results suggest that automating the research data process has the potential of reducing overall amount of time spent and improving the quality of the data. On this basis, the concept of data automation should be taken into serious consideration when conducting operational research for efficiency and decision-making.

Keywords: reporting, decision-making, power BI, commcare, data automation, visualizations, dashboards

Procedia PDF Downloads 116
141 Chemopreventive Properties of Cannabis sativa L. var. USO31 in Relation to Its Phenolic and Terpenoid Content

Authors: Antonella Di Sotto, Cinzia Ingallina, Caterina Fraschetti, Simone Circi, Marcello Locatelli, Simone Carradori, Gabriela Mazzanti, Luisa Mannina, Silvia Di Giacomo

Abstract:

Cannabis sativa L. is one of the oldest cultivated plant species known not only for its voluptuous use but also for the wide application in food, textile, and therapeutic industries. Recently, the progress of biotechnologies applied to medicinal plants has allowed to produce different hemp varieties with low content of psychotropic phytoconstituents (tetrahydrocannabinol < 0.2% w/v), thus leading to a renewed industrial and therapeutic interest for this plant. In this context, in order to discover new potential remedies of pharmaceutical and/or nutraceutical interest, the chemopreventive properties of different organic and hydroalcoholic extracts, obtained from the inflorescences of C. sativa L. var. USO31, collected in June and September harvesting, were assessed. Particularly, the antimutagenic activity towards the oxidative DNA-damage induced by tert-butyl hydroperoxide (t-BOOH) was evaluated, and the DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid) radical scavenging power of the samples were assessed as possible mechanisms of antimutagenicity. Furthermore, the ability of the extracts to inhibit the glucose-6-phosphate dehydrogenase (G6PD), whose overexpression has been found to play a critical role in neoplastic transformation and tumor progression, has been studied as a possible chemopreventive strategy. A careful phytochemical characterization of the extracts for phenolic and terpenoid composition has been obtained by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) methods. Under our experimental condition, all the extracts were found able to interfere with the tBOOH-induced mutagenicity in WP2uvrAR strain, although with different potency and effectiveness. The organic extracts from both the harvesting periods were found to be the main effective antimutagenic samples, reaching about a 55% inhibition of the tBOOH-mutagenicity at the highest concentration tested (250 μg/ml). All the extracts exhibited radical scavenger activity against DPPH and ABTS radicals, with a higher potency of the hydroalcoholic samples. The organic extracts were also able to inhibit the G6PD enzyme, being the samples from September harvesting the highly potent (about 50% inhibition respect to the vehicle). At the phytochemical analysis, all the extracts resulted to contain both polar and apolar phenolic compounds. The HPLC analysis revealed the presence of catechin and rutin as the major constituents of the hydroalcoholic extracts, with lower levels of quercetin and ferulic acid. The monoterpene carvacrol was found to be an ubiquitarian constituent. At GC-MS analysis, different terpenoids, among which caryophyllene sesquiterpenes, were identified. This evidence suggests a possible role of both polyphenols and terpenoids in the chemopreventive properties of the extracts from the inflorescences of C. sativa var. USO31. According to the literature, carvacrol and caryophyllene sesquiterpenes can contribute to the strong antimutagenicity although the role of all the hemp phytocomplex cannot be excluded. In conclusion, present results highlight a possible interest for the inflorescences of C. sativa var. USO31 as source of bioactive molecules and stimulate further studies in order to characterize its possible application for nutraceutical and pharmaceutical purposes.

Keywords: antimutagenicity, glucose-6-phosphate dehydrogenase, hemp inflorescences, nutraceuticals, sesquiterpenes

Procedia PDF Downloads 157
140 Rheological and Microstructural Characterization of Concentrated Emulsions Prepared by Fish Gelatin

Authors: Helen S. Joyner (Melito), Mohammad Anvari

Abstract:

Concentrated emulsions stabilized by proteins are systems of great importance in food, pharmaceutical and cosmetic products. Controlling emulsion rheology is critical for ensuring desired properties during formation, storage, and consumption of emulsion-based products. Studies on concentrated emulsions have focused on rheology of monodispersed systems. However, emulsions used for industrial applications are polydispersed in nature, and this polydispersity is regarded as an important parameter that also governs the rheology of the concentrated emulsions. Therefore, the objective of this study was to characterize rheological (small and large deformation behaviors) and microstructural properties of concentrated emulsions which were not truly monodispersed as usually encountered in food products such as margarines, mayonnaise, creams, spreads, and etc. The concentrated emulsions were prepared at different concentrations of fish gelatin (0.2, 0.4, 0.8% w/v in the whole emulsion system), oil-water ratio 80-20 (w/w), homogenization speed 10000 rpm, and 25oC. Confocal laser scanning microscopy (CLSM) was used to determine the microstructure of the emulsions. To prepare samples for CLSM analysis, FG solutions were stained by Fluorescein isothiocyanate dye. Emulsion viscosity profiles were determined using shear rate sweeps (0.01 to 100 1/s). The linear viscoelastic regions (LVRs) of the emulsions were determined using strain sweeps (0.01 to 100% strain) for each sample. Frequency sweeps were performed in the LVR (0.1% strain) from 0.6 to 100 rad/s. Large amplitude oscillatory shear (LAOS) testing was conducted by collecting raw waveform data at 0.05, 1, 10, and 100% strain at 4 different frequencies (0.5, 1, 10, and 100 rad/s). All measurements were performed in triplicate at 25oC. The CLSM results revealed that increased fish gelatin concentration resulted in more stable oil-in-water emulsions with homogeneous, finely dispersed oil droplets. Furthermore, the protein concentration had a significant effect on emulsion rheological properties. Apparent viscosity and dynamic moduli at small deformations increased with increasing fish gelatin concentration. These results were related to increased inter-droplet network connections caused by increased fish gelatin adsorption at the surface of oil droplets. Nevertheless, all samples showed shear-thinning and weak gel behaviors over shear rate and frequency sweeps, respectively. Lissajous plots, or plots of stress versus strain, and phase lag values were used to determine nonlinear behavior of the emulsions in LAOS testing. Greater distortion in the elliptical shape of the plots followed by higher phase lag values was observed at large strains and frequencies in all samples, indicating increased nonlinear behavior. Shifts from elastic-dominated to viscous dominated behavior were also observed. These shifts were attributed to damage to the sample microstructure (e.g. gel network disruption), which would lead to viscous-type behaviors such as permanent deformation and flow. Unlike the small deformation results, the LAOS behavior of the concentrated emulsions was not dependent on fish gelatin concentration. Systems with different microstructures showed similar nonlinear viscoelastic behaviors. The results of this study provided valuable information that can be used to incorporate concentrated emulsions in emulsion-based food formulations.

Keywords: concentrated emulsion, fish gelatin, microstructure, rheology

Procedia PDF Downloads 275
139 Soil Composition in Different Agricultural Crops under Application of Swine Wastewater

Authors: Ana Paula Almeida Castaldelli Maciel, Gabriela Medeiros, Amanda de Souza Machado, Maria Clara Pilatti, Ralpho Rinaldo dos Reis, Silvio Cesar Sampaio

Abstract:

Sustainable agricultural systems are crucial to ensuring global food security and the long-term production of nutritious food. Comprehensive soil and water management practices, including nutrient management, balanced fertilizer use, and appropriate waste management, are essential for sustainable agriculture. Swine wastewater (SWW) treatment has become a significant focus due to environmental concerns related to heavy metals, antibiotics, resistant pathogens, and nutrients. In South America, small farms use soil to dispose of animal waste, a practice that is expected to increase with global pork production. The potential of SWW as a nutrient source is promising, contributing to global food security, nutrient cycling, and mineral fertilizer reduction. Short- and long-term studies evaluated the effects of SWW on soil and plant parameters, such as nutrients, heavy metals, organic matter (OM), cation exchange capacity (CEC), and pH. Although promising results have been observed in short- and medium-term applications, long-term applications require more attention due to heavy metal concentrations. Organic soil amendment strategies, due to their economic and ecological benefits, are commonly used to reduce the bioavailability of heavy metals. However, the rate of degradation and initial levels of OM must be monitored to avoid changes in soil pH and release of metals. The study aimed to evaluate the long-term effects of SWW application on soil fertility parameters, focusing on calcium (Ca), magnesium (Mg), and potassium (K), in addition to CEC and OM. Experiments were conducted at the Universidade Estadual do Oeste do Paraná, Brazil, using 24 drainage lysimeters for nine years, with different application rates of SWW and mineral fertilization. Principal Component Analysis (PCA) was then conducted to summarize the composite variables, known as principal components (PC), and limit the dimensionality to be evaluated. The retained PCs were then correlated with the original variables to identify the level of association between each variable and each PC. Data were interpreted using Analysis of Variance - ANOVA for general linear models (GLM). As OM was not measured in the 2007 soybean experiment, it was assessed separately from PCA to avoid loss of information. PCA and ANOVA indicated that crop type, SWW, and mineral fertilization significantly influenced soil nutrient levels. Soybeans presented higher concentrations of Ca, Mg, and CEC. The application of SWW influenced K levels, with higher concentrations observed in SWW from biodigesters and higher doses of swine manure. Variability in nutrient concentrations in SWW due to factors such as animal age and feed composition makes standard recommendations challenging. OM levels increased in SWW-treated soils, improving soil fertility and structure. In conclusion, the application of SWW can increase soil fertility and crop productivity, reducing environmental risks. However, careful management and long-term monitoring are essential to optimize benefits and minimize adverse effects.

Keywords: contamination, water research, biodigester, nutrients

Procedia PDF Downloads 59
138 Microplastic Concentrations and Fluxes in Urban Compartments: A Systemic Approach at the Scale of the Paris Megacity

Authors: Rachid Dris, Robin Treilles, Max Beaurepaire, Minh Trang Nguyen, Sam Azimi, Vincent Rocher, Johnny Gasperi, Bruno Tassin

Abstract:

Microplastic sources and fluxes in urban catchments are only poorly studied. Most often, the approaches taken focus on a single source and only carry out a description of the contamination levels and type (shape, size, polymers). In order to gain an improved knowledge of microplastic inputs at urban scales, estimating and comparing various fluxes is necessary. The Laboratoire Eau, Environnement et Systèmes Urbains (LEESU), the Laboratoire Eau Environnement (LEE) and the SIAAP (Service public de l’assainissement francilien) initiated several projects to investigate different urban sources and flows of microplastics. A systemic approach is undertaken at the scale of Paris Megacity, and several compartments are considered, including atmospheric fallout, wastewater treatments plants, runoff and combined sewer overflows. These investigations are carried out within the Limnoplast and OPUR projects. Atmospheric fallout was sampled during consecutive periods ranging from 2 to 3 weeks with a stainless-steel funnel. Both wet and dry periods were considered. Different treatment steps were sampled in 2 wastewater treatment plants (Seine-Amont for activated sludge and Seine-Centre for biofiltration) of the SIAAP, including sludge samples. Microplastics were also investigated in combined sewer overflows as well as in stormwater at the outlet suburban catchment (Sucy-en-Brie, France) during four rain events. Samples are treated using hydroperoxide digestion (H₂O₂ 30 %) in order to reduce organic material. Microplastics are then extracted from the samples with a density separation step using NaI (d=1.6 g.cm⁻³). Samples are filtered on metallic filters with a porosity of 14 µm between steps to separate them from the solutions (H₂O₂ and NaI). The last filtration was carried out on alumina filters. Infrared mapping analysis (using a micro-FTIR with an MCT detector) is performed on each alumina filter. The resulting maps are analyzed using a microplastic analysis software simple, developed by Aalborg University, Denmark and Alfred Wegener Institute, Germany. Blanks were systematically carried out to consider sample contamination. This presentation aims at synthesizing the data found in the various projects. In order to carry out a systemic approach and compare the various inputs, all the data were converted into annual microplastic fluxes (number of microplastics per year), and extrapolated to the Parisian agglomeration. PP, PE and alkyd are the most prevalent polymers found in storm water samples. Rain intensity and microplastic concentrations did not show any clear correlation. Considering the runoff volumes and the impervious surface area of the studied catchment, a flux of 4*107–9*107 MPs.yr⁻¹.ha⁻¹ was estimated. Samples of wastewater treatment plants and atmospheric fallout are currently being analyzed in order to finalize this assessment. The representativeness of such samplings and uncertainties related to the extrapolations will be discussed and gaps in knowledge will be identified. The data provided by such an approach will help to prioritize future research as well as policy efforts.

Keywords: microplastics, atmosphere, wastewater, urban runoff, Paris megacity, urban waters

Procedia PDF Downloads 180
137 Antimicrobial, Antioxidant and Enzyme Activities of Geosmithia pallida (KU693285): A Fungal Endophyte Associated with Brucea mollis Wall Ex. Kurz, an Endangered and Medicinal Plant of N. E. India

Authors: Deepanwita Deka, Dhruva Kumar Jha

Abstract:

Endophytes are the microbes that colonize living, internal tissues of plants without causing any immediate, overt negative effects. Endophytes are rich source of therapeutic substances like antimicrobial, anticancerous, herbicidal, insecticidal, immunomodulatory compounds. Brucea mollis, commonly known as Quinine in Assam, belonging to the family Simaroubaceae, is a shrub or small tree, recorded as endangered species in North East India by CAMP survey in 2003. It is traditionally being used as antimalarial and antimicrobial agent and has antiplasmodial, cytotoxic, anticancer, diuretic, cardiovascular effect etc. Being endangered and medicinal; this plant may host certain noble endophytes which need to be studied in depth. The aim of the present study was isolation and identification of potent endophytic fungi from Brucea mollis, an endangered medicinal plant, to protect it from extinction due to over use for medicinal purposes. Aseptically collected leaves, barks and roots samples of healthy plants were washed and cut into a total of 648 segments of about 2 cm long and 0.5 cm broad with sterile knife, comprising 216 segments each from leaves, barks and roots. These segments were surface sterilized using ethanol, mercuric chloride (HgCl2) and aqueous solution of sodium hypochlorite (NaClO). Different media viz., Czapeck-Dox-Agar (CDA, Himedia), Potato-Dextrose-Agar (PDA, Himedia), Malt Extract Agar (MEA, Himedia), Sabourad Dextrose Agar (SDA, Himedia), V8 juice agar, nutrient agar and water agar media and media amended with plant extracts were used separately for the isolation of the endophytic fungi. A total of 11 fungal species were recovered from leaf, bark and root tissues of B. mollis. The isolates were screened for antimicrobial, antioxidant and enzymatic activities using certain protocols. Cochliobolus geniculatus was identified as the most dominant species. The mycelia sterilia (creamy white) showing highest inhibitory activity against Candida albicans (MTCC 183) was induced to sporulate using modified PDA media. The isolate was identified as Geosmithia pallida. The internal transcribed spacer of rDNA was sequenced for confirmation of the taxonomic identity of the sterile mycelia (creamy white). The internal transcribed spacer r-DNA sequence was submitted to the NCBI (KU693285) for the first time from India. G. pallida and Penicillium showed highest antioxidant activity among all the isolates. The antioxidant activity of G. pallida and Penicillium didn’t show statistically significant difference (P˃0.05). G. pallida, Cochliobolus geniculatus and P. purpurogenum respectively showed highest cellulase, amylase and protease activities. Thus, endopytic fungal isolates may be used as potential natural resource of pharmaceutical importance. The endophytic fungi, Geosmithia pallida, may be used for synthesis of pharmaceutically important natural products and consequently can replace plants hitherto used for the same purpose. This study suggests that endophytes should be investigated more aggressively to better understand the endophyte biology of B. mollis.

Keywords: Antimicrobial activity, antioxidant activity, Brucea mollis, endophytic fungi, enzyme activity, Geosmithia pallida

Procedia PDF Downloads 187
136 Comparative Study on the Influence of Different Drugs against Aluminium- Induced Nephrotoxicity and Hepatotoxicity in Rats

Authors: Azza A. Ali, Toqa M. Elnahhas, Abeer I. Abd El-Fattah, Mona M. Kamal, Karema Abu-Elfotuh

Abstract:

Background: Environmental pollution with the different aluminium (Al) containing compounds especially those in industrial waste water exposes people to higher than normal levels of Al that represents an environmental risk factor. Cosmetics, Al ware, and containers are also sources of Al besides some foods and food additives. In addition to its known neurotoxicity, Al affects other body structures like skeletal system, blood cells, liver and kidney. Accumulation of Al in kidney and liver induces nephrotoxicity and hepatotoxicity. Coenzyme Q10 (CoQ10) is a pseudo-vitamin substance primarily present in the mitochondria. It is a powerful antioxidant and acts as radical scavenger. Wheat grass is a natural product that contains carbohydrates, proteins, vitamins, minerals, enzymes and has antioxidant, anti-inflammatory, anticancer and cardiovascular protection activities. Cocoa is an excellent source of iron, potent antioxidants and can protect against many diseases. Vinpocetine is an antioxidant and anti inflammatory while zinc is an essential trace element involved in cell division and its deficiency is observed in many types of liver disease. Objective: To evaluate and compare the potency of different drugs (CoQ10, wheatgrass, cocoa, vinpocetine and zinc) against nephro- and hepato-toxicity induced by Al in rats. Methods: Rats were divided to seven groups and received daily for three weeks either saline for control group or AlCl3 (70 mg/kg, IP) for Al-toxicity model groups. Five groups of Al-toxicity model (treated groups) were orally received together with Al each of the following; CoQ10 (200mg/kg), wheat grass (100mg/kg), cocoa powder (24mg/kg), vinpocetine (20mg/kg) or zinc (32mg/kg). Biochemical changes in the serum level of Alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate deshydrogenase (LDH) as well as total bilirubin, lipids, cholesterol, triglycerides, glucose, proteins, creatinine and urea were measured. Liver and kidney specimens from all groups were also collected for the assessment of hepatic and nephrotic level of inflammatory mediators (TNF-α, IL-6β, nuclear factor kappa B (NF-κB), Caspase-3, oxidative parameters (MDA, SOD, TAC, NO) and DNA fragmentation. Histopathological changes in liver and kidney were also evaluated. Results: Three weeks of AlCl3 (70 mg/kg, IP) exposure induced nephro- and hepato-toxicity in rats. Treatment by the all used drugs showed protection against hazards of AlCl3. The protective effects were indicated by the significant decrease in ALT, AST, ALP, LDH as well as total bilirubin, lipids, cholesterol, triglycerides, glucose, creatinine and urea levels which were increased by Al. Liver and kidney of the treated groups showed decrease in MDA, NO, TNF-α, IL-6β, NF-κB, caspase-3 and DNA fragmentation which were increased by Al, together with significant increase in total proteins, SOD and TAC which were decreased by Al. The protection against both nephro- and hepato-toxicity was more pronounced especially with CoQ10 and wheat grass than the other used drugs. Histopathological examinations confirmed the biochemical results of toxicity and of protection. Conclusion: Protection from nephrotoxicity, hepatotoxicity and the consequent degenerations induced by Al can be achieved by using different drugs as CoQ10, wheatgrass, cocoa, vinpocetine and zinc, but CoQ10 as well as wheat grass possesses the most superior protection.

Keywords: aluminum, nephrotoxicity, hepatotoxicity, coenzyme Q10, wheatgrass, cocoa, vinpocetine, zinc

Procedia PDF Downloads 338
135 Improving the Utility of Social Media in Pharmacovigilance: A Mixed Methods Study

Authors: Amber Dhoot, Tarush Gupta, Andrea Gurr, William Jenkins, Sandro Pietrunti, Alexis Tang

Abstract:

Background: The COVID-19 pandemic has driven pharmacovigilance towards a new paradigm. Nowadays, more people than ever before are recognising and reporting adverse reactions from medications, treatments, and vaccines. In the modern era, with over 3.8 billion users, social media has become the most accessible medium for people to voice their opinions and so provides an opportunity to engage with more patient-centric and accessible pharmacovigilance. However, the pharmaceutical industry has been slow to incorporate social media into its modern pharmacovigilance strategy. This project aims to make social media a more effective tool in pharmacovigilance, and so reduce drug costs, improve drug safety and improve patient outcomes. This will be achieved by firstly uncovering and categorising the barriers facing the widespread adoption of social media in pharmacovigilance. Following this, the potential opportunities of social media will be explored. We will then propose realistic, practical recommendations to make social media a more effective tool for pharmacovigilance. Methodology: A comprehensive systematic literature review was conducted to produce a categorised summary of these barriers. This was followed by conducting 11 semi-structured interviews with pharmacovigilance experts to confirm the literature review findings whilst also exploring the unpublished and real-life challenges faced by those in the pharmaceutical industry. Finally, a survey of the general public (n = 112) ascertained public knowledge, perception, and opinion regarding the use of their social media data for pharmacovigilance purposes. This project stands out by offering perspectives from the public and pharmaceutical industry that fill the research gaps identified in the literature review. Results: Our results gave rise to several key analysis points. Firstly, inadequacies of current Natural Language Processing algorithms hinder effective pharmacovigilance data extraction from social media, and where data extraction is possible, there are significant questions over its quality. Social media also contains a variety of biases towards common drugs, mild adverse drug reactions, and the younger generation. Additionally, outdated regulations for social media pharmacovigilance do not align with new, modern General Data Protection Regulations (GDPR), creating ethical ambiguity about data privacy and level of access. This leads to an underlying mindset of avoidance within the pharmaceutical industry, as firms are disincentivised by the legal, financial, and reputational risks associated with breaking ambiguous regulations. Conclusion: Our project uncovered several barriers that prevent effective pharmacovigilance on social media. As such, social media should be used to complement traditional sources of pharmacovigilance rather than as a sole source of pharmacovigilance data. However, this project adds further value by proposing five practical recommendations that improve the effectiveness of social media pharmacovigilance. These include: prioritising health-orientated social media; improving technical capabilities through investment and strategic partnerships; setting clear regulatory guidelines using multi-stakeholder processes; creating an adverse drug reaction reporting interface inbuilt into social media platforms; and, finally, developing educational campaigns to raise awareness of the use of social media in pharmacovigilance. Implementation of these recommendations would speed up the efficient, ethical, and systematic adoption of social media in pharmacovigilance.

Keywords: adverse drug reaction, drug safety, pharmacovigilance, social media

Procedia PDF Downloads 82
134 The Negative Effects of Controlled Motivation on Mathematics Achievement

Authors: John E. Boberg, Steven J. Bourgeois

Abstract:

The decline in student engagement and motivation through the middle years is well documented and clearly associated with a decline in mathematics achievement that persists through high school. To combat this trend and, very often, to meet high-stakes accountability standards, a growing number of parents, teachers, and schools have implemented various methods to incentivize learning. However, according to Self-Determination Theory, forms of incentivized learning such as public praise, tangible rewards, or threats of punishment tend to undermine intrinsic motivation and learning. By focusing on external forms of motivation that thwart autonomy in children, adults also potentially threaten relatedness measures such as trust and emotional engagement. Furthermore, these controlling motivational techniques tend to promote shallow forms of cognitive engagement at the expense of more effective deep processing strategies. Therefore, any short-term gains in apparent engagement or test scores are overshadowed by long-term diminished motivation, resulting in inauthentic approaches to learning and lower achievement. The current study focuses on the relationships between student trust, engagement, and motivation during these crucial years as students transition from elementary to middle school. In order to test the effects of controlled motivational techniques on achievement in mathematics, this quantitative study was conducted on a convenience sample of 22 elementary and middle schools from a single public charter school district in the south-central United States. The study employed multi-source data from students (N = 1,054), parents (N = 7,166), and teachers (N = 356), along with student achievement data and contextual campus variables. Cross-sectional questionnaires were used to measure the students’ self-regulated learning, emotional and cognitive engagement, and trust in teachers. Parents responded to a single item on incentivizing the academic performance of their child, and teachers responded to a series of questions about their acceptance of various incentive strategies. Structural equation modeling (SEM) was used to evaluate model fit and analyze the direct and indirect effects of the predictor variables on achievement. Although a student’s trust in teacher positively predicted both emotional and cognitive engagement, none of these three predictors accounted for any variance in achievement in mathematics. The parents’ use of incentives, on the other hand, predicted a student’s perception of his or her controlled motivation, and these two variables had significant negative effects on achievement. While controlled motivation had the greatest effects on achievement, parental incentives demonstrated both direct and indirect effects on achievement through the students’ self-reported controlled motivation. Comparing upper elementary student data with middle-school student data revealed that controlling forms of motivation may be taking their toll on student trust and engagement over time. While parental incentives positively predicted both cognitive and emotional engagement in the younger sub-group, such forms of controlling motivation negatively predicted both trust in teachers and emotional engagement in the middle-school sub-group. These findings support the claims, posited by Self-Determination Theory, about the dangers of incentivizing learning. Short-term gains belie the underlying damage to motivational processes that lead to decreased intrinsic motivation and achievement. Such practices also appear to thwart basic human needs such as relatedness.

Keywords: controlled motivation, student engagement, incentivized learning, mathematics achievement, self-determination theory, student trust

Procedia PDF Downloads 219
133 Techno-Economic Assessment of Distributed Heat Pumps Integration within a Swedish Neighborhood: A Cosimulation Approach

Authors: Monica Arnaudo, Monika Topel, Bjorn Laumert

Abstract:

Within the Swedish context, the current trend of relatively low electricity prices promotes the electrification of the energy infrastructure. The residential heating sector takes part in this transition by proposing a switch from a centralized district heating system towards a distributed heat pumps-based setting. When it comes to urban environments, two issues arise. The first, seen from an electricity-sector perspective, is related to the fact that existing networks are limited with regards to their installed capacities. Additional electric loads, such as heat pumps, can cause severe overloads on crucial network elements. The second, seen from a heating-sector perspective, has to do with the fact that the indoor comfort conditions can become difficult to handle when the operation of the heat pumps is limited by a risk of overloading on the distribution grid. Furthermore, the uncertainty of the electricity market prices in the future introduces an additional variable. This study aims at assessing the extent to which distributed heat pumps can penetrate an existing heat energy network while respecting the technical limitations of the electricity grid and the thermal comfort levels in the buildings. In order to account for the multi-disciplinary nature of this research question, a cosimulation modeling approach was adopted. In this way, each energy technology is modeled in its customized simulation environment. As part of the cosimulation methodology: a steady-state power flow analysis in pandapower was used for modeling the electrical distribution grid, a thermal balance model of a reference building was implemented in EnergyPlus to account for space heating and a fluid-cycle model of a heat pump was implemented in JModelica to account for the actual heating technology. With the models set in place, different scenarios based on forecasted electricity market prices were developed both for present and future conditions of Hammarby Sjöstad, a neighborhood located in the south-east of Stockholm (Sweden). For each scenario, the technical and the comfort conditions were assessed. Additionally, the average cost of heat generation was estimated in terms of levelized cost of heat. This indicator enables a techno-economic comparison study among the different scenarios. In order to evaluate the levelized cost of heat, a yearly performance simulation of the energy infrastructure was implemented. The scenarios related to the current electricity prices show that distributed heat pumps can replace the district heating system by covering up to 30% of the heating demand. By lowering of 2°C, the minimum accepted indoor temperature of the apartments, this level of penetration can increase up to 40%. Within the future scenarios, if the electricity prices will increase, as most likely expected within the next decade, the penetration of distributed heat pumps can be limited to 15%. In terms of levelized cost of heat, a residential heat pump technology becomes competitive only within a scenario of decreasing electricity prices. In this case, a district heating system is characterized by an average cost of heat generation 7% higher compared to a distributed heat pumps option.

Keywords: cosimulation, distributed heat pumps, district heating, electrical distribution grid, integrated energy systems

Procedia PDF Downloads 150
132 Improving the Accuracy of Stress Intensity Factors Obtained by Scaled Boundary Finite Element Method on Hybrid Quadtree Meshes

Authors: Adrian W. Egger, Savvas P. Triantafyllou, Eleni N. Chatzi

Abstract:

The scaled boundary finite element method (SBFEM) is a semi-analytical numerical method, which introduces a scaling center in each element’s domain, thus transitioning from a Cartesian reference frame to one resembling polar coordinates. Consequently, an analytical solution is achieved in radial direction, implying that only the boundary need be discretized. The only limitation imposed on the resulting polygonal elements is that they remain star-convex. Further arbitrary p- or h-refinement may be applied locally in a mesh. The polygonal nature of SBFEM elements has been exploited in quadtree meshes to alleviate all issues conventionally associated with hanging nodes. Furthermore, since in 2D this results in only 16 possible cell configurations, these are precomputed in order to accelerate the forward analysis significantly. Any cells, which are clipped to accommodate the domain geometry, must be computed conventionally. However, since SBFEM permits polygonal elements, significantly coarser meshes at comparable accuracy levels are obtained when compared with conventional quadtree analysis, further increasing the computational efficiency of this scheme. The generalized stress intensity factors (gSIFs) are computed by exploiting the semi-analytical solution in radial direction. This is initiated by placing the scaling center of the element containing the crack at the crack tip. Taking an analytical limit of this element’s stress field as it approaches the crack tip, delivers an expression for the singular stress field. By applying the problem specific boundary conditions, the geometry correction factor is obtained, and the gSIFs are then evaluated based on their formal definition. Since the SBFEM solution is constructed as a power series, not unlike mode superposition in FEM, the two modes contributing to the singular response of the element can be easily identified in post-processing. Compared to the extended finite element method (XFEM) this approach is highly convenient, since neither enrichment terms nor a priori knowledge of the singularity is required. Computation of the gSIFs by SBFEM permits exceptional accuracy, however, when combined with hybrid quadtrees employing linear elements, this does not always hold. Nevertheless, it has been shown that crack propagation schemes are highly effective even given very coarse discretization since they only rely on the ratio of mode one to mode two gSIFs. The absolute values of the gSIFs may still be subject to large errors. Hence, we propose a post-processing scheme, which minimizes the error resulting from the approximation space of the cracked element, thus limiting the error in the gSIFs to the discretization error of the quadtree mesh. This is achieved by h- and/or p-refinement of the cracked element, which elevates the amount of modes present in the solution. The resulting numerical description of the element is highly accurate, with the main error source now stemming from its boundary displacement solution. Numerical examples show that this post-processing procedure can significantly improve the accuracy of the computed gSIFs with negligible computational cost even on coarse meshes resulting from hybrid quadtrees.

Keywords: linear elastic fracture mechanics, generalized stress intensity factors, scaled finite element method, hybrid quadtrees

Procedia PDF Downloads 146
131 Religion and Risk: Unmasking Noah's Narratives in the Pacific Islands

Authors: A. Kolendo

Abstract:

Pacific Islands are one of the most vulnerable areas to climate change. Sea level rise and accelerating storm surge continuously threaten the communities' habitats on low-lying atolls. With scientific predictions of encroaching tides on their land, the Islanders have been informed about the need for future relocation planning. However, some communities oppose such retreat strategies through the reasoning that comprehends current climatic changes through the lenses of the biblical ark of Noah. This parable states God's promise never to flood the Earth again and never deprive people of their land and habitats. Several interpretations of this parable emerged in Oceania, prompting either climate action or denial. Resistance to relocation planning expressed through Christian thoughts led religion to be perceived as a barrier to dialogue between the Islanders and scientists. Since climate change concerns natural processes, the attitudes towards environmental stewardship prompt the communities' responses to it; some Christian teachings indicate humanity's responsibility over the environment, whereas others ascertain the people's dominion, which prompts resistance and sometimes denial. With church denominations and their various environmental standpoints, competing responses to climate change emerged in Oceania. Before miss-ionization, traditional knowledge had guided the environmental sphere, influencing current Christian teachings. Each atoll characterizes a distinctive manner of traditional knowledge; however, the unique relationship with nature unites all islands. The interconnectedness between the land, sea and people indicates the integrity between the communities and their environments. Such a factor influences the comprehension of Noah's story in the context of climate change that threatens their habitats. Pacific Islanders experience climate change through the slow disappearance of their homelands. However, the Western world perceives it as a global issue that will affect the population in the long-term perspective. Therefore, the Islanders seek to comprehend this global phenomenon in a local context that reads climate change as the Great Deluge. Accordingly, the safety measures that this parable promotes compensate for the danger of climate change. The rainbow covenant gives hope in God's promise never to flood the Earth again. At the same time, Noah's survival relates to the Islanders' current situation. Since these communities have the lowest carbon emissions rate, their contribution to anthropogenic climate change is scarce. Therefore, the lack of environmental sin would contextualize them as contemporary Noah with the ultimate survival of sea level rise. This study aims to defy religion constituting a barrier through secondary data analysis from a risk compensation perspective. Instead, religion is portrayed as a source of knowledge that enables comprehension of the communities' situation. By demonstrating that the Pacific Islanders utilize Noah's story as a vessel for coping with the danger of climate change, the study argues that religion provides safety measures that compensate for the future projections of land's disappearance. The purpose is to build a bridge between religious communities and scientific bodies and ultimately bring an understanding of two diverse perspectives. By addressing the practical challenges of interdisciplinary research with faith-based systems, this study uplifts the voices of communities and portrays their experiences expressed through Christian thoughts.

Keywords: Christianity, climate change, existential threat, Pacific Islands, story of Noah

Procedia PDF Downloads 95
130 Spatial Assessment of Creek Habitats of Marine Fish Stock in Sindh Province

Authors: Syed Jamil H. Kazmi, Faiza Sarwar

Abstract:

The Indus delta of Sindh Province forms the largest creeks zone of Pakistan. The Sindh coast starts from the mouth of Hab River and terminates at Sir Creek area. In this paper, we have considered the major creeks from the site of Bin Qasim Port in Karachi to Jetty of Keti Bunder in Thatta District. A general decline in the mangrove forest has been observed that within a span of last 25 years. The unprecedented human interventions damage the creeks habitat badly which includes haphazard urban development, industrial and sewage disposal, illegal cutting of mangroves forest, reduced and inconsistent fresh water flow mainly from Jhang and Indus rivers. These activities not only harm the creeks habitat but affected the fish stock substantially. Fishing is the main livelihood of coastal people but with the above-mentioned threats, it is also under enormous pressure by fish catches resulted in unchecked overutilization of the fish resources. This pressure is almost unbearable when it joins with deleterious fishing methods, uncontrolled fleet size, increase trash and by-catch of juvenile and illegal mesh size. Along with these anthropogenic interventions study area is under the red zone of tropical cyclones and active seismicity causing floods, sea intrusion, damage mangroves forests and devastation of fish stock. In order to sustain the natural resources of the Indus Creeks, this study was initiated with the support of FAO, WWF and NIO, the main purpose was to develop a Geo-Spatial dataset for fish stock assessment. The study has been spread over a year (2013-14) on monthly basis which mainly includes detailed fish stock survey, water analysis and few other environmental analyses. Environmental analysis also includes the habitat classification of study area which has done through remote sensing techniques for 22 years’ time series (1992-2014). Furthermore, out of 252 species collected, fifteen species from estuarine and marine groups were short-listed to measure the weight, health and growth of fish species at each creek under GIS data through SPSS system. Furthermore, habitat suitability analysis has been conducted by assessing the surface topographic and aspect derivation through different GIS techniques. The output variables then overlaid in GIS system to measure the creeks productivity. Which provided the results in terms of subsequent classes: extremely productive, highly productive, productive, moderately productive and less productive. This study has revealed the Geospatial tools utilization along with the evaluation of the fisheries resources and creeks habitat risk zone mapping. It has also been identified that the geo-spatial technologies are highly beneficial to identify the areas of high environmental risk in Sindh Creeks. This has been clearly discovered from this study that creeks with high rugosity are more productive than the creeks with low levels of rugosity. The study area has the immense potential to boost the economy of Pakistan in terms of fish export, if geo-spatial techniques are implemented instead of conventional techniques.

Keywords: fish stock, geo-spatial, productivity analysis, risk

Procedia PDF Downloads 245
129 Developing the Collaboration Model of Physical Education and Sport Sciences Faculties with Service Section of Sport Industrial

Authors: Vahid Saatchian, Seyyed Farideh Hadavi

Abstract:

The main aim of this study was developing the collaboration model of physical education and sport sciences faculties with service section of sport industrial.The research methods of this study was a qualitative. So researcher with of identifying the priority list of collaboration between colleges and service section of sport industry and according to sampling based of subjective and snowball approach, conducted deep interviews with 22 elites that study around the field of research topic. indeed interviews were analyzed through qualitative coding (open, axial and selective) with 5 category such as causal condition, basic condition, intervening conditions, action/ interaction and strategy. Findings exposed that in causal condition 10 labels appeared. So because of heterogeneity of labes, researcher categorized in total subject. In basic condition 59 labels in open coding identified this categorized in 14 general concepts. Furthermore with composition of the declared category and relationship between them, 5 final and internal categories (culture, intelligence, marketing, environment and ultra-powers) were appeared. Also an intervening condition in the study includes 5 overall scopes of social factors, economic, cultural factors, and the management of the legal and political factors that totally named macro environment. Indeed for identifying strategies, 8 areas that covered with internal and external challenges relationship management were appeared. These are including, understanding, outside awareness, manpower, culture, integrated management, the rules and regulations and marketing. Findings exposed 8 labels in open coding which covered the internal and external of challenges of relation management of two sides and these concepts were knowledge and awareness, external view, human source, madding organizational culture, parties’ thoughts, unit responsible for/integrated management, laws and regulations and marketing. Eventually the consequences categorized in line of strategies and were at scope of the cultural development, general development, educational development, scientific development, under development, international development, social development, economic development, technology development and political development that consistent with strategies. The research findings could help the sport managers witch use to scientific collaboration management and the consequences of this in those sport institutions. Finally, the consequences that identified as a result of the devopmental strategies include: cultural, governmental, educational, scientific, infrastructure, international, social, economic, technological and political that is largely consistent with strategies. With regard to the above results, enduring and systematic relation with long term cooperation between the two sides requires strategic planning were based on cooperation of all stakeholders. Through this, in the turbulent constantly changing current sustainable environment, competitive advantage for university and industry obtained. No doubt that lack of vision and strategic thinking for cooperation in the planning of the university and industry from its capability and instead of using the opportunity, lead the opportunities to problems.

Keywords: university and industry collaboration, sport industry, physical education and sport science college, service section of sport industry

Procedia PDF Downloads 381
128 Signature Bridge Design for the Port of Montreal

Authors: Juan Manuel Macia

Abstract:

The Montreal Port Authority (MPA) wanted to build a new road link via Souligny Avenue to increase the fluidity of goods transported by truck in the Viau Street area of Montreal and to mitigate the current traffic problems on Notre-Dame Street. With the purpose of having a better integration and acceptance of this project with the neighboring residential surroundings, this project needed to include an architectural integration, bringing some artistic components to the bridge design along with some landscaping components. The MPA is required primarily to provide direct truck access to Port of Montreal with a direct connection to the future Assomption Boulevard planned by the City of Montreal and, thus, direct access to Souligny Avenue. The MPA also required other key aspects to be considered for the proposal and development of the project, such as the layout of road and rail configurations, the reconstruction of underground structures, the relocation of power lines, the installation of lighting systems, the traffic signage and communication systems improvement, the construction of new access ramps, the pavement reconstruction and a summary assessment of the structural capacity of an existing service tunnel. The identification of the various possible scenarios began by identifying all the constraints related to the numerous infrastructures located in the area of the future link between the port and the future extension of Souligny Avenue, involving interaction with several disciplines and technical specialties. Several viaduct- and tunnel-type geometries were studied to link the port road to the right-of-way north of Notre-Dame Street and to improve traffic flow at the railway corridor. The proposed design took into account the existing access points to Port of Montreal, the built environment of the MPA site, the provincial and municipal rights-of-way, and the future Notre-Dame Street layout planned by the City of Montreal. These considerations required the installation of an engineering structure with a span of over 60 m to free up a corridor for the future urban fabric of Notre-Dame Street. The best option for crossing this span length was identified by the design and construction of a curved bridge over Notre-Dame Street, which is essentially a structure with a deck formed by a reinforced concrete slab on steel box girders with a single span of 63.5m. The foundation units were defined as pier-cap type abutments on drilled shafts to bedrock with rock sockets, with MSE-type walls at the approaches. The configuration of a single-span curved structure posed significant design and construction challenges, considering the major constraints of the project site, a design for durability approach, and the need to guarantee optimum performance over a 75-year service life in accordance with the client's needs and the recommendations and requirements defined by the standards used for the project. These aspects and the need to include architectural and artistic components in this project made it possible to design, build, and integrate a signature infrastructure project with a sustainable approach, from which the MPA, the commuters, and the city of Montreal and its residents will benefit.

Keywords: curved bridge, steel box girder, medium span, simply supported, industrial and urban environment, architectural integration, design for durability

Procedia PDF Downloads 70
127 The Dynamic Nexus of Public Health and Journalism in Informed Societies

Authors: Ali Raza

Abstract:

The dynamic landscape of communication has brought about significant advancements that intersect with the realms of public health and journalism. This abstract explores the evolving synergy between these fields, highlighting how their intersection has contributed to informed societies and improved public health outcomes. In the digital age, communication plays a pivotal role in shaping public perception, policy formulation, and collective action. Public health, concerned with safeguarding and improving community well-being, relies on effective communication to disseminate information, encourage healthy behaviors, and mitigate health risks. Simultaneously, journalism, with its commitment to accurate and timely reporting, serves as the conduit through which health information reaches the masses. Advancements in communication technologies have revolutionized the ways in which public health information is both generated and shared. The advent of social media platforms, mobile applications, and online forums has democratized the dissemination of health-related news and insights. This democratization, however, brings challenges, such as the rapid spread of misinformation and the need for nuanced strategies to engage diverse audiences. Effective collaboration between public health professionals and journalists is pivotal in countering these challenges, ensuring that accurate information prevails. The synergy between public health and journalism is most evident during public health crises. The COVID-19 pandemic underscored the pivotal role of journalism in providing accurate and up-to-date information to the public. However, it also highlighted the importance of responsible reporting, as sensationalism and misinformation could exacerbate the crisis. Collaborative efforts between public health experts and journalists led to the amplification of preventive measures, the debunking of myths, and the promotion of evidence-based interventions. Moreover, the accessibility of information in the digital era necessitates a strategic approach to health communication. Behavioral economics and data analytics offer insights into human decision-making and allow tailored health messages to resonate more effectively with specific audiences. This approach, when integrated into journalism, enables the crafting of narratives that not only inform but also influence positive health behaviors. Ethical considerations emerge prominently in this alliance. The responsibility to balance the public's right to know with the potential consequences of sensational reporting underscores the significance of ethical journalism. Health journalists must meticulously source information from reputable experts and institutions to maintain credibility, thus fortifying the bridge between public health and the public. As both public health and journalism undergo transformative shifts, fostering collaboration between these domains becomes essential. Training programs that familiarize journalists with public health concepts and practices can enhance their capacity to report accurately and comprehensively on health issues. Likewise, public health professionals can gain insights into effective communication strategies from seasoned journalists, ensuring that health information reaches a wider audience. In conclusion, the convergence of public health and journalism, facilitated by communication advancements, is a cornerstone of informed societies. Effective communication strategies, driven by collaboration, ensure the accurate dissemination of health information and foster positive behavior change. As the world navigates complex health challenges, the continued evolution of this synergy holds the promise of healthier communities and a more engaged and educated public.

Keywords: public awareness, journalism ethics, health promotion, media influence, health literacy

Procedia PDF Downloads 71
126 A Rapid and Greener Analysis Approach Based on Carbonfiber Column System and MS Detection for Urine Metabolomic Study After Oral Administration of Food Supplements 

Authors: Zakia Fatima, Liu Lu, Donghao Li

Abstract:

The analysis of biological fluid metabolites holds significant importance in various areas, such as medical research, food science, and public health. Investigating the levels and distribution of nutrients and their metabolites in biological samples allows researchers and healthcare professionals to determine nutritional status, find hypovitaminosis or hypervitaminosis, and monitor the effectiveness of interventions such as dietary supplementation. Moreover, analysis of nutrient metabolites provides insight into their metabolism, bioavailability, and physiological processes, aiding in the clarification of their health roles. Hence, the exploration of a distinct, efficient, eco-friendly, and simpler methodology is of great importance to evaluate the metabolic content of complex biological samples. In this work, a green and rapid analytical method based on an automated online two-dimensional microscale carbon fiber/activated carbon fiber fractionation system and time-of-flight mass spectrometry (2DμCFs-TOF-MS) was used to evaluate metabolites of urine samples after oral administration of food supplements. The automated 2DμCFs instrument consisted of a microcolumn system with bare carbon fibers and modified carbon fiber coatings. Carbon fibers and modified carbon fibers exhibit different surface characteristics and retain different compounds accordingly. Three kinds of mobile-phase solvents were used to elute the compounds of varied chemical heterogeneities. The 2DμCFs separation system has the ability to effectively separate different compounds based on their polarity and solubility characteristics. No complicated sample preparation method was used prior to analysis, which makes the strategy more eco-friendly, practical, and faster than traditional analysis methods. For optimum analysis results, mobile phase composition, flow rate, and sample diluent were optimized. Water-soluble vitamins, fat-soluble vitamins, and amino acids, as well as 22 vitamin metabolites and 11 vitamin metabolic pathway-related metabolites, were found in urine samples. All water-soluble vitamins except vitamin B12 and vitamin B9 were detected in urine samples. However, no fat-soluble vitamin was detected, and only one metabolite of Vitamin A was found. The comparison with a blank urine sample showed a considerable difference in metabolite content. For example, vitamin metabolites and three related metabolites were not detected in blank urine. The complete single-run screening was carried out in 5.5 minutes with the minimum consumption of toxic organic solvent (0.5 ml). The analytical method was evaluated in terms of greenness, with an analytical greenness (AGREE) score of 0.72. The method’s practicality has been investigated using the Blue Applicability Grade Index (BAGI) tool, obtaining a score of 77. The findings in this work illustrated that the 2DµCFs-TOF-MS approach could emerge as a fast, sustainable, practical, high-throughput, and promising analytical tool for screening and accurate detection of various metabolites, pharmaceuticals, and ingredients in dietary supplements as well as biological fluids.

Keywords: metabolite analysis, sustainability, carbon fibers, urine.

Procedia PDF Downloads 28
125 The Soviet Union-Style of Urban Planning in China: Historical Review and Enlightenment from the Output Mode of Contemporary Cooperative Parks

Authors: Yifeng Shi, Xingping Wang

Abstract:

The Soviet Union-style of urban planning has produced a broad and profound influence on China’s urban planning system. The study on extendibility and development experience of Soviet planning in China helps to change the current embarrassing situation 'one-hand planning practice, second-hand planning theory', and also beneficial to facilitate the establishment of China's domestic urban planning theory from the planning source, especially the overseas cooperation parks rich in 'Chinese characteristics'. In practice, as the world’s major infrastructure country, China is exporting to the world especially countries along 'the Belt and Road' a development model featuring cooperation parks as Chinese characteristics. This is of great significance to evaluate and summarize the experiences of Soviet Union-style of planning for China's development objectively and rationally, from removing ideological factors and extracting positive factors to carry them forward in overseas cooperation parks. This article briefly reviews the Soviet influence on urban planning after the founding of China and divided the influences stages into 'guidance, internalization and absorption, selective learning, decline' four periods. The impact includes production-oriented planning and planning concepts continue to be implemented, the establishment of the regional planning, master planning, detailed planning of the basic framework of urban planning, and homogenized cellular structure of the space, as well as planning techniques, professional training, planning techniques and so on. China and even most socialist countries now still carry such planning genes. At present, in the process of implementing 'the Belt and Road' strategy, the planning and construction of China’s overseas cooperation parks generally encounter many problems as lack of strategic planning and systematic planning, lack of top-level design, uncoordinated planning and layout in parks, and redundant construction in some areas. After sublating the planning genes of the Soviet Union-style of urban planning for the development of the socialist countries, especially the industrial planning system, this paper puts forward some views as follows to realize the overseas output and development of China's planning model and technology. Firstly the future development of overseas cooperation park should be from a rational planning point of view. Secondly the government should not only rigidly and equitably allocate the resources of the parks but also closely integrate the national economic plans or economic development strategies. Lastly management department should frame the threshold of development rationally, give full play to the pragmatic planning style in accordance with the local land system and planning system. It has an important guiding and reference role for the development of China's overseas cooperation park under the 'go global' strategy, after objectively evaluating the impact of the Soviet Union-style urban planning and absorbing the beneficial components on China. However, we should also recognize that the cooperation parks and the urban industrial system behind it are only part of urban development. More attention should be payed on the design of the local and the general rules of urban development to take the lead effect of cooperation parks suitable. Foundation item: Under the auspices of the Specific Plan for Strategic International Cooperation in Scientific and Technological Innovation, the National Key Research and Development Plan 'Research Cooperation and Exemplary Application in Planning of Development of Overseas Industrial Parks' (No 2016YFE0201000).

Keywords: China cooperative parks, history of urban planning, output mode, The Soviet Union

Procedia PDF Downloads 247
124 Application of Aerogeomagnetic and Ground Magnetic Surveys for Deep-Seated Kimberlite Pipes in Central India

Authors: Utkarsh Tripathi, Bikalp C. Mandal, Ravi Kumar Umrao, Sirsha Das, M. K. Bhowmic, Joyesh Bagchi, Hemant Kumar

Abstract:

The Central India Diamond Province (CIDP) is known for the occurrences of primary and secondary sources for diamonds from the Vindhyan platformal sediments, which host several kimberlites, with one operating mine. The known kimberlites are Neo-Proterozoic in age and intrude into the Kaimur Group of rocks. Based on the interpretation of areo-geomagnetic data, three potential zones were demarcated in parts of Chitrakoot and Banda districts, Uttar Pradesh, and Satna district, Madhya Pradesh, India. To validate the aero-geomagnetic interpretation, ground magnetic coupled with a gravity survey was conducted to validate the anomaly and explore the possibility of some pipes concealed beneath the Vindhyan sedimentary cover. Geologically the area exposes the milky white to buff-colored arkosic and arenitic sandstone belonging to the Dhandraul Formation of the Kaimur Group, which are undeformed and unmetamorphosed providing almost transparent media for geophysical exploration. There is neither surface nor any geophysical indication of intersections of linear structures, but the joint patterns depict three principal joints along NNE-SSW, ENE-WSW, and NW-SE directions with vertical to sub-vertical dips. Aeromagnetic data interpretation brings out three promising zones with the bi-polar magnetic anomaly (69-602nT) that represent potential kimberlite intrusive concealed below at an approximate depth of 150-170m. The ground magnetic survey has brought out the above-mentioned anomalies in zone-I, which is congruent with the available aero-geophysical data. The magnetic anomaly map shows a total variation of 741 nT over the area. Two very high magnetic zones (H1 and H2) have been observed with around 500 nT and 400 nT magnitudes, respectively. Anomaly zone H1 is located in the west-central part of the area, south of Madulihai village, while anomaly zone H2 is located 2km apart in the north-eastern direction. The Euler 3D solution map indicates the possible existence of the ultramafic body in both the magnetic highs (H1 and H2). The H2 high shows the shallow depth, and H1 shows a deeper depth solution. In the reduced-to-pole (RTP) method, the bipolar anomaly disappears and indicates the existence of one causative source for both anomalies, which is, in all probabilities, an ultramafic suite of rock. The H1 magnetic high represents the main body, which persists up to depths of ~500m, as depicted through the upward continuation derivative map. Radially Averaged Power Spectrum (RAPS) shows the thickness of loose sediments up to 25m with a cumulative depth of 154m for sandstone overlying the ultramafic body. The average depth range of the shallower body (H2) is 60.5-86 meters, as estimated through the Peters half slope method. Magnetic (TF) anomaly with BA contour also shows high BA value around the high zones of magnetic anomaly (H1 and H2), which suggests that the causative body is with higher density and susceptibility for the surrounding host rock. The ground magnetic survey coupled with the gravity confirms a potential target for further exploration as the findings are co-relatable with the presence of the known diamondiferous kimberlites in this region, which post-date the rocks of the Kaimur Group.

Keywords: Kaimur, kimberlite, Euler 3D solution, magnetic

Procedia PDF Downloads 75