Search results for: structural dynamics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6771

Search results for: structural dynamics

5931 Sensitivity and Reliability Analysis of Masonry Infilled Frames

Authors: Avadhoot Bhosale, Robin Davis P., Pradip Sarkar

Abstract:

The seismic performance of buildings with irregular distribution of mass, stiffness and strength along the height may be significantly different from that of regular buildings with masonry infill. Masonry infilled reinforced concrete (RC) frames are very common structural forms used for multi-storey building construction. These structures are found to perform better in past earthquakes owing to additional strength, stiffness and energy dissipation in the infill walls. The seismic performance of a building depends on the variation of material, structural and geometrical properties. The sensitivity of these properties affects the seismic response of the building. The main objective of the sensitivity analysis is to found out the most sensitive parameter that affects the response of the building. This paper presents a sensitivity analysis by considering 5% and 95% probability value of random variable in the infills characteristics, trying to obtain a reasonable range of results representing a wide number of possible situations that can be met in practice by using pushover analysis. The results show that the strength-related variation values of concrete and masonry, with the exception of tensile strength of the concrete, have shown a significant effect on the structural performance and that this effect increases with the progress of damage condition for the concrete. The seismic risk assessments of the selected frames are expressed in terms of reliability index.

Keywords: fragility curve, sensitivity analysis, reliability index, RC frames

Procedia PDF Downloads 308
5930 Effect of Cr and Fe Doping on the Structural and Optical Properties of ZnO Nanostructures

Authors: Prakash Chand, Anurag Gaur, Ashavani Kumar

Abstract:

In the present study, we have synthesized Cr and Fe doped zinc oxide (ZnO) nano-structures (Zn1-δCraFebO; where δ= a + b=20%, a = 5, 6, 8 & 10% and b=15, 14, 12 & 10%) via sol-gel method at different doping concentrations. The synthesized samples were characterized for structural properties by X-ray diffractometer and field emission scanning electron microscope and the optical properties were carried out through photoluminescence and UV-visible spectroscopy. The particle size calculated through field emission scanning electron microscope varies from 41 to 96 nm for the samples synthesized at different doping concentrations. The optical band gaps calculated through UV-visible spectroscopy are found to be decreasing from 3.27 to 3.02 eV as the doping concentration of Cr increases and Fe decreases.

Keywords: nano-structures, optical properties, sol-gel method, zinc oxide

Procedia PDF Downloads 302
5929 Demographic Factor in Ensuring Sustainable Development of the Western Region of the Republic of Kazakhstan

Authors: Nyussupova Gulnara, Kenespayeva Laura, Kelinbayeva Roza, Aubakirova Gaukhar, Zhumagulov Chingiz, Aidarkhanova Gaukhar

Abstract:

The article analyzes the development of demographic processes in four regions of the Western region of the Republic of Kazakhstan (Aktobe, Atyrau, West Kazakhstan, and Mangystau) for the period from 2000 to 2022. This study uses theoretical and methodological analysis of scientific literature, methods of comparative, statistical analysis, GIS methods, grouping and systematization, index method and structural analysis. The research identified regional characteristics, development trends, and disproportions in the population of the studied areas within the framework of sustainable demographic development. The population dynamics, the age-sex structure of the population, life expectancy, natural movement of the population, including maternal and infant mortality, are considered as important indicators of the region’s sustainability. The features of migration processes in the Western region of Kazakhstan and the factors that determine them are identified. Conclusions are drawn about the level of sustainable development of the population of the studied region based on demographic processes. The results obtained will provide scientific, methodological and information support in the sectors of economics and science, including the preparation of socio-economic development programs and the development of scientific research using GIS.

Keywords: sustainable development, demographic processes, Western Region, Republic of Kazakhstan, population structure, natural population movement, migration

Procedia PDF Downloads 48
5928 Energy Dynamics of Solar Thermionic Power Conversion with Emitter of Graphene

Authors: Olukunle C. Olawole, Dilip K. De, Moses Emetere, Omoje Maxwell

Abstract:

Graphene can stand very high temperature up to 4500 K in vacuum and has potential for application in thermionic energy converter. In this paper, we discuss the application of energy dynamics principles and the modified Richardson-Dushman Equation, to estimate the efficiency of solar power conversion to electrical power by a solar thermionic energy converter (STEC) containing emitter made of graphene. We present detailed simulation of power output for different solar insolation, diameter of parabolic concentrator, area of the graphene emitter (same as that of the collector), temperature of the collector, physical dimensions of the emitter-collector etc. After discussing possible methods of reduction or elimination of space charge problem using magnetic field and gate, we finally discuss relative advantages of using emitters made of graphene, carbon nanotube and metals respectively in a STEC.

Keywords: graphene, high temperature, modified Richardson-Dushman equation, solar thermionic energy converter

Procedia PDF Downloads 291
5927 In-Situ Quasistatic Compression and Microstructural Characterization of Aluminium Foams of Different Cell Topology

Authors: M. A. Islam, P. J. Hazell, J. P. Escobedo, M. Saadatfar

Abstract:

Quasistatic compression and micro structural characterization of closed cell aluminium foams of different pore size and cell distributions has been carried out. Metallic foams have good potential for lightweight structures for impact and blast mitigation and therefore it is important to find out the optimized foam structure (i.e. cell size, shape, relative density, and distribution) to maximize energy absorption. In this paper, we present results for two different aluminium metal foams of density 0.5 g/cc and 0.7 g/cc respectively that have been tested in quasi-static compression. The influence of cell geometry and cell topology on quasistatic compression behavior has been investigated using computed tomography (micro-CT) analysis. The compression behavior and micro structural characterization will be presented.

Keywords: metal foams, micro-CT, cell topology, quasistatic compression

Procedia PDF Downloads 439
5926 Introduction to Techno-Sectoral Innovation System Modeling and Functions Formulating

Authors: S. M. Azad, H. Ghodsi Pour, F. Roshannafasa

Abstract:

In recent years ‘technology management and policymaking’ is one of the most important problems in management science. In this field, different generations of innovation and technology management are presented which the earliest one is Innovation System (IS) approach. In a general classification, innovation systems are divided in to 4 approaches: Technical, sectoral, regional, and national. There are many researches in relation to each of these approaches in different academic fields. Every approach has some benefits. If two or more approaches hybrid, their benefits would be combined. In addition, according to the sectoral structure of the governance model in Iran, in many sectors such as information technology, the combination of three other approaches with sectoral approach is essential. Hence, in this paper, combining two IS approaches (technical and sectoral) and using system dynamics, a generic model is presented for a sample of software industry. As a complimentary point, this article is introducing a new hybrid approach called Techno-Sectoral Innovation System. This TSIS model is accomplished by Changing concepts of the ‘functions’ which came from Technological IS literature and using them into sectoral system as measurable indicators.

Keywords: innovation system, technology, techno-sectoral system, functional indicators, system dynamics

Procedia PDF Downloads 421
5925 Size Effects on Structural Performance of Concrete Gravity Dams

Authors: Mehmet Akköse

Abstract:

Concern about seismic safety of concrete dams have been growing around the world, partly because the population at risk in locations downstream of major dams continues to expand and also because it is increasingly evident that the seismic design concepts in use at the time most existing dams were built were inadequate. Most of the investigations in the past have been conducted on large dams, typically above 100m high. A large number of concrete dams in our country and in other parts of the world are less than 50m high. Most of these dams were usually designed using pseudo-static methods, ignoring the dynamic characteristics of the structure as well as the characteristics of the ground motion. Therefore, it is important to carry out investigations on seismic behavior this category of dam in order to assess and evaluate the safety of existing dams and improve the knowledge for different high dams to be constructed in the future. In this study, size effects on structural performance of concrete gravity dams subjected to near and far-fault ground motions are investigated including dam-water-foundation interaction. For this purpose, a benchmark problem proposed by ICOLD (International Committee on Large Dams) is chosen as a numerical application. Structural performance of the dam having five different heights is evaluated according to damage criterions in USACE (U.S. Army Corps of Engineers). It is decided according to their structural performance if non-linear analysis of the dams requires or not. The linear elastic dynamic analyses of the dams to near and far-fault ground motions are performed using the step-by-step integration technique. The integration time step is 0.0025 sec. The Rayleigh damping constants are calculated assuming 5% damping ratio. The program NONSAP modified for fluid-structure systems with the Lagrangian fluid finite element is employed in the response calculations.

Keywords: concrete gravity dams, Lagrangian approach, near and far-fault ground motion, USACE damage criterions

Procedia PDF Downloads 259
5924 Microstructural and Transport Properties of La0.7Sr0.3CoO3 Thin Films Obtained by Metal-Organic Deposition

Authors: K. Daoudi, Z. Othmen, S. El Helali, M.Oueslati, M. Oumezzine

Abstract:

La0.7Sr0.3CoO3 thin films have been epitaxially grown on LaAlO3 and SrTiO3 (001) single-crystal substrates by metal organic deposition process. The structural and micro structural properties of the obtained films have been investigated by means of high resolution X-ray diffraction, Raman spectroscopy and transmission microscopy observations on cross-sections techniques. We noted a close dependence of the crystallinity on the used substrate and the film thickness. By increasing the annealing temperature to 1000ºC and the film thickness to 100 nm, the electrical resistivity was decreased by several orders of magnitude. The film resistivity reaches approximately 3~4 x10-4 Ω.cm in a wide interval of temperature 77-320 K, making this material a promising candidate for a variety of applications.

Keywords: cobaltite, thin films, epitaxial growth, MOD, TEM

Procedia PDF Downloads 319
5923 Effect of Wind Braces to Earthquake Resistance of Steel Structures

Authors: H. Gokdemir

Abstract:

All structures are subject to vertical and lateral loads. Under these loads, structures make deformations and deformation values of structural elements mustn't exceed their capacity for structural stability. Especially, lateral loads cause critical deformations because of their random directions and magnitudes. Wind load is one of the lateral loads which can act in any direction and any magnitude. Although wind has nearly no effect on reinforced concrete structures, it must be considered for steel structures, roof systems and slender structures like minarets. Therefore, every structure must be able to resist wind loads acting parallel and perpendicular to any side. One of the effective methods for resisting lateral loads is assembling cross steel elements between columns which are called as wind bracing. These cross elements increases lateral rigidity of a structure and prevent exceeding of deformation capacity of the structural system. So, this means cross elements are also effective in resisting earthquake loads too. In this paper; Effects of wind bracing to earthquake resistance of structures are studied. Structure models (with and without wind bracing) are generated and these models are solved under both earthquake and wind loads with different seismic zone parameters. It is concluded by the calculations that; in low-seismic risk zones, wind bracing can easily resist earthquake loads and no additional reinforcement for earthquake loads is necessary. Similarly; in high-seismic risk zones, earthquake cross elements resist wind loads too.

Keywords: wind bracings, earthquake, steel structures, vertical and lateral loads

Procedia PDF Downloads 454
5922 Stability of Stochastic Model Predictive Control for Schrödinger Equation with Finite Approximation

Authors: Tomoaki Hashimoto

Abstract:

Recent technological advance has prompted significant interest in developing the control theory of quantum systems. Following the increasing interest in the control of quantum dynamics, this paper examines the control problem of Schrödinger equation because quantum dynamics is basically governed by Schrödinger equation. From the practical point of view, stochastic disturbances cannot be avoided in the implementation of control method for quantum systems. Thus, we consider here the robust stabilization problem of Schrödinger equation against stochastic disturbances. In this paper, we adopt model predictive control method in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. The objective of this study is to derive the stability criterion for model predictive control of Schrödinger equation under stochastic disturbances.

Keywords: optimal control, stochastic systems, quantum systems, stabilization

Procedia PDF Downloads 438
5921 PID Sliding Mode Control with Sliding Surface Dynamics based Continuous Control Action for Robotic Systems

Authors: Wael M. Elawady, Mohamed F. Asar, Amany M. Sarhan

Abstract:

This paper adopts a continuous sliding mode control scheme for trajectory tracking control of robot manipulators with structured and unstructured uncertain dynamics and external disturbances. In this algorithm, the equivalent control in the conventional sliding mode control is replaced by a PID control action. Moreover, the discontinuous switching control signal is replaced by a continuous proportional-integral (PI) control term such that the implementation of the proposed control algorithm does not require the prior knowledge of the bounds of unknown uncertainties and external disturbances and completely eliminates the chattering phenomenon of the conventional sliding mode control approach. The closed-loop system with the adopted control algorithm has been proved to be globally stable by using Lyapunov stability theory. Numerical simulations using the dynamical model of robot manipulators with modeling uncertainties demonstrate the superiority and effectiveness of the proposed approach in high speed trajectory tracking problems.

Keywords: PID, robot, sliding mode control, uncertainties

Procedia PDF Downloads 483
5920 Oil Demand Forecasting in China: A Structural Time Series Analysis

Authors: Tehreem Fatima, Enjun Xia

Abstract:

The research investigates the relationship between total oil consumption and transport oil consumption, GDP, oil price, and oil reserve in order to forecast future oil demand in China. Annual time series data is used over the period of 1980 to 2015, and for this purpose, an oil demand function is estimated by applying structural time series model (STSM). The technique also uncovers the Underline energy demand trend (UEDT) for China oil demand and GDP, oil reserve, oil price and UEDT are considering important drivers of China oil demand. The long-run elasticity of total oil consumption with respect to GDP and price are (0.5, -0.04) respectively while GDP, oil reserve, and price remain (0.17; 0.23; -0.05) respectively. Moreover, the Estimated results of long-run elasticity of transport oil consumption with respect to GDP and price are (0.5, -0.00) respectively long-run estimates remain (0.28; 37.76;-37.8) for GDP, oil reserve, and price respectively. For both model estimated underline energy demand trend (UEDT) remains nonlinear and stochastic and with an increasing trend of (UEDT) and based on estimated equations, it is predicted that China total oil demand somewhere will be 9.9 thousand barrel per day by 2025 as compare to 9.4 thousand barrel per day in 2015, while transport oil demand predicting value is 9.0 thousand barrel per day by 2020 as compare to 8.8 thousand barrel per day in 2015.

Keywords: china, forecasting, oil, structural time series model (STSM), underline energy demand trend (UEDT)

Procedia PDF Downloads 265
5919 Violence against Police Officers in Germany

Authors: Anne T. Herr, Clemens Lorei

Abstract:

Employees of organizations with security tasks, such as emergency services, public order services, or police forces, work every day to ensure people's safety. Violence against police is, therefore, a relevant topic both socially and politically. An increase in violence is often discussed without there being any verifiable and generally valid data. So far, scientific research has mainly focused on offender characteristics and crime statistics. These surveys are mostly subjective, retrospective, and neglect the dynamics and interactions in concrete violent situations. Therefore, more recent research methods attempt to capture the issue of violence against emergency forces more comprehensively. However, the operationalization of the constructs and the methodological approach pose particular challenges. This contribution provides an overview of new perspectives on the understanding of violent assaults and identifies current research gaps. In addition, a new research project of the Hessian University of Police and Administration in Germany is presented. In the 'AMBOSafe' study, different theoretical backgrounds for understanding violence against police and emergency services personnel will be combined in order to capture as many different perspectives of violent assaults as possible in a multimodal research approach. In a retrospective as well as in a longitudinal survey, the conditions of escalation dynamics in the assaults are recorded and supplemented by the current and valid prevalence of physical and verbal assaults in a period of four months. In addition, qualitative interviews with those affected will be used to record more detailed descriptions of and the feelings during the assaults, as well as possible causes and connections between the different groups of people. In addition to the reports of the police forces, the motives of the attackers will be collected and supplemented by analyzing the criminal case files. This knowledge can contribute to a more comprehensive understanding of violent assaults against police forces in order to be able to derive scientifically based preventive measures.

Keywords: assaults, crime statistics, escalation dynamics, police

Procedia PDF Downloads 98
5918 A Conceptual Model of Sex Trafficking Dynamics in the Context of Pandemics and Provisioning Systems

Authors: Brian J. Biroscak

Abstract:

In the United States (US), “sex trafficking” is defined at the federal level in the Trafficking Victims Protection Act of 2000 as encompassing a number of processes such as recruitment, transportation, and provision of a person for the purpose of a commercial sex act. It involves the use of force, fraud, or coercion, or in which the person induced to perform such act has not attained 18 years of age. Accumulating evidence suggests that sex trafficking is exacerbated by social and environmental stressors (e.g., pandemics). Given that “provision” is a key part of the definition, “provisioning systems” may offer a useful lens through which to study sex trafficking dynamics. Provisioning systems are the social systems connecting individuals, small groups, entities, and embedded communities as they seek to satisfy their needs and wants for goods, services, experiences and ideas through value-based exchange in communities. This project presents a conceptual framework for understanding sex trafficking dynamics in the context of the COVID pandemic. The framework is developed as a system dynamics simulation model based on published evidence, social and behavioral science theory, and key informant interviews with stakeholders from the Protection, Prevention, Prosecution, and Partnership sectors in one US state. This “4 P Paradigm” has been described as fundamental to the US government’s anti-trafficking strategy. The present research question is: “How do sex trafficking systems (e.g., supply, demand and price) interact with other provisioning systems (e.g., networks of organizations that help sexually exploited persons) to influence trafficking over time vis-à-vis the COVID pandemic?” Semi-structured interviews with stakeholders (n = 19) were analyzed based on grounded theory and combined for computer simulation. The first step (Problem Definition) was completed by open coding video-recorded interviews, supplemented by a literature review. The model depicts provision of sex trafficking services for victims and survivors as declining in March 2020, coincidental with COVID, but eventually rebounding. The second modeling step (Dynamic Hypothesis Formulation) was completed by open- and axial coding of interview segments, as well as consulting peer-reviewed literature. Part of the hypothesized explanation for changes over time is that the sex trafficking system behaves somewhat like a commodities market, with each of the other subsystems exhibiting delayed responses but collectively keeping trafficking levels below what they would be otherwise. Next steps (Model Building & Testing) led to a ‘proof of concept’ model that can be used to conduct simulation experiments and test various action ideas, by taking model users outside the entire system and seeing it whole. If sex trafficking dynamics unfold as hypothesized, e.g., oscillated post-COVID, then one potential leverage point is to address the lack of information feedback loops between the actual occurrence and consequences of sex trafficking and those who seek to prevent its occurrence, prosecute the traffickers, protect the victims and survivors, and partner with the other anti-trafficking advocates. Implications for researchers, administrators, and other stakeholders are discussed.

Keywords: pandemics, provisioning systems, sex trafficking, system dynamics modeling

Procedia PDF Downloads 60
5917 Improvement of the Aerodynamic Behaviour of a Land Rover Discovery 4 in Turbulent Flow Using Computational Fluid Dynamics (CFD)

Authors: Ahmed Al-Saadi, Ali Hassanpour, Tariq Mahmud

Abstract:

The main objective of this study is to investigate ways to reduce the aerodynamic drag coefficient and to increase the stability of the full-size Sport Utility Vehicle using three-dimensional Computational Fluid Dynamics (CFD) simulation. The baseline model in the simulation was the Land Rover Discovery 4. Many aerodynamic devices and external design modifications were used in this study. These reduction aerodynamic techniques were tested individually or in combination to get the best design. All new models have the same capacity and comfort of the baseline model. Uniform freestream velocity of the air at inlet ranging from 28 m/s to 40 m/s was used. ANSYS Fluent software (version 16.0) was used to simulate all models. The drag coefficient obtained from the ANSYS Fluent for the baseline model was validated with experimental data. It is found that the use of modern aerodynamic add-on devices and modifications has a significant effect in reducing the aerodynamic drag coefficient.

Keywords: aerodynamics, RANS, sport utility vehicle, turbulent flow

Procedia PDF Downloads 297
5916 Stability Analysis of Hossack Suspension Systems in High Performance Motorcycles

Authors: Ciro Moreno-Ramirez, Maria Tomas-Rodriguez, Simos A. Evangelou

Abstract:

A motorcycle's front end links the front wheel to the motorcycle's chassis and has two main functions: the front wheel suspension and the vehicle steering. Up to this date, several suspension systems have been developed in order to achieve the best possible front end behavior, being the telescopic fork the most common one and already subjected to several years of study in terms of its kinematics, dynamics, stability and control. A motorcycle telescopic fork suspension model consists of a couple of outer tubes which contain the suspension components (coil springs and dampers) internally and two inner tubes which slide into the outer ones allowing the suspension travel. The outer tubes are attached to the frame through two triple trees which connect the front end to the main frame through the steering bearings and allow the front wheel to turn about the steering axis. This system keeps the front wheel's displacement in a straight line parallel to the steering axis. However, there exist alternative suspension designs that allow different trajectories of the front wheel with the suspension travel. In this contribution, the authors investigate an alternative front suspension system (Hossack suspension) and its influence on the motorcycle nonlinear dynamics to identify and reduce stability risks that a new suspension systems may introduce in the motorcycle dynamics. Based on an existing high-fidelity motorcycle mathematical model, the front end geometry is modified to accommodate a Hossack suspension system. It is characterized by a double wishbone design that varies the front end geometry on certain maneuverings and, consequently, the machine's behavior/response. It consists of a double wishbone structure directly attached to the chassis. In here, the kinematics of this system and its impact on the motorcycle performance/stability are analyzed and compared to the well known telescopic fork suspension system. The framework of this research is the mathematical modelling and numerical simulation. Full stability analyses are performed in order to understand how the motorcycle dynamics may be affected by the newly introduced front end design. This study is carried out by a combination of nonlinear dynamical simulation and root-loci methods. A modal analysis is performed in order to get a deeper understanding of the different modes of oscillation and how the Hossack suspension system affects them. The results show that different kinematic designs of a double wishbone suspension systems do not modify the general motorcycle's stability. The normal modes properties remain unaffected by the new geometrical configurations. However, these normal modes differ from one suspension system to the other. It is seen that the normal modes behaviour depends on various important dynamic parameters, such as the front frame flexibility, the steering damping coefficient and the centre of mass location.

Keywords: nonlinear mechanical systems, motorcycle dynamics, suspension systems, stability

Procedia PDF Downloads 209
5915 Experimental, Computational Fluid Dynamics and Theoretical Study of Cyclone Performance Based on Inlet Velocity and Particle Loading Rate

Authors: Sakura Ganegama Bogodage, Andrew Yee Tat Leung

Abstract:

This paper describes experimental, Computational Fluid Dynamics (CFD) and theoretical analysis of a cyclone performance, operated 1.0 g/m3 solid loading rate, at two different inlet velocities (5 m/s and 10 m/s). Comparing experimental results with theoretical and CFD simulation results, it is pronounced that the influence of solid in processing flow is significant than expected. Experimental studies based on gas- solid flows of cyclone separators are complicated as they required advanced sensitive measuring techniques, especially flow characteristics. Thus, CFD modelling and theoretical analysis are economical in analyzing cyclone separator performance but detailed clarifications of the application of these in cyclone separator performance evaluation is not yet discussed. The present study shows the limitations of influencing parameters of CFD and theoretical considerations, comparing experimental results and flow characteristics from CFD modelling.

Keywords: cyclone performance, inlet velocity, pressure drop, solid loading rate

Procedia PDF Downloads 222
5914 Observer-Based Control Design for Double Integrators Systems with Long Sampling Periods and Actuator Uncertainty

Authors: Tomas Menard

Abstract:

The design of control-law for engineering systems has been investigated for many decades. While many results are concerned with continuous systems with continuous output, nowadays, many controlled systems have to transmit their output measurements through network, hence making it discrete-time. But it is well known that the sampling of a system whose control-law is based on the continuous output may render the system unstable, especially when this sampling period is long compared to the system dynamics. The control design then has to be adapted in order to cope with this issue. In this paper, we consider systems which can be modeled as double integrator with uncertainty on the input since many mechanical systems can be put under such form. We present a control scheme based on an observer using only discrete time measurement and which provides continuous time estimation of the state, combined with a continuous control law, which stabilized a system with second-order dynamics even in the presence of uncertainty. It is further shown that arbitrarily long sampling periods can be dealt with properly setting the control scheme parameters.

Keywords: dynamical system, control law design, sampled output, observer design

Procedia PDF Downloads 168
5913 Structural, Optical and Electrical Properties of PbS Thin Films Deposited by CBD at Different Bath pH

Authors: Lynda Beddek, Nadhir Attaf, Mohamed Salah Aida

Abstract:

PbS thin films were grown on glass substrates by chemical bath deposition (CBD). The precursor aqueous bath contained 1 mole of lead nitrate, 1 mole of Thiourea and complexing agents (triethanolamine (TEA) and NaOH). Bath temperature and deposition time were fixed at 60°C and 3 hours, respectively. However, the PH of bath was varied from 10.5 to 12.5. Structural properties of the deposited films were characterized by X-ray diffraction and Raman spectroscopy. The preferred direction was revealed to be along (111) and the PbS crystal structure was confirmed. Strains and grains sizes were also calculated. Optical studies showed that films thicknesses do not exceed 600nm. Energy band gap values of films decreases with increase in pH and reached a value ~ 0.4eV at pH equal 12.5. The small value of the energy band gap makes PbS one of the most interesting candidate for solar energy conversion near the infrared ray.

Keywords: CBD, PbS, pH, thin films, x-ray diffraction

Procedia PDF Downloads 427
5912 Modeling the Time-Dependent Rheological Behavior of Clays Used in Fabrication of Ceramic

Authors: Larbi Hammadi, N. Boudjenane, N. Benhallou, R. Houjedje, R. Reffis, M. Belhadri

Abstract:

Many of clays exhibited the thixotropic behavior in which, the apparent viscosity of material decreases with time of shearing at constant shear rate. The structural kinetic model (SKM) was used to characterize the thixotropic behavior of two different kinds of clays used in fabrication of ceramic. Clays selected for analysis represent the fluid and semisolid clays materials. The SKM postulates that the change in the rheological behavior is associated with shear-induced breakdown of the internal structure of the clays. This model for the structure decay with time at constant shear rate assumes nth order kinetics for the decay of the material structure with a rate constant.

Keywords: ceramic, clays, structural kinetic model, thixotropy, viscosity

Procedia PDF Downloads 394
5911 Numerical Study of a Butterfly Valve for Vibration Analysis and Reduction

Authors: Malik I. Al-Amayreh, Mohammad I. Kilani, Ahmed S. Al-Salaymeh

Abstract:

This works presents a Computational Fluid Dynamics (CFD) simulation of a butterfly valve used to control the flow of combustible gas mixture in an industrial process setting. The work uses CFD simulation to analyze the flow characteristics in the vicinity of the valve, including the velocity distributions, streamlines and path lines. Frequency spectrum of the pressure pulsations downstream the valves, and the vortex shedding allow predicting the torque fluctuations acting on the valve shaft and the possibility of generating mechanical vibration and resonance. These fluctuations are due to aerodynamic torque resulting from fluid turbulence and vortex shedding in the valve vicinity. The valve analyzed is located in a pipeline between two opposing 90o elbows, which exposes the valve and the surrounding structure to the turbulence generated upstream and downstream the elbows at either end of the pipe. CFD simulations show that the best location for the valve from a vibration point of view is in the middle of the pipe joining the elbows.

Keywords: butterfly valve vibration analysis, computational fluid dynamics, fluid flow circuit design, fluctuation

Procedia PDF Downloads 419
5910 Measuring Emotion Dynamics on Facebook: Associations between Variability in Expressed Emotion and Psychological Functioning

Authors: Elizabeth M. Seabrook, Nikki S. Rickard

Abstract:

Examining time-dependent measures of emotion such as variability, instability, and inertia, provide critical and complementary insights into mental health status. Observing changes in the pattern of emotional expression over time could act as a tool to identify meaningful shifts between psychological well- and ill-being. From a practical standpoint, however, examining emotion dynamics day-to-day is likely to be burdensome and invasive. Utilizing social media data as a facet of lived experience can provide real-world, temporally specific access to emotional expression. Emotional language on social media may provide accurate and sensitive insights into individual and community mental health and well-being, particularly with focus placed on the within-person dynamics of online emotion expression. The objective of the current study was to examine the dynamics of emotional expression on the social network platform Facebook for active users and their relationship with psychological well- and ill-being. It was expected that greater positive and negative emotion variability, instability, and inertia would be associated with poorer psychological well-being and greater depression symptoms. Data were collected using a smartphone app, MoodPrism, which delivered demographic questionnaires, psychological inventories assessing depression symptoms and psychological well-being, and collected the Status Updates of consenting participants. MoodPrism also delivered an experience sampling methodology where participants completed items assessing positive affect, negative affect, and arousal, daily for a 30-day period. The number of positive and negative words in posts was extracted and automatically collated by MoodPrism. The relative proportion of positive and negative words from the total words written in posts was then calculated. Preliminary analyses have been conducted with the data of 9 participants. While these analyses are underpowered due to sample size, they have revealed trends that greater variability in the emotion valence expressed in posts is positively associated with greater depression symptoms (r(9) = .56, p = .12), as is greater instability in emotion valence (r(9) = .58, p = .099). Full data analysis utilizing time-series techniques to explore the Facebook data set will be presented at the conference. Identifying the features of emotion dynamics (variability, instability, inertia) that are relevant to mental health in social media emotional expression is a fundamental step in creating automated screening tools for mental health that are temporally sensitive, unobtrusive, and accurate. The current findings show how monitoring basic social network characteristics over time can provide greater depth in predicting risk and changes in depression and positive well-being.

Keywords: emotion, experience sampling methods, mental health, social media

Procedia PDF Downloads 228
5909 Transient and Persistent Efficiency Estimation for Electric Grid Utilities Based on Meta-Frontier: Comparative Analysis of China and Japan

Authors: Bai-Chen Xie, Biao Li

Abstract:

With the deepening of international exchanges and investment, the international comparison of power grid firms has become the focus of regulatory authorities. Ignoring the differences in the economic environment, resource endowment, technology, and other aspects of different countries or regions may lead to efficiency bias. Based on the Meta-frontier model, this paper divides China and Japan into two groups by using the data of China and Japan from 2006 to 2020. While preserving the differences between the two countries, it analyzes and compares the efficiency of the transmission and distribution industries of the two countries. Combined with the four-component stochastic frontier model, the efficiency is divided into transient and persistent efficiency. We found that there are obvious differences between the transmission and distribution sectors in China and Japan. On the one hand, the inefficiency of the two countries is mostly caused by long-term and structural problems. The key to improve the efficiency of the two countries is to focus more on solving long-term and structural problems. On the other hand, the long-term and structural problems that cause the inefficiency of the two countries are not the same. Quality factors have different effects on the efficiency of the two countries, and this different effect is captured by the common frontier model but is offset in the overall model. Based on these findings, this paper proposes some targeted policy recommendations.

Keywords: transmission and distribution industries, transient efficiency, persistent efficiency, meta-frontier, international comparison

Procedia PDF Downloads 83
5908 Kinematics and Dynamics Analysis of Crank-Piston System of a High-Power, Nine-Cylinder Aircraft Engine

Authors: Michal Biały, Konrad Pietrykowski, Rafal Sochaczewski

Abstract:

The kinematics and dynamics analysis of crank-piston system of aircraft engine. The object of the study was the high power aircraft engine ASz 62-IR. This engine is produced by a Polish company WSK "PZL-KALISZ" S.A.". All analyzes were performed numerically using CAD and CAE environment. Three-dimensional model of the crank-piston system was developed based on real engine located in the Laboratory of Centre of Innovation and Advanced Technologies of Lublin University of Technology. During the development of the model, the technique of reverse engineering - 3D scanning was used. ASz 62-IR engine is characterized by a radial type of crank-piston system. In this system the cylinders are arranged radially around the circle. This crank-piston system consists of a main connecting rod and eight additional connecting rods. In addition, three-dimensional model consists of a piston pins, pistons and piston rings. As a result of the specific engine design, characteristics of the piston individual movement are slightly different from each other. But the model assumes that they are the same during the analysis. Three-dimensional model of the engine was implemented into the MSC Adams software. The environment of MSC Adams allows for multibody simulation of the dynamic phenomena. This determines the state parameters of the moving elements, among which the load or force distribution on each kinematic node can be distinguished. Materials and characteristic materials parameters were adopted on the basis of commonly used materials for engine parts. The mass values of individual elements were adopted on the basis of real engine parts. The piston gas forces were replaced by calculation of pressure variations recorded during engine tests on the engine test bench. The research the changes of forces acting in the individual kinematic pairs of crank-piston system. The model allows to determine the load on the crankshaft main bearings. This gives the possibility for the main supports forces analysis The model allows for testing and simulation of kinematics and dynamics of a radial aircraft engine. This is the first stage of the work, which aims to numerical simulation of vibration of multi-cylinder aircraft engine. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: aircraft engine, CAD, CAE, dynamics, kinematics, MSC Adams, numerical simulation

Procedia PDF Downloads 364
5907 Key Success Factors of Customer Relationship Management: An Empirical Study of Tunisian Firms

Authors: Khlif Hamadi

Abstract:

Customer Relationship Management has become the main interest of researchers and practitioners especially in the domains of Management and Information Systems (IS). This paper is an overview of success factors that could facilitate successful adoption of CRM. There are 2 factors: the organizational climate and the capacity for innovation. The survey was developed with 200 CRM users. Empirical research is in the positivist paradigm based on the hypothetico-deductive method. Indeed, the approach adopted is the quantitative approach based on a questionnaire complied by Tunisian companies operating in different sectors of activity. For the data analyses, the structural equations method was used to conduct our exploratory and confirmatory analysis. The results revealed that the creative organizational climate and high innovation capacity positively influence the success of CRM practice.

Keywords: CRM practices, innovation capacity, organizational climate, the structural equation

Procedia PDF Downloads 104
5906 Design and Evaluation of a Pneumatic Muscle Actuated Gripper

Authors: Tudor Deaconescu, Andrea Deaconescu

Abstract:

Deployment of pneumatic muscles in various industrial applications is still in its early days, considering the relative newness of these components. The field of robotics holds particular future potential for pneumatic muscles, especially in view of their specific behaviour known as compliance. The paper presents and discusses an innovative constructive solution for a gripper system mountable on an industrial robot, based on actuation by a linear pneumatic muscle and transmission of motion by gear and rack mechanism. The structural, operational and constructive models of the new gripper are presented, along with some of the experimental results obtained subsequently to the testing of a prototype. Further presented are two control variants of the gripper system, one by means of a 3/2-way fast-switching solenoid valve, the other by means of a proportional pressure regulator. Advantages and disadvantages are discussed for both variants.

Keywords: gripper system, pneumatic muscle, structural modelling, robotics

Procedia PDF Downloads 219
5905 Predicting the Solubility of Aromatic Waste Petroleum Paraffin Wax in Organic Solvents to Separate Ultra-Pure Phase Change Materials (PCMs) by Molecular Dynamics Simulation

Authors: Fathi Soliman

Abstract:

With the ultimate goal of developing the separation of n-paraffin as phase change material (PCM) by means of molecular dynamic simulations, we attempt to predict the solubility of aromatic n-paraffin in two organic solvents: Butyl Acetate (BA) and Methyl Iso Butyl Ketone (MIBK). A simple model of aromatic paraffin: 2-hexadecylantharacene with amorphous molecular structure and periodic boundary conditions was constructed. The results showed that MIBK is the best solvent to separate ultra-pure phase change materials and this data was compatible with experimental data done to separate ultra-pure n-paraffin from waste petroleum aromatic paraffin wax, the separated n-paraffin was characterized by XRD, TGA, GC and DSC, moreover; data revealed that the n-paraffin separated by using MIBK is better as PCM than that separated using BA.

Keywords: molecular dynamics simulation, n-paraffin, organic solvents, phase change materials, solvent extraction

Procedia PDF Downloads 174
5904 Heteromolecular Structure Formation in Aqueous Solutions of Ethanol, Tetrahydrofuran and Dimethylformamide

Authors: Sh. Gofurov, O. Ismailova, U. Makhmanov, A. Kokhkharov

Abstract:

The refractometric method has been used to determine optical properties of concentration features of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide at the room temperature. Changes in dielectric permittivity of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide in a wide range of concentrations (0÷1.0 molar fraction) have been studied using molecular dynamics method. The curves depending on the concentration of experimental data on excess refractive indices and excess dielectric permittivity were compared. It has been shown that stable heteromolecular complexes in binary solutions are formed in the concentration range of 0.3÷0.4 mole fractions. The real and complex part of dielectric permittivity was obtained from dipole-dipole autocorrelation functions of molecules. At the concentrations of C = 0.3 / 0.4 m.f. the heteromolecular structures with hydrogen bonds are formed. This is confirmed by the extremum values of excessive dielectric permittivity and excessive refractive index of aqueous solutions.

Keywords: refractometric method, aqueous solution, molecular dynamics, dielectric constant

Procedia PDF Downloads 254
5903 Structural and Electromagnetic Properties of CoFe2O4-ZrO2 Nanocomosites

Authors: Ravinder Reddy Butreddy, Sadhana Katlakunta

Abstract:

The nanocomposites of CoFe2O4-xZrO2 with different loadings of ZrO2 (x = 0.025, 0.05, 0.075, 0.1 and 1.5) were prepared using ball mill method. All the samples were prepared at 980°C/1h using microwave sintering method. The x-ray diffraction patterns show the existence of tetragonal/monoclinic phase of ZrO2 and cubic phase of CoFe2O4. The effects of ZrO2 on structural and microstructural properties of CoFe2O4 composite ceramics were investigated. It is observed that the density of the composite decreases and porosity increases with x. The magnetic properties such as saturation magnetization (Ms), and Coercive field were calculated at room temperature. The Ms is decreased with x while coercive field is increased with x. The dielectric parameters exhibit the relaxation behavior in high-frequency region and showing increasing trend with ZrO2 concentration, showing suitable

Keywords: dielectric properties, magnetic properties, microwave sintering, nanocomposites

Procedia PDF Downloads 223
5902 Optimum Design of Steel Space Frames by Hybrid Teaching-Learning Based Optimization and Harmony Search Algorithms

Authors: Alper Akin, Ibrahim Aydogdu

Abstract:

This study presents a hybrid metaheuristic algorithm to obtain optimum designs for steel space buildings. The optimum design problem of three-dimensional steel frames is mathematically formulated according to provisions of LRFD-AISC (Load and Resistance factor design of American Institute of Steel Construction). Design constraints such as the strength requirements of structural members, the displacement limitations, the inter-story drift and the other structural constraints are derived from LRFD-AISC specification. In this study, a hybrid algorithm by using teaching-learning based optimization (TLBO) and harmony search (HS) algorithms is employed to solve the stated optimum design problem. These algorithms are two of the recent additions to metaheuristic techniques of numerical optimization and have been an efficient tool for solving discrete programming problems. Using these two algorithms in collaboration creates a more powerful tool and mitigates each other’s weaknesses. To demonstrate the powerful performance of presented hybrid algorithm, the optimum design of a large scale steel building is presented and the results are compared to the previously obtained results available in the literature.

Keywords: optimum structural design, hybrid techniques, teaching-learning based optimization, harmony search algorithm, minimum weight, steel space frame

Procedia PDF Downloads 527