Search results for: load-bearing biological materials
247 Revolutionary Wastewater Treatment Technology: An Affordable, Low-Maintenance Solution for Wastewater Recovery and Energy-Saving
Authors: Hady Hamidyan
Abstract:
As the global population continues to grow, the demand for clean water and effective wastewater treatment becomes increasingly critical. By 2030, global water demand is projected to exceed supply by 40%, driven by population growth, increased water usage, and climate change. Currently, about 4.2 billion people lack access to safely managed sanitation services. The wastewater treatment sector faces numerous challenges, including the need for energy-efficient solutions, cost-effectiveness, ease of use, and low maintenance requirements. This abstract presents a groundbreaking wastewater treatment technology that addresses these challenges by offering an energy-saving approach, wastewater recovery capabilities, and a ready-made, affordable, and user-friendly package with minimal maintenance costs. The unique design of this ready-made package made it possible to eliminate the need for pumps, filters, airlift, and other common equipment. Consequently, it enables sustainable wastewater treatment management with exceptionally low energy and cost requirements, minimizing investment and maintenance expenses. The operation of these packages is based on continuous aeration, which involves injecting oxygen gas or air into the aeration chamber through a tubular diffuser with very small openings. This process supplies the necessary oxygen for aerobic bacteria. The recovered water, which amounts to almost 95% of the input, can be treated to meet specific quality standards, allowing safe reuse for irrigation, industrial processes, or even potable purposes. This not only reduces the strain on freshwater resources but also provides economic benefits by offsetting the costs associated with freshwater acquisition and wastewater discharge. The ready-made, affordable, and user-friendly nature of this technology makes it accessible to a wide range of users, including small communities, industries, and decentralized wastewater treatment systems. The system incorporates user-friendly interfaces, simplified operational procedures, and integrated automation, facilitating easy implementation and operation. Additionally, the use of durable materials, efficient equipment, and advanced monitoring systems significantly reduces maintenance requirements, resulting in low overall life-cycle costs and alleviating the burden on operators and maintenance personnel. In conclusion, the presented wastewater treatment technology offers a comprehensive solution to the challenges faced by the industry. Its energy-saving approach, combined with wastewater recovery capabilities, ensures sustainable resource management and enhances environmental stewardship. This affordable, ready-made, and low-maintenance package promotes broad adoption across various sectors and communities, contributing to a more sustainable future for water and wastewater management.Keywords: wastewater treatment, energy saving, wastewater recovery, affordable package, low maintenance costs, sustainable resource management, environmental stewardship
Procedia PDF Downloads 91246 Iron-Metal-Organic Frameworks: Potential Application as Theranostics for Inhalable Therapy of Tuberculosis
Authors: Gabriela Wyszogrodzka, Przemyslaw Dorozynski, Barbara Gil, Maciej Strzempek, Bartosz Marszalek, Piotr Kulinowski, Wladyslaw Piotr Weglarz, Elzbieta Menaszek
Abstract:
MOFs (Metal-Organic Frameworks) belong to a new group of porous materials with a hybrid organic-inorganic construction. Their structure is a network consisting of metal cations or clusters (acting as metallic centers, nodes) and the organic linkers between nodes. The interest in MOFs is primarily associated with the use of their well-developed surface and large porous. Possibility to build MOFs of biocompatible components let to use them as potential drug carriers. Furthermore, forming MOFs structure from cations possessing paramagnetic properties (e.g. iron cations) allows to use them as MRI (Magnetic Resonance Imaging) contrast agents. The concept of formation of particles that combine the ability to transfer active substance with imaging properties has been called theranostic (from words combination therapy and diagnostics). By building MOF structure from iron cations it is possible to use them as theranostic agents and monitoring the distribution of the active substance after administration in real time. In the study iron-MOF: Fe-MIL-101-NH2 was chosen, consisting of iron cluster in nodes of the structure and amino-terephthalic acid as a linker. The aim of the study was to investigate the possibility of applying Fe-MIL-101-NH2 as inhalable theranostic particulate system for the first-line anti-tuberculosis antibiotic – isoniazid. The drug content incorporated into Fe-MIL-101-NH2 was evaluated by dissolution study using spectrophotometric method. Results showed isoniazid encapsulation efficiency – ca. 12.5% wt. Possibility of Fe-MIL-101-NH2 application as the MRI contrast agent was demonstrated by magnetic resonance tomography. FeMIL-101-NH2 effectively shortening T1 and T2 relaxation times (increasing R1 and R2 relaxation rates) linearly with the concentrations of suspended material. Images obtained using multi-echo magnetic resonance imaging sequence revealed possibility to use FeMIL-101-NH2 as positive and negative contrasts depending on applied repetition time. MOFs micronization via ultrasound was evaluated by XRD, nitrogen adsorption, FTIR, SEM imaging and did not influence their crystal shape and size. Ultrasonication let to break the aggregates and achieve very homogeneously looking SEM images. MOFs cytotoxicity was evaluated in in vitro test with a highly sensitive resazurin based reagent PrestoBlue™ on L929 fibroblast cell line. After 24h no inhibition of cell proliferation was observed. All results proved potential possibility of application of ironMOFs as an isoniazid carrier and as MRI contrast agent in inhalatory treatment of tuberculosis. Acknowledgments: Authors gratefully acknowledge the National Science Center Poland for providing financial support, grant no 2014/15/B/ST5/04498.Keywords: imaging agents, metal-organic frameworks, theranostics, tuberculosis
Procedia PDF Downloads 250245 Chemical Composition and Insecticidal Activity of Three Essential Oil and Beauvericin Nanogel on Plodia Interpunctella (Lepidoptera: Pyralidae)
Authors: Magda Mahmoud Amin Sabbour, El-Sayed H. Shaurub
Abstract:
The Indian meal moth Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), of stored grain pests which destroy the seed completely. Their larval stages feed on the nutrient germinating kernels part found in the seeds grain. This leads to a reduction causing a badness to seed germination and seed viability. It controlled by many insecticides which pollute and cusses a harmful diseases to human being. Three tested oils were evaluated on this target pests. Plant extracts, essential oils and medical oils are materials which used to control many stored pests. Plant oils extracts have a lower effects on parasites and predators and not pollute the medium. By using the apparatus gas chromatography flame ionization detector gas chromatography–analysis of three essential oil tested. This research was point to explore and appreciation the activity of three oils and nano gel Beauvericin against P. interpunctella in the laboratory conditions and in the store conditions. The three essential oil tested proved that, percentage of α-Pinene recoded 7.76, 7.72 and 6.66 for C. cyminum, A. squamosal and G. officinale respectively. The composition of the β-Pinene recoded 4.61, 8.92 and 30.63 for the corresponding oils tested. Results showed that after analytically the oils tested, the effective compound of C. cyminum oil are p-cyinene and Terpinene. Results obtained show that the LC50 recorded 125, 112, 55 and 20 ppm after P. interpunctella treated with medical oils of Guaiacum officinale, Annona squamosa, Cuminum cyminum and Beauvericin 3% respectively. The accumulative mortality of P. interpunctella after treated with A.squamosa oil-loaded nanogels which showed that it is the highest oils from infestations recoded when the seed treated with 3% after 48 days, the accumulations obtained 44% at followed by 24 after24 days of storage. Results, cleared that the seed protection by G. officinale recorded 40% at concentrations of 3% after 48 days of storage seeds. C. cyminum was the highest mortality by 98, at concentrations 3%. The highest seed protection proved after C. cyminum oil-loaded nanogels 14% followed by G. officinale 29% and A.squamosa 44%.when the seeds treated with Beauvericin 3%. Results of this work cleared that the essential medical oils have a useful action effect on target insects. Plant essential and medical oils, their active ingredient have potentially high bioactivity against on P. interpunctella. The medical and essential oils incorporation and usage the nano-formulation release stopped the highly degradation vaporization and the increasing in the constancy, and save the lower effectiveness of the dosage/application. The research results proved that the highest seed protection obtained after C. cyminum oil-loaded nanogels followed by G. officinale and A.squamosa. It could be complemented that P. interpunctella were more susceptible to medical oils loaded nanogel (MOLNs ) than medical oils only (MO). MOLNs had best lower amount of the residual activity than MO only. MOLNs might mend the insecticidal action of the medical oil tested by the slow effective release of the medical oils to control P. interpunctella mostly at the lower doses.Keywords: Cuminum cyminum, annona squamosa, guaiacum officinale, beauvericin 3 %, plodia interpunctella
Procedia PDF Downloads 116244 Circular Nitrogen Removal, Recovery and Reuse Technologies
Authors: Lina Wu
Abstract:
The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and threatens water quality. Nitrogen pollution control has become a global concern. The concentration of nitrogen in water is reduced by converting ammonia nitrogen, nitrate nitrogen and nitrite nitrogen into nitrogen-containing gas through biological treatment, physicochemical treatment and oxidation technology. However, some wastewater containing high ammonia nitrogen including landfill leachate, is difficult to be treated by traditional nitrification and denitrification because of its high COD content. The core process of denitrification is that denitrifying bacteria convert nitrous acid produced by nitrification into nitrite under anaerobic conditions. Still, its low-carbon nitrogen does not meet the conditions for denitrification. Many studies have shown that the natural autotrophic anammox bacteria can combine nitrous and ammonia nitrogen without a carbon source through functional genes to achieve total nitrogen removal, which is very suitable for removing nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The short-range nitrification and denitrification coupled with anaerobic ammoX ensures total nitrogen removal. It improves the removal efficiency, meeting the needs of society for an ecologically friendly and cost-effective nutrient removal treatment technology. In recent years, research has found that the symbiotic system has more water treatment advantages because this process not only helps to improve the efficiency of wastewater treatment but also allows carbon dioxide reduction and resource recovery. Microalgae use carbon dioxide dissolved in water or released through bacterial respiration to produce oxygen for bacteria through photosynthesis under light, and bacteria, in turn, provide metabolites and inorganic carbon sources for the growth of microalgae, which may lead the algal bacteria symbiotic system save most or all of the aeration energy consumption. It has become a trend to make microalgae and light-avoiding anammox bacteria play synergistic roles by adjusting the light-to-dark ratio. Microalgae in the outer layer of light particles block most of the light and provide cofactors and amino acids to promote nitrogen removal. In particular, myxoccota MYX1 can degrade extracellular proteins produced by microalgae, providing amino acids for the entire bacterial community, which helps anammox bacteria save metabolic energy and adapt to light. As a result, initiating and maintaining the process of combining dominant algae and anaerobic denitrifying bacterial communities has great potential in treating landfill leachate. Chlorella has a brilliant removal effect and can withstand extreme environments in terms of high ammonia nitrogen, high salt and low temperature. It is urgent to study whether the algal mud mixture rich in denitrifying bacteria and chlorella can greatly improve the efficiency of landfill leachate treatment under an anaerobic environment where photosynthesis is stopped. The optimal dilution concentration of simulated landfill leachate can be found by determining the treatment effect of the same batch of bacteria and algae mixtures under different initial ammonia nitrogen concentrations and making a comparison. High-throughput sequencing technology was used to analyze the changes in microbial diversity, related functional genera and functional genes under optimal conditions, providing a theoretical and practical basis for the engineering application of novel bacteria-algae symbiosis system in biogas slurry treatment and resource utilization.Keywords: nutrient removal and recovery, leachate, anammox, Partial nitrification, Algae-bacteria interaction
Procedia PDF Downloads 38243 Influence Study of the Molar Ratio between Solvent and Initiator on the Reaction Rate of Polyether Polyols Synthesis
Authors: María José Carrero, Ana M. Borreguero, Juan F. Rodríguez, María M. Velencoso, Ángel Serrano, María Jesús Ramos
Abstract:
Flame-retardants are incorporated in different materials in order to reduce the risk of fire, either by providing increased resistance to ignition, or by acting to slow down combustion and thereby delay the spread of flames. In this work, polyether polyols with fire retardant properties were synthesized due to their wide application in the polyurethanes formulation. The combustion of polyurethanes is primarily dependent on the thermal properties of the polymer, the presence of impurities and formulation residue in the polymer as well as the supply of oxygen. There are many types of flame retardants, most of them are phosphorous compounds of different nature and functionality. The addition of these compounds is the most common method for the incorporation of flame retardant properties. The employment of glycerol phosphate sodium salt as initiator for the polyol synthesis allows obtaining polyols with phosphate groups in their structure. However, some of the critical points of the use of glycerol phosphate salt are: the lower reactivity of the salt and the necessity of a solvent (dimethyl sulfoxide, DMSO). Thus, the main aim in the present work was to determine the amount of the solvent needed to get a good solubility of the initiator salt. Although the anionic polymerization mechanism of polyether formation is well known, it seems convenient to clarify the role that DMSO plays at the starting point of the polymerization process. Regarding the fact that the catalyst deprotonizes the hydroxyl groups of the initiator and as a result of this, two water molecules and glycerol phosphate alkoxide are formed. This alkoxide, together with DMSO, has to form a homogeneous mixture where the initiator (solid) and the propylene oxide (PO) are soluble enough to mutually interact. The addition rate of PO increased when the solvent/initiator ratios studied were increased, observing that it also made the initiation step shorter. Furthermore, the molecular weight of the polyol decreased when higher solvent/initiator ratios were used, what revealed that more amount of salt was activated, initiating more chains of lower length but allowing to react more phosphate molecules and to increase the percentage of phosphorous in the final polyol. However, the final phosphorous content was lower than the theoretical one because only a percentage of salt was activated. On the other hand, glycerol phosphate disodium salt was still partially insoluble in DMSO studied proportions, thus, the recovery and reuse of this part of the salt for the synthesis of new flame retardant polyols was evaluated. In the recovered salt case, the rate of addition of PO remained the same than in the commercial salt but a shorter induction period was observed, this is because the recovered salt presents a higher amount of deprotonated hydroxyl groups. Besides, according to molecular weight, polydispersity index, FT-IR spectrum and thermal stability, there were no differences between both synthesized polyols. Thus, it is possible to use the recovered glycerol phosphate disodium salt in the same way that the commercial one.Keywords: DMSO, fire retardants, glycerol phosphate disodium salt, recovered initiator, solvent
Procedia PDF Downloads 276242 The Production of Biofertilizer from Naturally Occurring Microorganisms by Using Nuclear Technologies
Authors: K. S. Al-Mugren, A. Yahya, S. Alodah, R. Alharbi, S. H. Almsaid , A. Alqahtani, H. Jaber, A. Basaqer, N. Alajra, N. Almoghati, A. Alsalman, Khalid Alharbi
Abstract:
Context: The production of biofertilizers from naturally occurring microorganisms is an area of research that aims to enhance agricultural practices by utilizing local resources. This research project focuses on isolating and screening indigenous microorganisms with PK-fixing and phosphate solubilizing characteristics from local sources. Research Aim: The aim of this project is to develop a biofertilizer product using indigenous microorganisms and composted agro waste as a carrier. The objective is to enhance crop productivity and soil fertility through the application of biofertilizers. Methodology: The research methodology includes several key steps. Firstly, indigenous microorganisms will be isolated from local resources using the ten-fold serial dilutions technique. Screening assays will be conducted to identify microorganisms with phosphate solubilizing and PK-fixing activities. Agro-waste materials will be collected from local agricultural sources, and composting experiments will be conducted to convert them into organic matter-rich compost. Physicochemical analysis will be performed to assess the composition of the composted agro-waste. Gamma and X-ray irradiation will be used to sterilize the carrier material. The sterilized carrier will be tested for sterility using the ten-fold serial dilutions technique. Finally, selected indigenous microorganisms will be developed into biofertilizer products. Findings: The research aims to find suitable indigenous microorganisms with phosphate solubilizing and PK-fixing characteristics for biofertilizer production. Additionally, the research aims to assess the suitability of composted agro waste as a carrier for biofertilizers. The impact of gamma irradiation sterilization on pathogen elimination will also be investigated. Theoretical Importance: This research contributes to the understanding of utilizing indigenous microorganisms and composted agro waste for biofertilizer production. It expands knowledge on the potential benefits of biofertilizers in enhancing crop productivity and soil fertility. Data Collection and Analysis Procedures: The data collection process involves isolating indigenous microorganisms, conducting screening assays, collecting and composting agro waste, analyzing the physicochemical composition of composted agro waste, and testing carrier sterilization. The analysis procedures include assessing the abilities of indigenous microorganisms, evaluating the composition of composted agro waste, and determining the sterility of the carrier material. Conclusion: The research project aims to develop biofertilizer products using indigenous microorganisms and composted agro waste as a carrier. Through the isolation and screening of indigenous microorganisms, the project aims to enhance crop productivity and soil fertility by utilizing local resources. The research findings will contribute to the understanding of the suitability of composted agro waste as a carrier and the efficacy of gamma irradiation sterilization. The research outcomes will have theoretical importance in the field of biofertilizer production and agricultural practices.Keywords: biofertilizer, microorganisms, agro waste, nuclear technologies
Procedia PDF Downloads 137241 Identifying the Conservation Gaps in Poorly Studied Protected Area in the Philippines: A Study Case of Sibuyan Island
Authors: Roven Tumaneng, Angelica Kristina Monzon, Ralph Sedricke Lapuz, Jose Don De Alban, Jennica Paula Masigan, Joanne Rae Pales, Laila Monera Pornel, Dennis Tablazon, Rizza Karen Veridiano, Jackie Lou Wenceslao, Edmund Leo Rico, Neil Aldrin Mallari
Abstract:
Most protected area management plans in the Philippines, particularly the smaller and more remote islands suffer from insufficient baseline data, which should provide the bases for formulating measureable conservation targets and appropriate management interventions for these protected areas. Attempts to synthesize available data particularly on cultural and socio-economic characteristic of local peoples within and outside protected areas also suffer from the lack of comprehensive and detailed inventories, which should be considered in designing adaptive management interventions to be used for those protected areas. Mt Guiting-guiting Natural Park (MGGNP) located in Sibuyan Island is one of the poorly studied protected areas in the Philippines. In this study, we determined the highly biologically important areas of the protected area using Maximum Entropy approach (MaxEnt) from environmental predictors (i.e., topographic, bioclimatic,land cover, and soil image layers) derived from global remotely sensed data and point occurrence data of species of birds and trees recorded during field surveys on the island. A total of 23 trigger species of birds and trees was modeled and stacked to generate species richness maps for biological high conservation value areas (HCVAs). Forest habitat change was delineated using dual-polarised L-band ALOS-PALSAR mosaic data at 25 meter spatial resolution, taken at two acquisition years 2007 and 2009 to provide information on forest cover ad habitat change in the island between year 2007 and 2009. Determining the livelihood guilds were also conducted using the data gathered from171 household interviews, from which demographic and livelihood variables were extracted (i.e., age, gender, number of household members, educational attainment, years of residency, distance from forest edge, main occupation, alternative sources of food and resources during scarcity months, and sources of these alternative resources).Using Principal Component Analysis (PCA) and Kruskal-Wallis test, the diversity and patterns of forest resource use by people in the island were determined with particular focus on the economic activities that directly and indirectly affect the population of key species as well as to identify levels of forest resource use by people in different areas of the park.Results showed that there are gaps in the area occupied by the natural park, as evidenced by the mismatch of the proposed HCVAs and the existing perimeters of the park. We found out that subsistence forest gathering was the possible main driver for forest degradation out of the eight livelihood guilds that were identified in the park. Determining the high conservation areas and identifyingthe anthropogenic factors that influence the species richness and abundance of key species in the different management zone of MGGNP would provide guidance for the design of a protected area management plan and future monitoring programs. However, through intensive communication and consultation with government stakeholders and local communities our results led to setting conservation targets in local development plans and serve as a basis for the reposition of the boundaries and reconfiguration of the management zones of MGGNP.Keywords: conservation gaps, livelihood guilds, MaxEnt, protected area
Procedia PDF Downloads 404240 Wildfire Risk and Biodiversity Management: Understanding Perceptions and Preparedness
Authors: Emily Moskwa, Delene Weber, Jacob Arnold, Guy M. Robinson, Douglas K. Bardsley
Abstract:
Management strategies to reduce the risks to human life and property from wildfire are key contemporary concerns, with a growing literature exploring these issues from a social research perspective. Efforts range from narrowly focused examinations, such as comparing the level of community support for vegetation clearance with that of controlled burning, to broader considerations of what constitutes effective fire management policy and education campaigns. However, little analysis is available that integrates the social component of risk mitigation and the influence of educational materials with the biodiversity conservation strategies so often needed in fire-prone ecosystems found on the periphery of urban areas. Indeed many communities living on the fringe of Australian cities face major issues relating to an increased risk of wildfire events and a decline in local biodiversity. Inadequate policy and planning, and a lack of awareness or information, exacerbate this risk. This has brought forward an emerging governance challenge that requires the mitigation of wildfire risk while simultaneously supporting improved conservation practices in these urban-fringe areas. Focusing on the perceptions and experiences of residents of the Lower Eyre Peninsula in South Australia, this study analyses data collected from a series of semi-structured interviews with landholders (n=20) living in rural and urban-fringe areas surrounding the city of Port Lincoln, a city with a growing population and one that has faced a number of very large fires in recent years. In South Australia, new policies have assigned increased responsibility on individual landholders to manage their land and prepare themselves for a wildfire event, potentially to the detriment of the surrounding native vegetation. Our findings indicate the value of gaining a more nuanced understanding of the perceptions and behaviours of landholders living in areas of high fire risk, who often choose to live there in order to be close to the natural environment. Many interviewees demonstrated a high awareness of wildfire risk as a result of their past experience with fire, and the majority considered themselves to be well-prepared in the event of a future fire. Community interactions and educational programs were found to be effective in raising awareness of risk; however, negative trust relationships with government authorities and low exposure to information concerning biodiversity resulted in an overall misunderstanding of the relationship between risk mitigation and biodiversity protection. The study offers insights into how catastrophic fires are reframing perceptions of what constitutes effective vegetation management. It provides recommendations to assist with the development of education strategies that concurrently address wildfire management and biodiversity conservation, and contribute towards environmentally-informed and risk conscious governance.Keywords: biodiversity conservation, risk, peri-urban planning, wildfire management
Procedia PDF Downloads 249239 Identification of ω-3 Fatty Acids Using GC-MS Analysis in Extruded Spelt Product
Authors: Jelena Filipovic, Marija Bodroza-Solarov, Milenko Kosutic, Nebojsa Novkovic, Vladimir Filipovic, Vesna Vucurovic
Abstract:
Spelt wheat is suitable raw material for extruded products such as pasta, special types of bread and other products of altered nutritional characteristics compared to conventional wheat products. During the process of extrusion, spelt is exposed to high temperature and high pressure, during which raw material is also mechanically treated by shear forces. Spelt wheat is growing without the use of pesticides in harsh ecological conditions and in marginal areas of cultivation. So it can be used for organic and health safe food. Pasta is the most popular foodstuff; its consumption has been observed to rise. Pasta quality depends mainly on the properties of flour raw materials, especially protein content and its quality but starch properties are of a lesser importance. Pasta is characterized by significant amounts of complex carbohydrates, low sodium, total fat fiber, minerals, and essential fatty acids and its nutritional value can be improved with additional functional component. Over the past few decades, wheat pasta has been successfully formulated using different ingredients in pasta to cater health-conscious consumers who prefer having a product rich in protein, healthy lipids and other health benefits. Flaxseed flour is used in the production of bakery and pasta products that have properties of functional foods. However, it should be taken into account that food products retain the technological and sensory quality despite the added flax seed. Flaxseed contains important substances in its composition such as vitamins and minerals elements, and it is also an excellent source of fiber and one of the best sources of ω-3 fatty acids and lignin. In this paper, the quality and identification of spelt extruded product with the addition of flax seed, which is positively contributing to the nutritive and technology changes of the product, is investigated. ω-3 fatty acids are polyunsaturated essential fatty acids, and they must be taken with food to satisfy the recommended daily intake. Flaxseed flour is added in the quantity of 10/100 g of sample and 20/100 g of sample on farina. It is shown that the presence of ω-3 fatty acids in pasta can be clearly distinguished from other fatty acids by gas chromatography with mass spectrometry. Addition of flax seed flour influence chemical content of pasta. The addition of flax seed flour in spelt pasta in the quantities of 20g/100 g significantly increases the share of ω-3 fatty acids, which results in improved ratio of ω-6/ω-3 1:2.4 and completely satisfies minimum daily needs of ω-3 essential fatty acids (3.8 g/100 g) recommended by FDA. Flex flour influenced the pasta quality by increasing of hardness (2377.8 ± 13.3; 2874.5 ± 7.4; 3076.3 ± 5.9) and work of shear (102.6 ± 11.4; 150.8 ± 11.3; 165.0 ± 18.9) and increasing of adhesiveness (11.8 ± 20.6; 9.,98 ± 0.12; 7.1 ± 12.5) of the final product. Presented data point at good indicators of technological quality of spelt pasta with flax seed and that GC-MS analysis can be used in the quality control for flax seed identification. Acknowledgment: The research was financed by the Ministry of Education and Science of the Republic of Serbia (Project No. III 46005).Keywords: GC-MS analysis, ω-3 fatty acids, flex seed, spelt wheat, daily needs
Procedia PDF Downloads 159238 Teaching English for Children in Public Schools Can Work in Egypt
Authors: Shereen Kamel
Abstract:
This study explores the recent application of bilingual education in Egyptian public schools. It aims to provide an overall picture of bilingual education programs globally and examine its adequacy to the Egyptian social and cultural context. The study also assesses the current application process of teaching English as a Second Language in public schools from the early childhood education stage and onwards, instead of starting it from middle school; as a strategy that promotes English language proficiency and equity among students. The theoretical framework is based on Jim Cummins’ bilingual education theories and on recent trends adopting different developmental theories and perspectives, like Stephen Crashen’s theory of Second Language Acquisition that calls for communicative and meaningful interaction rather than memorization of grammatical rules. The question posed here is whether bilingual education, with its peculiar nature, could be a good chance to reach out to all Egyptian students and prepare them to become global citizens. In addition to this, a more specific question is related to the extent to which social and cultural variables can affect the young learners’ second language acquisition. This exploratory analytical study uses mixed-methods research design to examine the application of bilingual education in Egyptian public schools. The study uses a cluster sample of schools in Egypt from different social and cultural backgrounds to assess the determining variables. The qualitative emphasis is on interviewing teachers and reviewing students’ achievement documents. The quantitative aspect is based on observations of in-class activities through tally sheets and checklists. Having access to schools and documents is authorized by governmental and institutional research bodies. Data sources will comprise achievement records, students’ portfolios, parents’ feedback and teachers’ viewpoints. Triangulation and SPSS will be used for analysis. Based on the gathered data, new curricula have been assigned for elementary grades and teachers have been required to teach the newly developed materials all of a sudden without any prior training. Due to shortage in the teaching force, many assigned teachers have not been proficient in the English language. Hence, teachers’ incompetency and unpreparedness to teach this grade specific curriculum constitute a great challenge in the implementation phase. Nevertheless, the young learners themselves as well as their parents seem to be enthusiastic about the idea itself. According to the findings of this research study, teaching English as a Second Language to children in public schools can be applicable and is culturally relevant to the Egyptian context. However, there might be some social and cultural differences and constraints when it comes to application in addition to various aspects regarding teacher preparation. Therefore, a new mechanism should be incorporated to overcome these challenges for better results. Moreover, a new paradigm shift in these teacher development programs is direly needed. Furthermore, ongoing support and follow up are crucial to help both teachers and students realize the desired outcomes.Keywords: bilingual education, communicative approach, early childhood education, language and culture, second language acquisition
Procedia PDF Downloads 118237 The Lacuna in Understanding of Forensic Science amongst Law Practitioners in India
Authors: Poulomi Bhadra, Manjushree Palit, Sanjeev P. Sahni
Abstract:
Forensic science uses all branches of science for criminal investigation and trial and has increasingly emerged as an important tool in the administration of justice. However, the growth and development of this field in India has not been as rapid or widespread as compared to the more developed Western countries. For successful administration of justice, it is important that all agencies involved in law enforcement adopt an inter-professional approach towards forensic science, which is presently lacking. In light of the alarmingly high average acquittal rate in India, this study aims to examine the lack of understanding and appreciation of the importance and scope of forensic evidence and expert opinions amongst law professionals such as lawyers and judges. Based on a study of trial court cases from Delhi and surrounding areas, the study underline the areas in forensics where the criminal justice system has noticeably erred. Using this information, the authors examine the extent of forensic understanding amongst legal professionals and attempt to conclusively identify the areas in which they need further appraisal. A cross-sectional study done using a structured questionnaire was conducted amongst law professionals across age, gender, type and years of experience in court, to determine their understanding of DNA, fingerprints and other interdisciplinary scientific materials used as forensic evidence. In our study, we understand the levels of understanding amongst lawyers with regards to DNA and fingerprint evidence, and how it affects trial outcomes. We also aim to understand the factors that prevent credible and advanced awareness amongst legal personnel, amongst others. The survey identified the areas in modern and advanced forensics, such as forensic entomology, anthropology, cybercrime etc., in which Indian legal professionals are yet to attain a functional understanding. It also brings to light, what is commonly termed as the ‘CSI-effect’ in the Western courtrooms, and provides scope to study the existence of this phenomenon and its effects on the Indian courts and their judgements. This study highlighted the prevalence of unchallenged expert testimony presented by the prosecution in criminal trials and impressed upon the judicial system the need for independent analysis and evaluation of the scientist’s data and/or testimony by the defense. Overall, this study aims to define a clearer and rigid understanding of why legal professionals should have basic understanding of the interdisciplinary nature of forensic sciences. Based on the aforementioned findings, the author suggests various measures by which judges and lawyers might obtain an extensive knowledge of the advances and promising potentialities of forensic science. This includes promoting a forensic curriculum in legal studies at Bachelor’s and Master’s level as well as in mid-career professional courses. Formation of forensic-legal consultancies, in consultation with the Department of Justice, will not only assist in training police, military and law personnel but will also encourage legal research in this field. These suggestions also aim to bridge the communication gap that presently exists between law practitioners, forensic scientists and the general community’s awareness of the criminal justice system.Keywords: forensic science, Indian legal professionals, interdisciplinary awareness, legal education
Procedia PDF Downloads 340236 Ionophore-Based Materials for Selective Optical Sensing of Iron(III)
Authors: Natalia Lukasik, Ewa Wagner-Wysiecka
Abstract:
Development of selective, fast-responsive, and economical sensors for diverse ions detection and determination is one of the most extensively studied areas due to its importance in the field of clinical, environmental and industrial analysis. Among chemical sensors, vast popularity has gained ionophore-based optical sensors, where the generated analytical signal is a consequence of the molecular recognition of ion by the ionophore. Change of color occurring during host-guest interactions allows for quantitative analysis and for 'naked-eye' detection without the need of using sophisticated equipment. An example of application of such sensors is colorimetric detection of iron(III) cations. Iron as one of the most significant trace elements plays roles in many biochemical processes. For these reasons, the development of reliable, fast, and selective methods of iron ions determination is highly demanded. Taking all mentioned above into account a chromogenic amide derivative of 3,4-dihydroxybenzoic acid was synthesized, and its ability to iron(III) recognition was tested. To the best of authors knowledge (according to chemical abstracts) the obtained ligand has not been described in the literature so far. The catechol moiety was introduced to the ligand structure in order to mimic the action of naturally occurring siderophores-iron(III)-selective receptors. The ligand–ion interactions were studied using spectroscopic methods: UV-Vis spectrophotometry and infrared spectroscopy. The spectrophotometric measurements revealed that the amide exhibits affinity to iron(III) in dimethyl sulfoxide and fully aqueous solution, what is manifested by the change of color from yellow to green. Incorporation of the tested amide into a polymeric matrix (cellulose triacetate) ensured effective recognition of iron(III) at pH 3 with the detection limit 1.58×10⁻⁵ M. For the obtained sensor material parameters like linear response range, response time, selectivity, and possibility of regeneration were determined. In order to evaluate the effect of the size of the sensing material on iron(III) detection nanospheres (in the form of nanoemulsion) containing the tested amide were also prepared. According to DLS (dynamic light scattering) measurements, the size of the nanospheres is 308.02 ± 0.67 nm. Work parameters of the nanospheres were determined and compared with cellulose triacetate-based material. Additionally, for fast, qualitative experiments the test strips were prepared by adsorption of the amide solution on a glass microfiber material. Visual limit of detection of iron(III) at pH 3 by the test strips was estimated at the level 10⁻⁴ M. In conclusion, reported here amide derived from 3,4- dihydroxybenzoic acid proved to be an effective candidate for optical sensing of iron(III) in fully aqueous solutions. N. L. kindly acknowledges financial support from National Science Centre Poland the grant no. 2017/01/X/ST4/01680. Authors thank for financial support from Gdansk University of Technology grant no. 032406.Keywords: ion-selective optode, iron(III) recognition, nanospheres, optical sensor
Procedia PDF Downloads 153235 Exploring Bio-Inspired Catecholamine Chemistry to Design Durable Anti-Fungal Wound Dressings
Authors: Chetna Dhand, Venkatesh Mayandi, Silvia Marrero Diaz, Roger W. Beuerman, Seeram Ramakrishna, Rajamani Lakshminarayanan
Abstract:
Sturdy Insect Cuticle Sclerotization, Incredible Substrate independent Mussel’s bioadhesion, Tanning of Leather are some of catechol(amine)s mediated natural processes. Chemical contemplation spots toward a mechanism instigated with the formation of the quinone moieties from the respective catechol(amine)s, via oxidation, followed by the nucleophilic addition of the amino acids/proteins/peptides to this quinone leads to the development of highly strong, cross-linked and water-resistant proteinacious structures. Inspired with this remarkable catechol(amine)s chemistry towards amino acids/proteins/peptides, we attempted to design highly stable and water-resistant antifungal wound dressing mats with exceptional durability using collagen (protein), dopamine (catecholamine) and antifungal drugs (Amphotericin B and Caspofungin) as the key materials. Electrospinning technique has been used to fabricate desired nanofibrous mat including Collagen (COLL), COLL/Dopamine (COLL/DP) and calcium incorporated COLL/DP (COLL-DP-Ca2+). The prepared protein-based scaffolds have been studied for their microscopic investigations (SEM, TEM, and AFM), structural analysis (FT-IR), mechanical properties, water wettability characteristics and aqueous stability. Biocompatibility of these scaffolds has been analyzed for dermal fibroblast cells using MTS assay, Cell TrackerTM Green CMFDA and confocal imaging. Being the winner sample, COLL-DP-Ca2+ scaffold has been selected for incorporating two antifungal drugs namely Caspofungin (Peptide based) and Amphotericin B (Non-Peptide based). Antifungal efficiency of the designed mats has been evaluated for eight diverse fungal strains employing different microbial assays including disc diffusion, cell-viability assay, time kill kinetics etc. To confirm the durability of these mats, in term of their antifungal activity, drug leaching studies has been performed and monitored using disc diffusion assay each day. Ex-vivo fungal infection model has also been developed and utilized to validate the antifungal efficacy of the designed wound dressings. Results clearly reveal dopamine mediated crosslinking within COLL-antifungal scaffolds that leads to the generation of highly stable, mechanical tough, biocompatible wound dressings having the zone of inhabitation of ≥ 2 cm for almost all the investigated fungal strains. Leaching studies and Ex-vivo model has confirmed the durability of these wound dressing for more than 3 weeks and certified their suitability for commercialization. A model has also been proposed to enlighten the chemical mechanism involved for the development of these antifungal wound dressings with exceptional robustness.Keywords: catecholamine chemistry, electrospinning technique, antifungals, wound dressings, collagen
Procedia PDF Downloads 375234 The Impact of Developing an Educational Unit in the Light of Twenty-First Century Skills in Developing Language Skills for Non-Arabic Speakers: A Proposed Program for Application to Students of Educational Series in Regular Schools
Authors: Erfan Abdeldaim Mohamed Ahmed Abdalla
Abstract:
The era of the knowledge explosion in which we live requires us to develop educational curricula quantitatively and qualitatively to adapt to the twenty-first-century skills of critical thinking, problem-solving, communication, cooperation, creativity, and innovation. The process of developing the curriculum is as significant as building it; in fact, the development of curricula may be more difficult than building them. And curriculum development includes analyzing needs, setting goals, designing the content and educational materials, creating language programs, developing teachers, applying for programmes in schools, monitoring and feedback, and then evaluating the language programme resulting from these processes. When we look back at the history of language teaching during the twentieth century, we find that developing the delivery method is the most crucial aspect of change in language teaching doctrines. The concept of delivery method in teaching is a systematic set of teaching practices based on a specific theory of language acquisition. This is a key consideration, as the process of development must include all the curriculum elements in its comprehensive sense: linguistically and non-linguistically. The various Arabic curricula provide the student with a set of units, each unit consisting of a set of linguistic elements. These elements are often not logically arranged, and more importantly, they neglect essential points and highlight other less important ones. Moreover, the educational curricula entail a great deal of monotony in the presentation of content, which makes it hard for the teacher to select adequate content; so that the teacher often navigates among diverse references to prepare a lesson and hardly finds the suitable one. Similarly, the student often gets bored when learning the Arabic language and fails to fulfill considerable progress in it. Therefore, the problem is not related to the lack of curricula, but the problem is the development of the curriculum with all its linguistic and non-linguistic elements in accordance with contemporary challenges and standards for teaching foreign languages. The Arabic library suffers from a lack of references for curriculum development. In this paper, the researcher investigates the elements of development, such as the teacher, content, methods, objectives, evaluation, and activities. Hence, a set of general guidelines in the field of educational development were reached. The paper highlights the need to identify weaknesses in educational curricula, decide the twenty-first-century skills that must be employed in Arabic education curricula, and the employment of foreign language teaching standards in current Arabic Curricula. The researcher assumes that the series of teaching Arabic to speakers of other languages in regular schools do not address the skills of the twenty-first century, which is what the researcher tries to apply in the proposed unit. The experimental method is the method of this study. It is based on two groups: experimental and control. The development of an educational unit will help build suitable educational series for students of the Arabic language in regular schools, in which twenty-first-century skills and standards for teaching foreign languages will be addressed and be more useful and attractive to students.Keywords: curriculum, development, Arabic language, non-native, skills
Procedia PDF Downloads 84233 Techno-Economic Analysis (TEA) of Circular Economy Approach in the Valorisation of Pig Meat Processing Wastes
Authors: Ribeiro A., Vilarinho C., Luisa A., Carvalho J
Abstract:
The pig meat industry generates large volumes of by- and co-products like blood, bones, skin, trimmings, organs, viscera, and skulls, among others, during slaughtering and meat processing and must be treated and disposed of ecologically. The yield of these by-products has been reported to account for about 10% to 15% of the value of the live animal in developed countries, although animal by-products account for about two-thirds of the animal after slaughter. It was selected for further valorization of the principal wastes produced throughout the value chain of pig meat production: Pig Manure, Pig Bones, Fats, Skins, Pig Hair, Wastewater, Wastewater sludges, and other animal subproducts type III. According to the potential valorization options, these wastes will be converted into Biomethane, Fertilizers (phosphorus and digestate), Hydroxyapatite, and protein hydrolysates (Keratin and Collagen). This work includes comprehensive technical and economic analyses (TEA) for each valorization route or applied technology. Metrics such as Net Present Value (NPV), Internal Rate of Return (IRR), and payback periods were used to evaluate economic feasibility. From this analysis, it can be concluded that, for Biogas Production, the scenarios using pig manure, wastewater sludges and mixed grass and leguminous wastes presented a remarkably high economic feasibility. Scenarios showed high economic feasibility with a positive payback period, NPV, and IRR. The optimal scenario combining pig manure with mixed grass and leguminous wastes had a payback period of 1.2 years and produced 427,6269 m³ of biomethane annually. Regarding the Chemical Extraction of Phosphorous and Nitrogen, results proved that the process is economically unviable due to negative cash flows despite high recovery rates. The TEA of Hydrolysis and Extraction of Keratin Hydrolysates indicate that a unit processing and valorizing 10 tons of pig hair per year for the production of keratin hydrolysate has an NPV of 907,940 €, an IRR of 13.07%, and a Payback period of 5.41 years. All of these indicators suggest a highly potential project to explore in the future. On the opposite, the results of Hydrolysis and Extraction of Collagen Hydrolysates showed a process economically unviable with negative cash flows in all scenarios due to the high-fat content in raw materials. In fact, the results from the valorization of 10 tons of pig skin had a negative cash flow of 453 743,88 €. TEA results of Extraction and purification of Hydroxyapatite from Pig Bones with Pyrolysis indicate that unit processing and valorizing 10 tons of pig bones per year for the production of hydroxyapatite has an NPV of 1 274 819,00 €, an IRR of 65.43%, and a Payback period of 1,5 years over a timeline of 10 years with a discount rate of 10%. These valorization routes, circular economy and bio-refinery approach offer significant contributions to sustainable bio-based operations within the agri-food industry. This approach transforms waste into valuable resources, enhancing both environmental and economic outcomes and contributing to a more sustainable and circular bioeconomy.Keywords: techno-economic analysis (TEA), pig meat processing wastes, circular economy, bio-refinery
Procedia PDF Downloads 14232 Investigations on the Application of Avalanche Simulations: A Survey Conducted among Avalanche Experts
Authors: Korbinian Schmidtner, Rudolf Sailer, Perry Bartelt, Wolfgang Fellin, Jan-Thomas Fischer, Matthias Granig
Abstract:
This study focuses on the evaluation of snow avalanche simulations, based on a survey that has been carried out among avalanche experts. In the last decades, the application of avalanche simulation tools has gained recognition within the realm of hazard management. Traditionally, avalanche runout models were used to predict extreme avalanche runout and prepare avalanche maps. This has changed rather dramatically with the application of numerical models. For safety regulations such as road safety simulation tools are now being coupled with real-time meteorological measurements to predict frequent avalanche hazard. That places new demands on model accuracy and requires the simulation of physical processes that previously could be ignored. These simulation tools are based on a deterministic description of the avalanche movement allowing to predict certain quantities (e.g. pressure, velocities, flow heights, runout lengths etc.) of the avalanche flow. Because of the highly variable regimes of the flowing snow, no uniform rheological law describing the motion of an avalanche is known. Therefore, analogies to fluid dynamical laws of other materials are stated. To transfer these constitutional laws to snow flows, certain assumptions and adjustments have to be imposed. Besides these limitations, there exist high uncertainties regarding the initial and boundary conditions. Further challenges arise when implementing the underlying flow model equations into an algorithm executable by a computer. This implementation is constrained by the choice of adequate numerical methods and their computational feasibility. Hence, the model development is compelled to introduce further simplifications and the related uncertainties. In the light of these issues many questions arise on avalanche simulations, on their assets and drawbacks, on potentials for improvements as well as their application in practice. To address these questions a survey among experts in the field of avalanche science (e.g. researchers, practitioners, engineers) from various countries has been conducted. In the questionnaire, special attention is drawn on the expert’s opinion regarding the influence of certain variables on the simulation result, their uncertainty and the reliability of the results. Furthermore, it was tested to which degree a simulation result influences the decision making for a hazard assessment. A discrepancy could be found between a large uncertainty of the simulation input parameters as compared to a relatively high reliability of the results. This contradiction can be explained taking into account how the experts employ the simulations. The credibility of the simulations is the result of a rather thoroughly simulation study, where different assumptions are tested, comparing the results of different flow models along with the use of supplemental data such as chronicles, field observation, silent witnesses i.a. which are regarded as essential for the hazard assessment and for sanctioning simulation results. As the importance of avalanche simulations grows within the hazard management along with their further development studies focusing on the modeling fashion could contribute to a better understanding how knowledge of the avalanche process can be gained by running simulations.Keywords: expert interview, hazard management, modeling, simulation, snow avalanche
Procedia PDF Downloads 324231 An Analysis of Younger Consumers’ Perceptions, Purchasing Decisions, and Pro-Environmental Behavior: A Market Experiment on Green Advertising
Authors: Mokhlisur Rahman
Abstract:
Consumers have developed a sense of responsibility in the past decade, reflecting on their purchasing behavior after viewing an advertisement. Consumers tend to buy ideal products that enable them to be judged by their close network in the opinion world. In such value considerations, any information that feeds consumers' desire for social status helps, which becomes capital for educating consumers on the importance of purchasing green products for manufacturing companies. Companies' effort in manufacturing green products to get high conversion demands a good deal of promotion with quality information and engaging representation. Additionally, converting people from traditional to eco-friendly products requires innovative alternatives to replace the existing product. Considering consumers' understanding of products and their purchasing behavior, it becomes essential for the brands to know the extent to which consumers' level of awareness of the ecosystem is to make them more responsive to green products. Another is brand image plays a vital role in consumers' perception regarding the credibility of the claim regarding the product. Brand image is a significant positive influence on the younger generation, and younger generations tend to engage more in pro-environmental behavior, including purchasing sustainable products. For example, Adidas senses the necessity of satisfying consumers with something that brings more profits and serves the planet. Several of their eco-friendly products are already in the market, and one is UltraBOOST DNA parley, made from 3D-printed recycled ocean waste. As a big brand image, Adidas has leveraged an interest among the younger generation by incorporating sustainability into its advertising. Therefore, influential brands' effort in the sustainable revolution through engaging advertisement makes it more prominent by educating consumers about the reason behind launching the product. This study investigates younger consumers' attitudes toward sustainability, brand recognition, exposure to green advertising, willingness to receive more green advertising, purchasing green products, and motivation. The study conducts a market experiment by creating two video advertisements: a sustainable product video advertisement and a non-sustainable product video advertisement. Both the videos have similar content design and the same length of 2 minutes, but the messages are different based on the identical product type college bags. The first video advertisement promotes eco-friendly college bags made from biodegradable raw materials, and the second promotes non-sustainable college bags made from plastics. After viewing the videos, consumers make purchasing decisions and complete an online survey to collect their attitudes toward sustainable products. The study finds the importance of a sense of responsibility to the consumers for climate change issues. Also, it empowers people to take a step, even small, and increases environmental awareness. This study provides companies with the knowledge to participate in sustainable product launches by collecting consumers' perceptions and attitudes toward green products. Also, it shows how important it is to build a brand's image for the younger generation.Keywords: brand-image, environment, green-advertising, sustainability, younger-consumer
Procedia PDF Downloads 65230 Hydro-Mechanical Characterization of PolyChlorinated Biphenyls Polluted Sediments in Interaction with Geomaterials for Landfilling
Authors: Hadi Chahal, Irini Djeran-Maigre
Abstract:
This paper focuses on the hydro-mechanical behavior of polychlorinated biphenyl (PCB) polluted sediments when stored in landfills and the interaction between PCBs and geosynthetic clay liners (GCL) with respect to hydraulic performance of the liner and the overall performance and stability of landfills. A European decree, adopted in the French regulation forbids the reintroducing of contaminated dredged sediments containing more than 0,64mg/kg Σ 7 PCBs to rivers. At these concentrations, sediments are considered hazardous and a remediation process must be adopted to prevent the release of PCBs into the environment. Dredging and landfilling polluted sediments is considered an eco-environmental remediation solution. French regulations authorize the storage of PCBs contaminated components with less than 50mg/kg in municipal solid waste facilities. Contaminant migration via leachate may be possible. The interactions between PCBs contaminated sediments and the GCL barrier present in the bottom of a landfill for security confinement are not known. Moreover, the hydro-mechanical behavior of stored sediments may affect the performance and the stability of the landfill. In this article, hydro-mechanical characterization of the polluted sediment is presented. This characterization led to predict the behavior of the sediment at the storage site. Chemical testing showed that the concentration of PCBs in sediment samples is between 1.7 and 2,0 mg/kg. Physical characterization showed that the sediment is organic silty sand soil (%Silt=65, %Sand=27, %OM=8) characterized by a high plasticity index (Ip=37%). Permeability tests using permeameter and filter press showed that sediment permeability is in the order of 10-9 m/s. Compressibility tests showed that the sediment is a very compressible soil with Cc=0,53 and Cα =0,0086. In addition, effects of PCB on the swelling behavior of bentonite were studied and the hydraulic performance of the GCL in interaction with PCBs was examined. Swelling tests showed that PCBs don’t affect the swelling behavior of bentonite. Permeability tests were conducted on a 1.0 m pilot scale experiment, simulating a storage facility. PCBs contaminated sediments were directly placed over a passive barrier containing GCL to study the influence of the direct contact of polluted sediment leachate with the GCL. An automatic water system has been designed to simulate precipitation. Effluent quantity and quality have been examined. The sediment settlements and the water level in the sediment have been monitored. The results showed that desiccation affected the behavior of the sediment in the pilot test and that laboratory tests alone are not sufficient to predict the behavior of the sediment in landfill facility. Furthermore, the concentration of PCB in the sediment leachate was very low ( < 0,013 µg/l) and that the permeability of the GCL was affected by other components present in the sediment leachate. Desiccation and cracks were the main parameters that affected the hydro-mechanical behavior of the sediment in the pilot test. In order to reduce these infects, the polluted sediment should be stored at a water content inferior to its shrinkage limit (w=39%). We also propose to conduct other pilot tests with the maximum concentration of PCBs allowed in municipal solid waste facility of 50 mg/kg.Keywords: geosynthetic clay liners, landfill, polychlorinated biphenyl, polluted dredged materials
Procedia PDF Downloads 122229 Wood Dust and Nanoparticle Exposure among Workers during a New Building Construction
Authors: Atin Adhikari, Aniruddha Mitra, Abbas Rashidi, Imaobong Ekpo, Jefferson Doehling, Alexis Pawlak, Shane Lewis, Jacob Schwartz
Abstract:
Building constructions in the US involve numerous wooden structures. Woods are routinely used in walls, framing floors, framing stairs, and making of landings in building constructions. Cross-laminated timbers are currently being used as construction materials for tall buildings. Numerous workers are involved in these timber based constructions, and wood dust is one of the most common occupational exposures for them. Wood dust is a complex substance composed of cellulose, polyoses and other substances. According to US OSHA, exposure to wood dust is associated with a variety of adverse health effects among workers, including dermatitis, allergic respiratory effects, mucosal and nonallergic respiratory effects, and cancers. The amount and size of particles released as wood dust differ according to the operations performed on woods. For example, shattering of wood during sanding operations produces finer particles than does chipping in sawing and milling industries. To our knowledge, how shattering, cutting and sanding of woods and wood slabs during new building construction release fine particles and nanoparticles are largely unknown. General belief is that the dust generated during timber cutting and sanding tasks are mostly large particles. Consequently, little attention has been given to the generated submicron ultrafine and nanoparticles and their exposure levels. These data are, however, critically important because recent laboratory studies have demonstrated cytotoxicity of nanoparticles on lung epithelial cells. The above-described knowledge gaps were addressed in this study by a novel newly developed nanoparticle monitor and conventional particle counters. This study was conducted in a large new building construction site in southern Georgia primarily during the framing of wooden side walls, inner partition walls, and landings. Exposure levels of nanoparticles (n = 10) were measured by a newly developed nanoparticle counter (TSI NanoScan SMPS Model 3910) at four different distances (5, 10, 15, and 30 m) from the work location. Other airborne particles (number of particles/m3) including PM2.5 and PM10 were monitored using a 6-channel (0.3, 0.5, 1.0, 2.5, 5.0 and 10 µm) particle counter at 15 m, 30 m, and 75 m distances at both upwind and downwind directions. Mass concentration of PM2.5 and PM10 (µg/m³) were measured by using a DustTrak Aerosol Monitor. Temperature and relative humidity levels were recorded. Wind velocity was measured by a hot wire anemometer. Concentration ranges of nanoparticles of 13 particle sizes were: 11.5 nm: 221 – 816/cm³; 15.4 nm: 696 – 1735/cm³; 20.5 nm: 879 – 1957/cm³; 27.4 nm: 1164 – 2903/cm³; 36.5 nm: 1138 – 2640/cm³; 48.7 nm: 938 – 1650/cm³; 64.9 nm: 759 – 1284/cm³; 86.6 nm: 705 – 1019/cm³; 115.5 nm: 494 – 1031/cm³; 154 nm: 417 – 806/cm³; 205.4 nm: 240 – 471/cm³; 273.8 nm: 45 – 92/cm³; and 365.2 nm:228 Simulation and Thermal Evaluation of Containers Using PCM in Different Weather Conditions of Chile: Energy Savings in Lightweight Constructions
Authors: Paula Marín, Mohammad Saffari, Alvaro de Gracia, Luisa F. Cabeza, Svetlana Ushak
Abstract:
Climate control represents an important issue when referring to energy consumption of buildings and associated expenses, both in installation or operation periods. The climate control of a building relies on several factors. Among them, localization, orientation, architectural elements, sources of energy used, are considered. In order to study the thermal behaviour of a building set up, the present study proposes the use of energy simulation program Energy Plus. In recent years, energy simulation programs have become important tools for evaluation of thermal/energy performance of buildings and facilities. Besides, the need to find new forms of passive conditioning in buildings for energy saving is a critical component. The use of phase change materials (PCMs) for heat storage applications has grown in importance due to its high efficiency. Therefore, the climatic conditions of Northern Chile: high solar radiation and extreme temperature fluctuations ranging from -10°C to 30°C (Calama city), low index of cloudy days during the year are appropriate to take advantage of solar energy and use passive systems in buildings. Also, the extensive mining activities in northern Chile encourage the use of large numbers of containers to harbour workers during shifts. These containers are constructed with lightweight construction systems, requiring heating during night and cooling during day, increasing the HVAC electricity consumption. The use of PCM can improve thermal comfort and reduce the energy consumption. The objective of this study was to evaluate the thermal and energy performance of containers of 2.5×2.5×2.5 m3, located in four cities of Chile: Antofagasta, Calama, Santiago, and Concepción. Lightweight envelopes, typically used in these building prototypes, were evaluated considering a container without PCM inclusion as the reference building and another container with PCM-enhanced envelopes as a test case, both of which have a door and a window in the same wall, orientated in two directions: North and South. To see the thermal response of these containers in different seasons, the simulations were performed considering a period of one year. The results show that higher energy savings for the four cities studied are obtained when the distribution of door and window in the container is in the north direction because of higher solar radiation incidence. The comparison of HVAC consumption and energy savings in % for north direction of door and window are summarised. Simulation results show that in the city of Antofagasta 47% of heating energy could be saved and in the cities of Calama and Concepción the biggest savings in terms of cooling could be achieved since PCM reduces almost all the cooling demand. Currently, based on simulation results, four containers have been constructed and sized with the same structural characteristics carried out in simulations, that are, containers with/without PCM, with door and window in one wall. Two of these containers will be placed in Antofagasta and two containers in a copper mine near to Calama, all of them will be monitored for a period of one year. The simulation results will be validated with experimental measurements and will be reported in the future.Keywords: energy saving, lightweight construction, PCM, simulation
Procedia PDF Downloads 281227 Pushover Analysis of a Typical Bridge Built in Central Zone of Mexico
Authors: Arturo Galvan, Jatziri Y. Moreno-Martinez, Daniel Arroyo-Montoya, Jose M. Gutierrez-Villalobos
Abstract:
Bridges are one of the most seismically vulnerable structures on highway transportation systems. The general process for assessing the seismic vulnerability of a bridge involves the evaluation of its overall capacity and demand. One of the most common procedures to obtain this capacity is by means of pushover analysis of the structure. Typically, the bridge capacity is assessed using non-linear static methods or non-linear dynamic analyses. The non-linear dynamic approaches use step by step numerical solutions for assessing the capacity with the consuming computer time inconvenience. In this study, a nonlinear static analysis (‘pushover analysis’) was performed to predict the collapse mechanism of a typical bridge built in the central zone of Mexico (Celaya, Guanajuato). The bridge superstructure consists of three simple supported spans with a total length of 76 m: 22 m of the length of extreme spans and 32 m of length of the central span. The deck width is of 14 m and the concrete slab depth is of 18 cm. The bridge is built by means of frames of five piers with hollow box-shaped sections. The dimensions of these piers are 7.05 m height and 1.20 m diameter. The numerical model was created using a commercial software considering linear and non-linear elements. In all cases, the piers were represented by frame type elements with geometrical properties obtained from the structural project and construction drawings of the bridge. The deck was modeled with a mesh of rectangular thin shell (plate bending and stretching) finite elements. The moment-curvature analysis was performed for the sections of the piers of the bridge considering in each pier the effect of confined concrete and its reinforcing steel. In this way, plastic hinges were defined on the base of the piers to carry out the pushover analysis. In addition, time history analyses were performed using 19 accelerograms of real earthquakes that have been registered in Guanajuato. In this way, the displacements produced by the bridge were determined. Finally, pushover analysis was applied through the control of displacements in the piers to obtain the overall capacity of the bridge before the failure occurs. It was concluded that the lateral deformation of the piers due to a critical earthquake occurred in this zone is almost imperceptible due to the geometry and reinforcement demanded by the current design standards and compared to its displacement capacity, they were excessive. According to the analysis, it was found that the frames built with five piers increase the rigidity in the transverse direction of the bridge. Hence it is proposed to reduce these frames of five piers to three piers, maintaining the same geometrical characteristics and the same reinforcement in each pier. Also, the mechanical properties of materials (concrete and reinforcing steel) were maintained. Once a pushover analysis was performed considering this configuration, it was concluded that the bridge would continue having a “correct” seismic behavior, at least for the 19 accelerograms considered in this study. In this way, costs in material, construction, time and labor would be reduced in this study case.Keywords: collapse mechanism, moment-curvature analysis, overall capacity, push-over analysis
Procedia PDF Downloads 150226 Information and Communication Technology Skills of Finnish Students in Particular by Gender
Authors: Antero J. S. Kivinen, Suvi-Sadetta Kaarakainen
Abstract:
Digitalization touches every aspect of contemporary society, changing the way we live our everyday life. Contemporary society is sometimes described as knowledge society including unprecedented amount of information people face daily. The tools to manage this information flow are ICT-skills which are both technical skills and reflective skills needed to manage incoming information. Therefore schools are under constant pressure of revision. In the latest Programme for International Student Assessment (PISA) girls have been outperforming boys in all Organization for Economic Co-operation and Development (OECD) member countries and the gender gap between girls and boys is widest in Finland. This paper presents results of the Comprehensive Schools in the Digital Age project of RUSE, University of Turku. The project is in connection with Finnish Government Analysis, Assessment and Research Activities. First of all, this paper examines gender differences in ICT-skills of Finnish upper comprehensive school students. Secondly, it explores in which way differences are changing when students proceed to upper secondary and vocational education. ICT skills are measured using a performance-based ICT-skill test. Data is collected in 3 phases, January-March 2017 (upper comprehensive schools, n=5455), September-December 2017 (upper secondary and vocational schools, n~3500) and January-March 2018 (Upper comprehensive schools). The age of upper comprehensive school student’s is 15-16 and upper secondary and vocational school 16-18. The test is divided into 6 categories: basic operations, productivity software, social networking and communication, content creation and publishing, applications and requirements for the ICT study programs. Students have filled a survey about their ICT-usage and study materials they use in school and home. Cronbach's alpha was used to estimate the reliability of the ICT skill test. Statistical differences between genders were examined using two-tailed independent samples t-test. Results of first data from upper comprehensive schools show that there is no statistically significant difference in ICT-skill tests total scores between genders (boys 10.24 and girls 10.64, maximum being 36). Although, there were no gender difference in total test scores, there are differences in above mentioned six categories. Girls get better scores on school related and social networking test subjects while boys perform better on more technical oriented subjects. Test scores on basic operations are quite low for both groups. Perhaps these can partly be explained by the fact that the test was made on computers and majority of students ICT-usage consist of smartphones and tablets. Against this background it is important to analyze further the reasons for these differences. In a context of ongoing digitalization of everyday life and especially working life, the significant purpose of this analyses is to find answers how to guarantee the adequate ICT skills for all students.Keywords: basic education, digitalization, gender differences, ICT-skills, upper comprehensive education, upper secondary education, vocational education
Procedia PDF Downloads 133225 Epidemiology of Healthcare-Associated Infections among Hematology/Oncology Patients: Results of a Prospective Incidence Survey in a Tunisian University Hospital
Authors: Ezzi Olfa, Bouafia Nabiha, Ammar Asma, Ben Cheikh Asma, Mahjoub Mohamed, Bannour Wadiaa, Achour Bechir, Khelif Abderrahim, Njah Mansour
Abstract:
Background: In hematology/oncology, health care improvement has allowed increasingly aggressive management in diagnostic and therapeutic procedures. Nevertheless, these intensified procedures have been associated with higher risk of healthcare associated infections (HAIs). We undertook this study to estimate the burden of HAIs in the cancer patients in an onco -hematology unit in a Tunisian university hospital. Materials/Methods: A prospective, observational study, based on active surveillance for a period of 06 months from Mars through September 2016, was undertaken in the department of onco-hematology in a university hospital in Tunisia. Patients, who stayed in the unit for ≥ 48 h, were followed until hospital discharge. The Centers for Disease Control and Prevention criteria (CDC) for site-specific infections were used as standard definitions for HAIs. Results: One hundred fifty patients were included in the study. The gender distribution was 33.3% for girls and 66.6% boys. They have a mean age of 23.12 years (SD = 18.36 years). The main patient’s diagnosis is: Acute Lymphoblastic Leukemia (ALL): 48.7 %( n=73). The mean length of stay was 21 days +/- 18 days. Almost 8% of patients had an implantable port (n= 12), 34.9 % (n=52) had a lumber puncture and 42.7 % (n= 64) had a medullary puncture. Chemotherapy was instituted in 88% of patients (n=132). Eighty (53.3%) patients had neutropenia at admission. The incidence rate of HAIs was 32.66 % per patient; the incidence density was 15.73 per 1000 patient-days in the unit. Mortality rate was 9.3% (n= 14), and 50% of cases of death were caused by HAIs. The most frequent episodes of infection were: infection of skin and superficial mucosa (5.3%), pulmonary aspergillosis (4.6%), Healthcare associated pneumonia (HAP) (4%), Central venous catheter associated infection (4%), digestive infection (5%), and primary bloodstream infection (2.6%). Finally, fever of unknown origin (FUO) incidence rate was 14%. In case of skin and superficial infection (n= 8), 4 episodes were documented, and organisms implicated were Escherichia.coli, Geotricum capitatum and Proteus mirabilis. For pulmonary aspergillosis, 6 cases were diagnosed clinically and radiologically, and one was proved by positive aspergillus antigen in bronchial aspiration. Only one patient died due this infection. In HAP (6 cases), four episodes were diagnosed clinically and radiologically. No bacterial etiology was established in these cases. Two patients died due to HAP. For primary bloodstream infection (4 cases), implicated germs were Enterobacter cloacae, Geotricum capitatum, klebsiella pneumoniae, and Streptococcus pneumoniae. Conclusion: This type of prospective study is an indispensable tool for internal quality control. It is necessary to evaluate preventive measures and design control guides and strategies aimed to reduce the HAI’s rate and the morbidity and mortality associated with infection in a hematology/oncology unit.Keywords: cohort prospective studies, healthcare associated infections, hematology oncology department, incidence
Procedia PDF Downloads 387224 Supercritical Water Gasification of Organic Wastes for Hydrogen Production and Waste Valorization
Authors: Laura Alvarez-Alonso, Francisco Garcia-Carro, Jorge Loredo
Abstract:
Population growth and industrial development imply an increase in the energy demands and the problems caused by emissions of greenhouse effect gases, which has inspired the search for clean sources of energy. Hydrogen (H₂) is expected to play a key role in the world’s energy future by replacing fossil fuels. The properties of H₂ make it a green fuel that does not generate pollutants and supplies sufficient energy for power generation, transportation, and other applications. Supercritical Water Gasification (SCWG) represents an attractive alternative for the recovery of energy from wastes. SCWG allows conversion of a wide range of raw materials into a fuel gas with a high content of hydrogen and light hydrocarbons through their treatment at conditions higher than those that define the critical point of water (temperature of 374°C and pressure of 221 bar). Methane used as a transport fuel is another important gasification product. The number of different uses of gas and energy forms that can be produced depending on the kind of material gasified and type of technology used to process it, shows the flexibility of SCWG. This feature allows it to be integrated with several industrial processes, as well as power generation systems or waste-to-energy production systems. The final aim of this work is to study which conditions and equipment are the most efficient and advantageous to explore the possibilities to obtain streams rich in H₂ from oily wastes, which represent a major problem both for the environment and human health throughout the world. In this paper, the relative complexity of technology needed for feasible gasification process cycles is discussed with particular reference to the different feedstocks that can be used as raw material, different reactors, and energy recovery systems. For this purpose, a review of the current status of SCWG technologies has been carried out, by means of different classifications based on key features as the feed treated or the type of reactor and other apparatus. This analysis allows to improve the technology efficiency through the study of model calculations and its comparison with experimental data, the establishment of kinetics for chemical reactions, the analysis of how the main reaction parameters affect the yield and composition of products, or the determination of the most common problems and risks that can occur. The results of this work show that SCWG is a promising method for the production of both hydrogen and methane. The most significant choices of design are the reactor type and process cycle, which can be conveniently adopted according to waste characteristics. Regarding the future of the technology, the design of SCWG plants is still to be optimized to include energy recovery systems in order to reduce costs of equipment and operation derived from the high temperature and pressure conditions that are necessary to convert water to the SC state, as well as to find solutions to remove corrosion and clogging of components of the reactor.Keywords: hydrogen production, organic wastes, supercritical water gasification, system integration, waste-to-energy
Procedia PDF Downloads 146223 Distribution of Micro Silica Powder at a Ready Mixed Concrete
Authors: Kyong-Ku Yun, Dae-Ae Kim, Kyeo-Re Lee, Kyong Namkung, Seung-Yeon Han
Abstract:
Micro silica is collected as a by-product of the silicon and ferrosilicon alloy production in electric arc furnace using highly pure quartz, wood chips, coke and the like. It consists of about 85% of silicon which has spherical particles with an average particle size of 150 μm. The bulk density of micro silica varies from 150 to 700kg/m^3 and the fineness ranges from 150,000 to 300,000cm^2/g. An amorphous structure with a high silicon oxide content of micro silica induces an active reaction with calcium hydroxide (Ca(OH)₂) generated by the cement hydrate of a large surface area (about 20 m^² / g), and they are also known to form calcium, silicate, hydrate conjugate (C-S-H). Micro silica tends to act as a filler because of the fine particles and the spherical shape. These particles do not get covered by water and they fit well in the space between the relatively rough cement grains which does not freely fluidize concrete. On the contrary, water demand increases since micro silica particles have a tendency to absorb water because of the large surface area. The overall effect of micro silica depends on the amount of micro silica added with other parameters in the water-(cement + micro silica) ratio, and the availability of superplasticizer. In this research, it was studied on cellular sprayed concrete. This method involves a direct re-production of ready mixed concrete into a high performance at a job site. It could reduce the cost of construction by an adding a cellular and a micro silica into a ready mixed concrete truck in a field. Also, micro silica which is difficult with mixing due to high fineness in the field can be added and dispersed in concrete by increasing the fluidity of ready mixed concrete through the surface activity of cellular. Increased air content is converged to a certain level of air content by spraying and it also produces high-performance concrete by remixing of powders in the process of spraying. As it does not use a field mixing equipment the cost of construction decrease and it can be constructed after installing special spray machine in a commercial pump car. Therefore, use of special equipment is minimized, providing economic feasibility through the utilization of existing equipment. This study was carried out to evaluate a highly reliable method of confirming dispersion through a high performance cellular sprayed concrete. A mixture of 25mm coarse aggregate and river sand was applied to the concrete. In addition, by applying silica fume and foam, silica fume dispersion is confirmed in accordance with foam mixing, and the mean and standard deviation is obtained. Then variation coefficient is calculated to finally evaluate the dispersion. Comparison and analysis of before and after spraying were conducted on the experiment variables of 21L, 35L foam for each 7%, 14% silica fume respectively. Taking foam and silica fume as variables, the experiment proceed. Casting a specimen for each variable, a five-day sample is taken from each specimen for EDS test. In this study, it was examined by an experiment materials, plan and mix design, test methods, and equipment, for the evaluation of dispersion in accordance with micro silica and foam.Keywords: micro silica, distribution, ready mixed concrete, foam
Procedia PDF Downloads 218222 Sensor Network Structural Integration for Shape Reconstruction of Morphing Trailing Edge
Authors: M. Ciminello, I. Dimino, S. Ameduri, A. Concilio
Abstract:
Improving aircraft's efficiency is one of the key elements of Aeronautics. Modern aircraft possess many advanced functions, such as good transportation capability, high Mach number, high flight altitude, and increasing rate of climb. However, no aircraft has a possibility to reach all of this optimized performance in a single airframe configuration. The aircraft aerodynamic efficiency varies considerably depending on the specific mission and on environmental conditions within which the aircraft must operate. Structures that morph their shape in response to their surroundings may at first seem like the stuff of science fiction, but take a look at nature and lots of examples of plants and animals that adapt to their environment would arise. In order to ensure both the controllable and the static robustness of such complex structural systems, a monitoring network is aimed at verifying the effectiveness of the given control commands together with the elastic response. In order to achieve this kind of information, the use of FBG sensors network is, in this project, proposed. The sensor network is able to measure morphing structures shape which may show large, global displacements due to non-standard architectures and materials adopted. Chord -wise variations may allow setting and chasing the best layout as a function of the particular and transforming reference state, always targeting best aerodynamic performance. The reason why an optical sensor solution has been selected is that while keeping a few of the contraindication of the classical systems (like cabling, continuous deployment, and so on), fibre optic sensors may lead to a dramatic reduction of the wires mass and weight thanks to an extreme multiplexing capability. Furthermore, the use of the ‘light’ as ‘information carrier’, permits dealing with nimbler, non-shielded wires, and avoids any kind of interference with the on-board instrumentation. The FBG-based transducers, herein presented, aim at monitoring the actual shape of adaptive trailing edge. Compared to conventional systems, these transducers allow more fail-safe measurements, by taking advantage of a supporting structure, hosting FBG, whose properties may be tailored depending on the architectural requirements and structural constraints, acting as strain modulator. The direct strain may, in fact, be difficult because of the large deformations occurring in morphing elements. A modulation transducer is then necessary to keep the measured strain inside the allowed range. In this application, chord-wise transducer device is a cantilevered beam sliding trough the spars and copying the camber line of the ATE ribs. FBG sensors array position are dimensioned and integrated along the path. A theoretical model describing the system behavior is implemented. To validate the design, experiments are then carried out with the purpose of estimating the functions between rib rotation and measured strain.Keywords: fiber optic sensor, morphing structures, strain sensor, shape reconstruction
Procedia PDF Downloads 328221 Bridging the Gap between Teaching and Learning: A 3-S (Strength, Stamina, Speed) Model for Medical Education
Authors: Mangala. Sadasivan, Mary Hughes, Bryan Kelly
Abstract:
Medical Education must focus on bridging the gap between teaching and learning when training pre-clinical year students in skills needed to keep up with medical knowledge and to meet the demands of health care in the future. The authors were interested in showing that a 3-S Model (building strength, developing stamina, and increasing speed) using a bridged curriculum design helps connect teaching and learning and improves students’ retention of basic science and clinical knowledge. The authors designed three learning modules using the 3-S Model within a systems course in a pre-clerkship medical curriculum. Each module focused on a bridge (concept map) designed by the instructor for specific content delivered to students in the course. This with-in-subjects design study included 304 registered MSU osteopathic medical students (3 campuses) ranked by quintile based on previous coursework. The instructors used the bridge to create self-directed learning exercises (building strength) to help students master basic science content. Students were video coached on how to complete assignments, and given pre-tests and post-tests designed to give them control to assess and identify gaps in learning and strengthen connections. The instructor who designed the modules also used video lectures to help students master clinical concepts and link them (building stamina) to previously learned material connected to the bridge. Boardstyle practice questions relevant to the modules were used to help students improve access (increasing speed) to stored content. Unit Examinations covering the content within modules and materials covered by other instructors teaching within the units served as outcome measures in this study. This data was then compared to each student’s performance on a final comprehensive exam and their COMLEX medical board examinations taken some time after the course. The authors used mean comparisons to evaluate students’ performances on module items (using 3-S Model) to non-module items on unit exams, final course exam and COMLEX medical board examination. The data shows that on average, students performed significantly better on module items compared to non-module items on exams 1 and 2. The module 3 exam was canceled due to a university shut down. The difference in mean scores (module verses non-module) items disappeared on the final comprehensive exam which was rescheduled once the university resumed session. Based on Quintile designation, the mean scores were higher for module items than non-module items and the difference in scores between items for Quintiles 1 and 2 were significantly better on exam 1 and the gap widened for all Quintile groups on exam 2 and disappeared in exam 3. Based on COMLEX performance, all students on average as a group, whether they Passed or Failed, performed better on Module items than non-module items in all three exams. The gap between scores of module items for students who passed COMLEX to those who failed was greater on Exam 1 (14.3) than on Exam 2 (7.5) and Exam 3 (10.2). Data shows the 3-S Model using a bridge effectively connects teaching and learningKeywords: bridging gap, medical education, teaching and learning, model of learning
Procedia PDF Downloads 59220 Sonication as a Versatile Tool for Photocatalysts’ Synthesis and Intensification of Flow Photocatalytic Processes Within the Lignocellulose Valorization Concept
Authors: J. C. Colmenares, M. Paszkiewicz-Gawron, D. Lomot, S. R. Pradhan, A. Qayyum
Abstract:
This work is a report of recent selected experiments of photocatalysis intensification using flow microphotoreactors (fabricated by an ultrasound-based technique) for photocatalytic selective oxidation of benzyl alcohol (BnOH) to benzaldehyde (PhCHO) (in the frame of the concept of lignin valorization), and the proof of concept of intensifying a flow selective photocatalytic oxidation process by acoustic cavitation. The synthesized photocatalysts were characterized by using different techniques such as UV-Vis diffuse reflectance spectroscopy, X-ray diffraction, nitrogen sorption, thermal gravimetric analysis, and transmission electron microscopy. More specifically, the work will be on: a Design and development of metal-containing TiO₂ coated microflow reactor for photocatalytic partial oxidation of benzyl alcohol: The current work introduces an efficient ultrasound-based metal (Fe, Cu, Co)-containing TiO₂ deposition on the inner walls of a perfluoroalkoxy alkanes (PFA) microtube under mild conditions. The experiments were carried out using commercial TiO₂ and sol-gel synthesized TiO₂. The rough surface formed during sonication is the site for the deposition of these nanoparticles in the inner walls of the microtube. The photocatalytic activities of these semiconductor coated fluoropolymer based microreactors were evaluated for the selective oxidation of BnOH to PhCHO in the liquid flow phase. The analysis of the results showed that various features/parameters are crucial, and by tuning them, it is feasible to improve the conversion of benzyl alcohol and benzaldehyde selectivity. Among all the metal-containing TiO₂ samples, the 0.5 at% Fe/TiO₂ (both, iron and titanium, as cheap, safe, and abundant metals) photocatalyst exhibited the highest BnOH conversion under visible light (515 nm) in a microflow system. This could be explained by the higher crystallite size, high porosity, and flake-like morphology. b. Designing/fabricating photocatalysts by a sonochemical approach and testing them in the appropriate flow sonophotoreactor towards sustainable selective oxidation of key organic model compounds of lignin: Ultrasonication (US)-assitedprecipitaion and US-assitedhydrosolvothermal methods were used for the synthesis of metal-oxide-based and metal-free-carbon-based photocatalysts, respectively. Additionally, we report selected experiments of intensification of a flow photocatalytic selective oxidation through the use of ultrasonic waves. The effort of our research is focused on the utilization of flow sonophotocatalysis for the selective transformation of lignin-based model molecules by nanostructured metal oxides (e.g., TiO₂), and metal-free carbocatalysts. A plethora of parameters that affects the acoustic cavitation phenomena, and as a result the potential of sonication were investigated (e.g. ultrasound frequency and power). Various important photocatalytic parameters such as the wavelength and intensity of the irradiated light, photocatalyst loading, type of solvent, mixture of solvents, and solution pH were also optimized.Keywords: heterogeneous photo-catalysis, metal-free carbonaceous materials, selective redox flow sonophotocatalysis, titanium dioxide
Procedia PDF Downloads 101219 Evaluation of Sustained Improvement in Trauma Education Approaches for the College of Emergency Nursing Australasia Trauma Nursing Program
Authors: Pauline Calleja, Brooke Alexander
Abstract:
In 2010 the College of Emergency Nursing Australasia (CENA) undertook sole administration of the Trauma Nursing Program (TNP) across Australia. The original TNP was developed from recommendations by the Review of Trauma and Emergency Services-Victoria. While participant and faculty feedback about the program was positive, issues were identified that were common for industry training programs in Australia. These issues included didactic approaches, with many lectures and little interaction/activity for participants. Participants were not necessarily encouraged to undertake deep learning due to the teaching and learning principles underpinning the course, and thus participants described having to learn by rote, and only gain a surface understanding of principles that were not always applied to their working context. In Australia, a trauma or emergency nurse may work in variable contexts that impact on practice, especially where resources influence scope and capacity of hospitals to provide trauma care. In 2011, a program review was undertaken resulting in major changes to the curriculum, teaching, learning and assessment approaches. The aim was to improve learning including a greater emphasis on pre-program preparation for participants, the learning environment and clinically applicable contextualized outcomes participants experienced. Previously if participants wished to undertake assessment, they were given a take home examination. The assessment had poor uptake and return, and provided no rigor since assessment was not invigilated. A new assessment structure was enacted with an invigilated examination during course hours. These changes were implemented in early 2012 with great improvement in both faculty and participant satisfaction. This presentation reports on a comparison of participant evaluations collected from courses post implementation in 2012 and in 2015 to evaluate if positive changes were sustained. Methods: Descriptive statistics were applied in analyzing evaluations. Since all questions had more than 20% of cells with a count of <5, Fisher’s Exact Test was used to identify significance (p = <0.05) between groups. Results: A total of fourteen group evaluations were included in this analysis, seven CENA TNP groups from 2012 and seven from 2015 (randomly chosen). A total of 173 participant evaluations were collated (n = 81 from 2012 and 92 from 2015). All course evaluations were anonymous, and nine of the original 14 questions were applicable for this evaluation. All questions were rated by participants on a five-point Likert scale. While all items showed improvement from 2012 to 2015, significant improvement was noted in two items. These were in regard to the content being delivered in a way that met participant learning needs and satisfaction with the length and pace of the program. Evaluation of written comments supports these results. Discussion: The aim of redeveloping the CENA TNP was to improve learning and satisfaction for participants. These results demonstrate that initial improvements in 2012 were able to be maintained and in two essential areas significantly improved. Changes that increased participant engagement, support and contextualization of course materials were essential for CENA TNP evolution.Keywords: emergency nursing education, industry training programs, teaching and learning, trauma education
Procedia PDF Downloads 266218 Hydrogen Purity: Developing Low-Level Sulphur Speciation Measurement Capability
Authors: Sam Bartlett, Thomas Bacquart, Arul Murugan, Abigail Morris
Abstract:
Fuel cell electric vehicles provide the potential to decarbonise road transport, create new economic opportunities, diversify national energy supply, and significantly reduce the environmental impacts of road transport. A potential issue, however, is that the catalyst used at the fuel cell cathode is susceptible to degradation by impurities, especially sulphur-containing compounds. A recent European Directive (2014/94/EU) stipulates that, from November 2017, all hydrogen provided to fuel cell vehicles in Europe must comply with the hydrogen purity specifications listed in ISO 14687-2; this includes reactive and toxic chemicals such as ammonia and total sulphur-containing compounds. This requirement poses great analytical challenges due to the instability of some of these compounds in calibration gas standards at relatively low amount fractions and the difficulty associated with undertaking measurements of groups of compounds rather than individual compounds. Without the available reference materials and analytical infrastructure, hydrogen refuelling stations will not be able to demonstrate compliance to the ISO 14687 specifications. The hydrogen purity laboratory at NPL provides world leading, accredited purity measurements to allow hydrogen refuelling stations to evidence compliance to ISO 14687. Utilising state-of-the-art methods that have been developed by NPL’s hydrogen purity laboratory, including a novel method for measuring total sulphur compounds at 4 nmol/mol and a hydrogen impurity enrichment device, we provide the capabilities necessary to achieve these goals. An overview of these capabilities will be given in this paper. As part of the EMPIR Hydrogen co-normative project ‘Metrology for sustainable hydrogen energy applications’, NPL are developing a validated analytical methodology for the measurement of speciated sulphur-containing compounds in hydrogen at low amount fractions pmol/mol to nmol/mol) to allow identification and measurement of individual sulphur-containing impurities in real samples of hydrogen (opposed to a ‘total sulphur’ measurement). This is achieved by producing a suite of stable gravimetrically-prepared primary reference gas standards containing low amount fractions of sulphur-containing compounds (hydrogen sulphide, carbonyl sulphide, carbon disulphide, 2-methyl-2-propanethiol and tetrahydrothiophene have been selected for use in this study) to be used in conjunction with novel dynamic dilution facilities to enable generation of pmol/mol to nmol/mol level gas mixtures (a dynamic method is required as compounds at these levels would be unstable in gas cylinder mixtures). Method development and optimisation are performed using gas chromatographic techniques assisted by cryo-trapping technologies and coupled with sulphur chemiluminescence detection to allow improved qualitative and quantitative analyses of sulphur-containing impurities in hydrogen. The paper will review the state-of-the art gas standard preparation techniques, including the use and testing of dynamic dilution technologies for reactive chemical components in hydrogen. Method development will also be presented highlighting the advances in the measurement of speciated sulphur compounds in hydrogen at low amount fractions.Keywords: gas chromatography, hydrogen purity, ISO 14687, sulphur chemiluminescence detector
Procedia PDF Downloads 224