Search results for: spanning tree
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1069

Search results for: spanning tree

229 Supplementation of Leucahena leucochepala on Rice Straw Ammoniated Complete Feed on Fiber Digestibility and in vitro Rumen Fermentation Characteristics

Authors: Mardiati Zain, W. S. N. Rusmana, Erpomen, Malik Makmur, Ezi Masdia Putri

Abstract:

Background and Aim: The leaves of the Leucaenaleucocephala tree have potential as a nitrogen source for ruminants. Leucaena leaf meal as protein supplement has been shown to improve the feed quality of ruminants. The effects of different levels of Leucaena leucocephala supplementation as substitute of concentrate on fiber digestibility and in vitro rumen fermentation characteristics were investigated. This research was conducted in vitro. The study used a randomized block design consisting of 3 treatments and 5 replications. The treatments were A. 40% rice straw ammoniated + 60% concentrate, B. 40% rice straw ammoniated + 50% concentrate + 10% Leucaena leuchephala, C. 40% rice straw ammoniated + 40% concentrate + 20% Leucaena leuchephala, Result: The results showed that the addition of Leucaena leucocephala increased the digestibility of Neutral detergent Fiber NDF and Acid Detergent Fiber (ADF) (p < 0.05). In this study, rumen NH3, propionate, amount of escape protein and total Volatyl Fatty Acid (VFA) were found increased significantly at treatment B. No significant difference was observed in acetate and butyrate production. The populations of total protozoa and methane production had significantly decreased (P < .05) in supplemented group. Conclusion: Supplementation of leuchaena leucochepala on completed feed based on ammoniated rice straw in vitro can increase fiber digestibility, VFA production and decreased protozoa pupulataion and methane production. Supplementation of 10% and 20% L. leucochepala were suitable to be used for further studies, therefore in vivo experiment is required to study the effects on animal production.

Keywords: digestibility, Leucaena leucocephala, complete feed, rice straw ammoniated

Procedia PDF Downloads 154
228 Nurturing Scientific Minds: Enhancing Scientific Thinking in Children (Ages 5-9) through Experiential Learning in Kids Science Labs (STEM)

Authors: Aliya K. Salahova

Abstract:

Scientific thinking, characterized by purposeful knowledge-seeking and the harmonization of theory and facts, holds a crucial role in preparing young minds for an increasingly complex and technologically advanced world. This abstract presents a research study aimed at fostering scientific thinking in early childhood, focusing on children aged 5 to 9 years, through experiential learning in Kids Science Labs (STEM). The study utilized a longitudinal exploration design, spanning 240 weeks from September 2018 to April 2023, to evaluate the effectiveness of the Kids Science Labs program in developing scientific thinking skills. Participants in the research comprised 72 children drawn from local schools and community organizations. Through a formative psychology-pedagogical experiment, the experimental group engaged in weekly STEM activities carefully designed to stimulate scientific thinking, while the control group participated in daily art classes for comparison. To assess the scientific thinking abilities of the participants, a registration table with evaluation criteria was developed. This table included indicators such as depth of questioning, resource utilization in research, logical reasoning in hypotheses, procedural accuracy in experiments, and reflection on research processes. The data analysis revealed dynamic fluctuations in the number of children at different levels of scientific thinking proficiency. While the development was not uniform across all participants, a main leading factor emerged, indicating that the Kids Science Labs program and formative experiment exerted a positive impact on enhancing scientific thinking skills in children within this age range. The study's findings support the hypothesis that systematic implementation of STEM activities effectively promotes and nurtures scientific thinking in children aged 5-9 years. Enriching education with a specially planned STEM program, tailoring scientific activities to children's psychological development, and implementing well-planned diagnostic and corrective measures emerged as essential pedagogical conditions for enhancing scientific thinking abilities in this age group. The results highlight the significant and positive impact of the systematic-activity approach in developing scientific thinking, leading to notable progress and growth in children's scientific thinking abilities over time. These findings have promising implications for educators and researchers, emphasizing the importance of incorporating STEM activities into educational curricula to foster scientific thinking from an early age. This study contributes valuable insights to the field of science education and underscores the potential of STEM-based interventions in shaping the future scientific minds of young children.

Keywords: Scientific thinking, education, STEM, intervention, Psychology, Pedagogy, collaborative learning, longitudinal study

Procedia PDF Downloads 61
227 Effect of Thermal Treatment on Phenolic Content, Antioxidant, and Alpha-Amylase Inhibition Activities of Moringa stenopetala Leaves

Authors: Daniel Assefa, Engeda Dessalegn, Chetan Chauhan

Abstract:

Moringa stenopetala is a socioeconomic valued tree that is widely available and cultivated in the Southern part of Ethiopia. The leaves have been traditionally used as a food source with high nutritional and medicinal values. The present work was carried out to evaluate the effect of thermal treatment on the total phenolic content, antioxidant and alpha-amylase inhibition activities of aqueous leaf extracts during maceration and different decoction time interval (5, 10 and 15 min). The total phenolic content was determined by the Folin-ciocalteu methods whereas antioxidant activities were determined by 2,2-diphenyl-1-picryl-hydrazyl(DPPH) radical scavenging, reducing power and ferrous ion chelating assays and alpha-amylase inhibition activity was determined using 3,5-dinitrosalicylic acid method. Total phenolic content ranged from 34.35 to 39.47 mgGAE/g. Decoction for 10 min extract showed ferrous ion chelating (92.52), DPPH radical scavenging (91.52%), alpha-amylase inhibition (69.06%) and ferric reducing power (0.765), respectively. DPPH, reducing power and alpha-amylase inhibition activities showed positive linear correlation (R2=0.853, R2= 0.857 and R2=0.930), respectively with total phenolic content but ferrous ion chelating activity was found to be weakly correlated (R2=0.481). Based on the present investigation, it could be concluded that major loss of total phenolic content, antioxidant and alpha-amylase inhibition activities of the crude leaf extracts of Moringa stenopetala leaves were observed at decoction time for 15 min. Therefore, to maintain the total phenolic content, antioxidant, and alpha-amylase inhibition activities of leaves, cooking practice should be at the optimum decoction time (5-10 min).

Keywords: alpha-amylase inhibition, antioxidant, Moringa stenopetala, total phenolic content

Procedia PDF Downloads 361
226 Canopy Temperature Acquired from Daytime and Nighttime Aerial Data as an Indicator of Trees’ Health Status

Authors: Agata Zakrzewska, Dominik Kopeć, Adrian Ochtyra

Abstract:

The growing number of new cameras, sensors, and research methods allow for a broader application of thermal data in remote sensing vegetation studies. The aim of this research was to check whether it is possible to use thermal infrared data with a spectral range (3.6-4.9 μm) obtained during the day and the night to assess the health condition of selected species of deciduous trees in an urban environment. For this purpose, research was carried out in the city center of Warsaw (Poland) in 2020. During the airborne data acquisition, thermal data, laser scanning, and orthophoto map images were collected. Synchronously with airborne data, ground reference data were obtained for 617 studied species (Acer platanoides, Acer pseudoplatanus, Aesculus hippocastanum, Tilia cordata, and Tilia × euchlora) in different health condition states. The results were as follows: (i) healthy trees are cooler than trees in poor condition and dying both in the daytime and nighttime data; (ii) the difference in the canopy temperatures between healthy and dying trees was 1.06oC of mean value on the nighttime data and 3.28oC of mean value on the daytime data; (iii) condition classes significantly differentiate on both daytime and nighttime thermal data, but only on daytime data all condition classes differed statistically significantly from each other. In conclusion, the aerial thermal data can be considered as an alternative to hyperspectral data, a method of assessing the health condition of trees in an urban environment. Especially data obtained during the day, which can differentiate condition classes better than data obtained at night. The method based on thermal infrared and laser scanning data fusion could be a quick and efficient solution for identifying trees in poor health that should be visually checked in the field.

Keywords: middle wave infrared, thermal imagery, tree discoloration, urban trees

Procedia PDF Downloads 115
225 The Development of Quality Standards for the Qualification of Community Interpreters in Germany: A Needs Assessment

Authors: Jessica Terese Mueller, Christoph Breitsprecher, Mike Oliver Mosko

Abstract:

Due to an unusually high number of asylum seekers entering Germany over the course of the past few years, the need for community interpreters has increased dramatically, in order to make the communication between asylum seekers and various actors in social and governmental agencies possible. In the field of social work in particular, there are community interpreters who possess a wide spectrum of qualifications spanning from state-certified professional interpreters with graduate degrees to lay or ad-hoc interpreters with little to no formal training. To the best of our knowledge, Germany has no official national quality standards for the training of community interpreters at present, which would serve to professionalise this field as well as to assure a certain degree of quality in the training programmes offered. Given the current demand for trained community interpreters, there is a growing number of training programmes geared toward qualifying community interpreters who work with asylum seekers in Germany. These training programmes range from short one-day workshops to graduate programmes with specialisations in Community Interpreting. As part of a larger project to develop quality standards for the qualification of community interpreters working with asylum seekers in the field of social work, a needs assessment was performed in the city-state of Hamburg and the state of North Rhine Westphalia in the form of focus groups and individual interviews with relevant actors in the field in order to determine the content and practical knowledge needed for community interpreters from the perspectives of those who work in and rely on this field. More specifically, social workers, volunteers, certified language and cultural mediators, paid and volunteer community interpreters and asylum seekers were invited to take part in focus groups in both locations, and asylum seekers, training providers, researchers, linguists and other national and international experts were individually interviewed. The responses collected in these focus groups and interviews have been analysed using Mayring’s concept of content analysis. In general, the responses indicate a high degree of overlap related to certain categories as well as some categories which seemed to be of particular importance to certain groups individually, while showing little to no relevance for other groups. For example, the topics of accuracy and transparency of the interpretations, as well as professionalism and ethical concerns were touched on in some form in most groups. Some group-specific topics which are the focus of experts were topics related to interpreting techniques and more concretely described theoretical and practical knowledge which should be covered in training programmes. Social workers and volunteers generally concentrated on issues regarding the role of the community interpreters and the importance of setting and clarifying professional boundaries. From the perspective of service receivers, asylum seekers tended to focus on the importance of having access to interpreters who are from their home region or country and who speak the same regiolect, dialect or variety as they do in order to prevent misunderstandings or misinterpretations which might negatively affect their asylum status. These results indicate a certain degree of consensus with trainings offered internationally for community interpreters.

Keywords: asylum seekers, community interpreting, needs assessment, quality standards, training

Procedia PDF Downloads 165
224 Culvert Blockage Evaluation Using Australian Rainfall And Runoff 2019

Authors: Rob Leslie, Taher Karimian

Abstract:

The blockage of cross drainage structures is a risk that needs to be understood and managed or lessened through the design. A blockage is a random event, influenced by site-specific factors, which needs to be quantified for design. Under and overestimation of blockage can have major impacts on flood risk and cost associated with drainage structures. The importance of this matter is heightened for those projects located within sensitive lands. It is a particularly complex problem for large linear infrastructure projects (e.g., rail corridors) located within floodplains where blockage factors can influence flooding upstream and downstream of the infrastructure. The selection of the appropriate blockage factors for hydraulic modeling has been subject to extensive research by hydraulic engineers. This paper has been prepared to review the current Australian Rainfall and Runoff 2019 (ARR 2019) methodology for blockage assessment by applying this method to a transport corridor brownfield upgrade case study in New South Wales. The results of applying the method are also validated against asset data and maintenance records. ARR 2019 – Book 6, Chapter 6 includes advice and an approach for estimating the blockage of bridges and culverts. This paper concentrates specifically on the blockage of cross drainage structures. The method has been developed to estimate the blockage level for culverts affected by sediment or debris due to flooding. The objective of the approach is to evaluate a numerical blockage factor that can be utilized in a hydraulic assessment of cross drainage structures. The project included an assessment of over 200 cross drainage structures. In order to estimate a blockage factor for use in the hydraulic model, a process has been advanced that considers the qualitative factors (e.g., Debris type, debris availability) and site-specific hydraulic factors that influence blockage. A site rating associated with the debris potential (i.e., availability, transportability, mobility) at each crossing was completed using the method outlined in ARR 2019 guidelines. The hydraulic results inputs (i.e., flow velocity, flow depth) and qualitative factors at each crossing were developed into an advanced spreadsheet where the design blockage level for cross drainage structures were determined based on the condition relating Inlet Clear Width and L10 (average length of the longest 10% of the debris reaching the site) and the Adjusted Debris Potential. Asset data, including site photos and maintenance records, were then reviewed and compared with the blockage assessment to check the validity of the results. The results of this assessment demonstrate that the estimated blockage factors at each crossing location using ARR 2019 guidelines are well-validated with the asset data. The primary finding of the study is that the ARR 2019 methodology is a suitable approach for culvert blockage assessment that has been validated against a case study spanning a large geographical area and multiple sub-catchments. The study also found that the methodology can be effectively coded within a spreadsheet or similar analytical tool to automate its application.

Keywords: ARR 2019, blockage, culverts, methodology

Procedia PDF Downloads 361
223 Phytochemical Screening, Antioxidant and Antibacterial Activity of Annona cherimola Mill

Authors: Arun Jyothi Bheemagani, Chakrapani Pullagummi, Anupalli Roja Rani

Abstract:

Exploration of the chemical constituents of the plants and pharmacological screening may provide us the basis for the development of novel agents. Plants have provided us some of the very important life saving drugs used in the modern medicine. The aim of our work was to screen the phytochemical constituents and antimicrobial and antioxidant activities of methanol extract of leaves of Annona cherimola Mill plant from Tirumala forest, Tirupathi. It was originally called Chirimuya by the Inca people who lived where it was growing in the Andes of South America, is an edible fruit-bearing species of the genus Annona from the family Annonaceae. Annona cherimola Mill is a multipurpose tree with edible fruits and is one of the sources of the medicinal products. The antibacterial activity was measured by agar well diffusion method; the diameter of the zone of bacterial growth inhibition was measured after incubation of plates. The inhibitory effect was studied against the pathogenic bacteria (Klebsiella pneumonia, Bacillus subtilis, Staphylococcus aureus and Escherichia coli (E. coli). Antioxidant assays were also performed for the same extracts by spectrophotometric methods using known standard antioxidants as reference. The studied plant extracts were found to be very effective against the pathogenic microorganisms tested. The methanolic extract of Annona cherimola Mill from showed maximum activity against Escherichia coli and Staphylococcus aureus and the least concentration required showing the activity was 0.5mg/ml. Phytochemical screening of the plants revealed the presence of flavonoids, alkaloids, steroids and carbohydrates. Good presence of antioxidants was also found in the methanolic extracts.

Keywords: annona cherimola, phytochemicals, antioxidant and antibacterial activity, methanol extract

Procedia PDF Downloads 451
222 Quantifying the Impacts of Elevated CO2 and N Fertilization on Wood Density in Loblolly Pine

Authors: Y. Cochet, A. Achim, Tom Flatman, J-C. Domec, J. Ogée, L. Wingate, Ram Oren

Abstract:

It is accepted that atmospheric CO2 concentration will increase in the future. For the past 30 years, researchers have used FACE (Free-Air Carbon Dioxide Enrichment) facilities to study the development of terrestrial ecosystems under elevated CO2 (eCO2). Forest responses to eCO2 are likely to impact timber industries with potential feedbacks towards the atmosphere. The main objectives of this study were to examine whether eCO2 alone or in combination with N-fertilization alter wood properties and to identify changes in wood anatomy related to water transport. Wood disks were sampled at breast height from mature loblolly pine trees (Pinus taeda L.) harvested at the Duke FACE site (NC, USA). By measuring ring width and intra-ring changes in density (X-ray densitometry) and tracheid size (lumen and cell wall thickness) from pith to bark, the following hypotheses were tested: 1) eCO2 and N-fertilization interact positively to increase significantly above-ground primary productivity; 2) eCO2 and N-fertilization lead to a decrease in density; 3) eCO2 and N-fertilization increase lumen diameter and decrease cell wall thickness, thus affecting water transport capacity. Our results revealed a boost in earlywood tracheid production induced by eCO2 lasting a few years. The following decrease seemed to be buffered by N-fertilization. X-ray profiles did not show a marked decrease in wood density under eCO2 or N-fertilization, although there were changes in cell anatomical properties such as a reduction in cell-wall thickness and an increase in lumen diameter. If such effects of eCO2 are confirmed, forest management strategies for example N-fertilization should be redesigned.

Keywords: wood density, Duke FACE (free-air carbon dioxide enrichment), N fertilization, tree ring

Procedia PDF Downloads 335
221 Frequency Decomposition Approach for Sub-Band Common Spatial Pattern Methods for Motor Imagery Based Brain-Computer Interface

Authors: Vitor M. Vilas Boas, Cleison D. Silva, Gustavo S. Mafra, Alexandre Trofino Neto

Abstract:

Motor imagery (MI) based brain-computer interfaces (BCI) uses event-related (de)synchronization (ERS/ ERD), typically recorded using electroencephalography (EEG), to translate brain electrical activity into control commands. To mitigate undesirable artifacts and noise measurements on EEG signals, methods based on band-pass filters defined by a specific frequency band (i.e., 8 – 30Hz), such as the Infinity Impulse Response (IIR) filters, are typically used. Spatial techniques, such as Common Spatial Patterns (CSP), are also used to estimate the variations of the filtered signal and extract features that define the imagined motion. The CSP effectiveness depends on the subject's discriminative frequency, and approaches based on the decomposition of the band of interest into sub-bands with smaller frequency ranges (SBCSP) have been suggested to EEG signals classification. However, despite providing good results, the SBCSP approach generally increases the computational cost of the filtering step in IM-based BCI systems. This paper proposes the use of the Fast Fourier Transform (FFT) algorithm in the IM-based BCI filtering stage that implements SBCSP. The goal is to apply the FFT algorithm to reduce the computational cost of the processing step of these systems and to make them more efficient without compromising classification accuracy. The proposal is based on the representation of EEG signals in a matrix of coefficients resulting from the frequency decomposition performed by the FFT, which is then submitted to the SBCSP process. The structure of the SBCSP contemplates dividing the band of interest, initially defined between 0 and 40Hz, into a set of 33 sub-bands spanning specific frequency bands which are processed in parallel each by a CSP filter and an LDA classifier. A Bayesian meta-classifier is then used to represent the LDA outputs of each sub-band as scores and organize them into a single vector, and then used as a training vector of an SVM global classifier. Initially, the public EEG data set IIa of the BCI Competition IV is used to validate the approach. The first contribution of the proposed method is that, in addition to being more compact, because it has a 68% smaller dimension than the original signal, the resulting FFT matrix maintains the signal information relevant to class discrimination. In addition, the results showed an average reduction of 31.6% in the computational cost in relation to the application of filtering methods based on IIR filters, suggesting FFT efficiency when applied in the filtering step. Finally, the frequency decomposition approach improves the overall system classification rate significantly compared to the commonly used filtering, going from 73.7% using IIR to 84.2% using FFT. The accuracy improvement above 10% and the computational cost reduction denote the potential of FFT in EEG signal filtering applied to the context of IM-based BCI implementing SBCSP. Tests with other data sets are currently being performed to reinforce such conclusions.

Keywords: brain-computer interfaces, fast Fourier transform algorithm, motor imagery, sub-band common spatial patterns

Procedia PDF Downloads 128
220 Integration of Agroforestry Shrub for Diversification and Improved Smallholder Production: A Case of Cajanus cajan-Zea Mays (Pigeonpea-Maize) Production in Ghana

Authors: F. O. Danquah, F. Frimpong, E. Owusu Danquah, T. Frimpong, J. Adu, S. K. Amposah, P. Amankwaa-Yeboah, N. E. Amengor

Abstract:

In the face of global concerns such as population increase, climate change, and limited natural resources, sustainable agriculture practices are critical for ensuring food security and environmental stewardship. The study was conducted in the Forest zones of Ghana during the major and minor seasons of 2023 cropping seasons to evaluate maize yield productivity improvement and profitability of integrating Cajanus cajan (pigeonpea) into a maize production system described as a pigeonpea-maize cropping system. This is towards an integrated soil fertility management (ISFM) with a legume shrub pigeonpea for sustainable maize production while improving smallholder farmers' resilience to climate change. A split-plot design with maize-pigeonpea (Pigeonpea-Maize intercrop – MPP and No pigeonpea/ Sole maize – NPP) and inorganic fertilizer rate (250 kg/ha of 15-15-15 N-P2O5-K2O + 250 kg/ha Sulphate of Ammonia (SoA) – Full rate (FR), 125 kg/ha of 15-15-15 N-P2O5-K2O + 125 kg/ha Sulphate of Ammonia (SoA) – Half rate (HR) and no inorganic fertilizer (NF) as control) was used as the main plot and subplot treatments respectively. The results indicated a significant interaction of the pigeonpea-maize cropping system and inorganic fertilizer rate on the growth and yield of the maize with better and similar maize productivity when HR and FR were used with pigeonpea biomass. Thus, the integration of pigeonpea and its biomass would result in the reduction of recommended fertiliser rate to half. This would improve farmers’ income and profitability for sustainable maize production in the face of climate change.

Keywords: agroforestry tree, climate change, integrated soil fertility management, resource use efficiency

Procedia PDF Downloads 58
219 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer A. Aljohani

Abstract:

COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.

Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network

Procedia PDF Downloads 92
218 The New Insight about Interspecies Transmission of Iranian H9N2 Influenza Viruses from Avian to Human

Authors: Masoud Soltanialvar, Ali Bagherpour

Abstract:

Documented cases of human infection with H9N2 avian influenza viruses, first detected in 1999 in Hong Kong and China, indicate that these viruses can be directly transmitted from birds to humans. In this study, we characterized the mutation in the Hemagglutinin (HA) genes and proteins that correlates with a shift in affinity of the Hemagglutinin (HA) protein from the “avian” type sialic receptors to the “human” type in 10 Iranian isolates. We delineated the genomes and receptor binding profile of HA gene of some field isolates and established their phylogenetic relationship to the other Asian H9N2 sub lineages. A total of 1200 tissue samples collected from 40 farms located in various states of Iran during 2008 – 2010 as part of a program to monitor Avian Influenza Viruses (AIV) infection. To determine the genetic relationship of Iranian viruses, the Hemagglutinin (HA) genes from ten isolates were amplified and sequenced (by RT-PCR method). Nucleotide sequences (orf) of the (HA) genes were used for phylogenetic tree construction. Deduced amino acid sequences showed the presence of L226 (234 in H9 numbering) in all ten Iranian isolates which indicates a preference to binding of α (2–6) sialic acid receptors, so these Iranian H9N2 viruses have the potential to infect human beings. These isolates showed high degree of homology with 2 human H9N2 isolates A/HK/1073/99, A/HK/1074/99. Phylogenetic analysis of showed that all the HA genes of the Iranian H9N2 viruses fall into a single group within a G1-like sublineage which had contributed as donor of six internal genes to H5N1 highly pathogenic avian influenza. The results of this study indicated that all Iranian viruses have the potential to emerge as highly pathogenic influenza virus, and considering the homology of these isolates with human H9N2 strains, it seems that the potential of these avian influenza isolates to infect human should not be overlooked.

Keywords: influenza virus, hemagglutinin, neuraminidase, Iran

Procedia PDF Downloads 449
217 Environmental Degradation of Natural Resources in Broghil National Park in the High Mountains of Pakistan – Empirical Evidence From Local Community and Geoinformatics

Authors: Siddique Ullah Baig, Alisha Manzoor

Abstract:

The remotest, mountainous, and icy Broghil Valley is a high-profile protected area as a national park, which hosts one of the highest altitude permanent human settlements on the earth. This park hosts a distributed but diverse range of habitats. Due to a lack of infrastructures, higher altitudes, and harsh environmental conditions, poverty-stricken inhabitants mostly rely on its resources, causing ecological dis-balance. This study aims to investigate the environmental degradation of natural resources of the park based on empirical evidence from stakeholders and geoinformatics. The result shows that one-fourth of the park is a gently undulating basin dotted with water bodies / grass, and agricultural land and three fourth is entirely rugged with steep mountains and glaciers. There are virtually no forests as the arid cold tundra climate and high altitude prevent tree growth. Rapid three-decadal land cover changes have led to ecological disequilibrium of the park, narrowing the traditional diverse food base, decreasing the resilience of biodiversity and local livelihoods as crop-land has shifted towards fallow, alpine-grass to peat-land and snow/glacial ice area to bare-soil/rocks. The local community believes in exploiting whatever vegetation or organic material is available for use as food, fodder, and fuel. The permanent presence of the community and limited cost-effective options in the park will be a challenge forever to maintain undisturbed natural processes as the objective of a national park.

Keywords: Broghil National Park, natural resources, environmental degradation, land cover

Procedia PDF Downloads 66
216 Phytochemical Screening, Antimicrobial and Antioxidant Efficacy of the Endocarps Fruits of Argania spinosa (L.) Skeels (Sapotaceae) in Mostaganem

Authors: Sebaa H., Cherifi F., Djabeur Abderrezak M.

Abstract:

Argania spinosa, Sapotaceae sole representative in Algeria and Morocco; hence it is endemic in these regions. However, it is a recognised oil, forage, and timber tree highly adapted to aridity. The exploitation of the argan fruits produces considerable amounts of under or related products. These products, such as the endocarps of a fruit, recuperated after the use of kernels to extract oil. This research studies in detail the contents of total phenolic content was determined by Folin Ciocalteu reagent and Flavonoids by aluminum chloride colorimetric assay). Antioxidant activity of extracts was expressed as the percentage of DPPH radical inhibition and IC50 values (μg/mL). Antimicrobial activity evaluated using agar disk diffusion method against reference Pseudomonas aeruginosa ATTC 27453, Escherichia coli ATCC 23922. Immature endocarps showed a higher polyphenol content than mature endocarps. The total phenolic content in immature endocarps was found to vary from 983,75+ /- 0.45 to 980,1 +/- 0.43 mg gallic acid equivalents/g dry weight, whereas in mature endocarps, the polyphenol content ranged from 100,58 mg/g +/- 0.42 to 105 +/- 0.55% mg gallic acid equivalent / g dry weight. The flavonoid content was 16.5 mg equivalent catechin/g dry weight and 9.81mg equivalent catechin /g dry weight for immature and mature endocarp fruits, respectively. DPPH assay of the endocarps extract yielded a half-maximal effective concentration (IC50) value in the immature endocarps (549.33 μg/mL) than in mature endocarps (322 μg/mL). This result can be attributed to the higher phenolics and flavonoid compounds in the immature endocarps. Methanol extract of immature endocarps exhibited antibacterial activity against E.colie (inhibition zone, 11mm).

Keywords: antioxidant activity, antimicrobial activity, total phenolic content, DPPH assay

Procedia PDF Downloads 117
215 Nucleotide Based Validation of the Endangered Plant Diospyros mespiliformis (Ebenaceae) by Evaluating Short Sequence Region of Plastid rbcL Gene

Authors: Abdullah Alaklabi, Ibrahim A. Arif, Sameera O. Bafeel, Ahmad H. Alfarhan, Anis Ahamed, Jacob Thomas, Mohammad A. Bakir

Abstract:

Diospyros mespiliformis (Hochst. ex A.DC.; Ebenaceae) is a large deciduous medicinal plant. This plant species is currently listed as endangered in Saudi Arabia. Molecular identification of this plant species based on short sequence regions (571 and 664 bp) of plastid rbcL (ribulose-1, 5-biphosphate carboxylase) gene was investigated in this study. The endangered plant specimens were collected from Al-Baha, Saudi Arabia (GPS coordinate: 19.8543987, 41.3059349). Phylogenetic tree inferred from the rbcL gene sequences showed that this species is very closely related with D. brandisiana. The close relationship was also observed among D. bejaudii, D. Philippinensis and D. releyi (≥99.7% sequence homology). The partial rbcL gene sequence region (571 bp) that was amplified by rbcL primer-pair rbcLaF-rbcLaR failed to discriminate D. mespiliformis from the closely related plant species, D. brandisiana. In contrast, primer-pair rbcL1F-rbcL724R yielded longer amplicon, discriminated the species from D. brandisiana and demonstrated nucleotide variations in 3 different sites (645G>T; 663A>C; 710C>G). Although D. mespiliformis (EU980712) and D. brandisiana (EU980656) are very closely related species (99.4%); however, studied specimen showed 100% sequence homology with D. mespiliformis and 99.6% with D. brandisiana. The present findings showed that rbcL short sequence region (664 bp) of plastid rbcL gene, amplified by primer-pair rbcL1F-rbcL724R, can be used for authenticating samples of D. mespiliforformis and may provide help in authentic identification and management process of this medicinally valuable endangered plant species.

Keywords: Diospyros mespiliformis, endangered plant, identification partial rbcL

Procedia PDF Downloads 432
214 Biodiversity Interactions Between C3 and C4 Plants under Agroforestry Cropping System

Authors: Ezzat Abd El Lateef

Abstract:

Agroforestry means combining the management of trees with productive agricultural activities, especially in semiarid regions where crop yield increases are limited in agroforestry systems due to the fertility and microclimate improvements and the large competitive effect of trees with crops for water and nutrients, in order to assess the effect of agroforestry of some field crops with citrus trees as an approach to establish biodiversity in fruit tree plantations. Three field crops, i.e., maize, soybean and sunflower, were inter-planted with seedless orange trees (4*4 m) or were planted as solid plantings. The results for the trees indicated a larger fruit yield was obtained when soybean and sunflowers were interplant with citrus. Statistically significant effects (P<0.05) were found for maize grain and biological yields, with increased yields when grown as solid planting. There were no differences in the yields of soya bean and sunflower, where the yields were very similar between the two cropping systems. It is evident from the trials that agroforestry is an efficient concept to increase biodiversity through the interaction of trees with the interplant field crop species. Maize, unlike the other crops, was more sensitive to shade conditions under agroforestry practice and not preferred in the biodiversity system. The potential of agroforestry to improve or increase biodiversity is efficient as the understorey crops are usually C4 species, and the overstorey trees are invariably C3 species in agroforestry. Improvement in interplant species is most likely if the understorey crop is a C3 species, which are usually light saturated in the open, and partial shade may have little effect on assimilation or by a concurrent reduction in transpiration. It could be concluded that agroforestry is an efficient concept to increase biodiversity through the interaction of trees with the interplant field crop species. Some field crops could be employed successfully, like soybean or sunflowers, while others like maize are sensitive to incorporate in agroforestry system.

Keywords: agroforestry, field crops, C3 and C4 plants, yield

Procedia PDF Downloads 182
213 Adapting Tools for Text Monitoring and for Scenario Analysis Related to the Field of Social Disasters

Authors: Svetlana Cojocaru, Mircea Petic, Inga Titchiev

Abstract:

Humanity faces more and more often with different social disasters, which in turn can generate new accidents and catastrophes. To mitigate their consequences, it is important to obtain early possible signals about the events which are or can occur and to prepare the corresponding scenarios that could be applied. Our research is focused on solving two problems in this domain: identifying signals related that an accident occurred or may occur and mitigation of some consequences of disasters. To solve the first problem, methods of selecting and processing texts from global network Internet are developed. Information in Romanian is of special interest for us. In order to obtain the mentioned tools, we should follow several steps, divided into preparatory stage and processing stage. Throughout the first stage, we manually collected over 724 news articles and classified them into 10 categories of social disasters. It constitutes more than 150 thousand words. Using this information, a controlled vocabulary of more than 300 keywords was elaborated, that will help in the process of classification and identification of the texts related to the field of social disasters. To solve the second problem, the formalism of Petri net has been used. We deal with the problem of inhabitants’ evacuation in useful time. The analysis methods such as reachability or coverability tree and invariants technique to determine dynamic properties of the modeled systems will be used. To perform a case study of properties of extended evacuation system by adding time, the analysis modules of PIPE such as Generalized Stochastic Petri Nets (GSPN) Analysis, Simulation, State Space Analysis, and Invariant Analysis have been used. These modules helped us to obtain the average number of persons situated in the rooms and the other quantitative properties and characteristics related to its dynamics.

Keywords: lexicon of disasters, modelling, Petri nets, text annotation, social disasters

Procedia PDF Downloads 197
212 Development of Automatic Farm Manure Spreading Machine for Orchards

Authors: Barış Ozluoymak, Emin Guzel, Ahmet İnce

Abstract:

Since chemical fertilizers are used for meeting the deficiency of plant nutrients, its many harmful effects are not taken into consideration for the structure of the earth. These fertilizers are hampering the work of the organisms in the soil immediately after thrown to the ground. This interference is first started with a change of the soil pH and micro organismic balance is disrupted by reaction in the soil. Since there can be no fragmentation of plant residues, organic matter in the soil will be increasingly impoverished in the absence of micro organismic living. Biological activity reduction brings about a deterioration of the soil structure. If the chemical fertilization continues intensively, soils will get worse every year; plant growth will slow down and stop due to the intensity of chemical fertilizers, yield decline will be experienced and farmer will not receive an adequate return on his investment. In this research, a prototype of automatic farm manure spreading machine for orange orchards that not just manufactured in Turkey was designed, constructed, tested and eliminate the human drudgery involved in spreading of farm manure in the field. The machine comprised several components as a 5 m3 volume hopper, automatic controlled hydraulically driven chain conveyor device and side delivery conveyor belts. To spread the solid farm manure automatically, the machine was equipped with an electronic control system. The hopper and side delivery conveyor designs fitted between orange orchard tree row spacing. Test results showed that the control system has significant effects on reduction in the amount of unnecessary solid farm manure use and avoiding inefficient manual labor.

Keywords: automatic control system, conveyor belt application, orchard, solid farm manure

Procedia PDF Downloads 285
211 Comparative Analysis of Climate Mitigation Strategies Adopted by Farmers of Pakistan and the USA

Authors: Gulfam Hasan, Ijaz Ashraf, Saleem Ashraf, Muhammad Rafay Muzammil, Salman Asghar, Shafiq-Ur-Rehman Zia

Abstract:

The word “climate change” has become the most popular term when anyone observes any uncertain climate variation in their respective region. Asian countries are more prone to the impact of this phenomenon, and Pakistan is the leading affected country. Last few years, governments all over the world have been trying to cater to this issue for the best entrust of their population, especially agriculture. Now the farmers in Pakistan are fully aware of the term “climate change” and are more concerned about its solutions. On the other hand, developed countries like the USA are setting a benchmark for developing countries in every sphere of life. Based on cultural and other variations, the research was carried out to identify the behavior of farmers regarding the same issue. Cross-sectional survey research was designed for an in-depth study of relevant research questions. Face-to-face interviews were conducted in Pakistan, while virtual and face-to-face interviews were conducted in the Indiana State of the USA. The results of the present study and the responses of farmers were very interesting. The common climate change mitigation strategies suggested by farmers of both countries were less use of motor vehicles (replacement with bicycles in the circle of 10 Km), less dependency on chemical fertilizers (increased use of Manure, Bio-fertilizer, Compost), and plantation of the tree. The difference of opinion was in less government interest, lack of farmers’ education, political instability (views of Pakistani farmers), awareness of local communities, self-satisfaction, and economic disparities (views of USA farmers). Based on the given evidence, it was recommended that there is a dire need to address the climate change issue all over the world without discrimination of race, color, region, or religion. Because it will affect not only agriculture but also the real effect will be on HUMANITY.

Keywords: climate change, mitigation strategies, forests, biodiversity

Procedia PDF Downloads 125
210 Impact of Agroforestry Practices on Biodiversity Management and Livelihoods of Communities Adjacent Magamba Nature Reserve(MNR), Tanzania

Authors: P. J. Kagosi, M. Mndolwa, E. Japhate

Abstract:

The study was conducted to communities adjacent MNR, Lushoto district, Tanzania. The MNR is one of the nine nature reserves in the Eastern Arc Mountains of Tanzania with an area of 8,700ha with high biological diversity. However, biodiversity in MNR have been threatened by increasing human activities for livelihood in 1970s. The AF systems in the study area was practised since 1980s however, no study was conducted on AF impacts. This paper presents the influence of AF on livelihood of communities adjacent MNR and biodiversity conservation. Qualitative and quantitative data were collected using socio-economic survey and botanical surveys. Data were analysed using Statistical Packages for Social Sciences and content analysis. The study found that in 1970s free livestock grazing caused considerable surface runoff, soil erosion and reduction of crop production. Since 1980s, the study area received various interventions based on the land conservations and improved livelihood through practising AF systems. It was further found that the AF farming improved crop productivity, reduced soil erosion, increased firewood (80.2%) and other forest products availability and AF encouraged community members practicing indoor livestock keeping.The dominant agroforestry tree found in the study area is grevillea reported by 74.1% of respondents planting an average of 40 trees. The study found that the AF reduced pressure to MNR as forest products and fodders were obtained from community's farms in turn, currently water flow from MNR has been increased. Thus AF products support livelihood needs and conserve biodiversity. The study recommends continuity education on new AF technology packages.

Keywords: impact of agroforestry, biodiversity management, communities’ livelihoods, Magamba nature reserve

Procedia PDF Downloads 354
209 Developing a DNN Model for the Production of Biogas From a Hybrid BO-TPE System in an Anaerobic Wastewater Treatment Plant

Authors: Hadjer Sadoune, Liza Lamini, Scherazade Krim, Amel Djouadi, Rachida Rihani

Abstract:

Deep neural networks are highly regarded for their accuracy in predicting intricate fermentation processes. Their ability to learn from a large amount of datasets through artificial intelligence makes them particularly effective models. The primary obstacle in improving the performance of these models is to carefully choose the suitable hyperparameters, including the neural network architecture (number of hidden layers and hidden units), activation function, optimizer, learning rate, and other relevant factors. This study predicts biogas production from real wastewater treatment plant data using a sophisticated approach: hybrid Bayesian optimization with a tree-structured Parzen estimator (BO-TPE) for an optimised deep neural network (DNN) model. The plant utilizes an Upflow Anaerobic Sludge Blanket (UASB) digester that treats industrial wastewater from soft drinks and breweries. The digester has a working volume of 1574 m3 and a total volume of 1914 m3. Its internal diameter and height were 19 and 7.14 m, respectively. The data preprocessing was conducted with meticulous attention to preserving data quality while avoiding data reduction. Three normalization techniques were applied to the pre-processed data (MinMaxScaler, RobustScaler and StandardScaler) and compared with the Non-Normalized data. The RobustScaler approach has strong predictive ability for estimating the volume of biogas produced. The highest predicted biogas volume was 2236.105 Nm³/d, with coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.712, 164.610, and 223.429, respectively.

Keywords: anaerobic digestion, biogas production, deep neural network, hybrid bo-tpe, hyperparameters tuning

Procedia PDF Downloads 38
208 Adjustments of Mechanical and Hydraulic Properties of Wood Formed under Environmental Stresses

Authors: B. Niez, B. Moulia, J. Dlouha, E. Badel

Abstract:

Trees adjust their development to the environmental conditions they experience. Storms events of last decades showed that acclimation of trees to mechanical stresses due to wind is a very important process that allows the trees to sustain for long years. In the future, trees will experience new wind patterns, namely, more often strong winds and fewer daily moderate winds. Moreover, these patterns will go along with drought periods that may interact with the capacity of trees to adjust their growth to mechanical stresses due to wind. It is necessary to understand the mechanisms of wood functional acclimations to environmental conditions in order to predict their behaviour and in order to give foresters and breeders the relevant tools to adapt their forest management. This work aims to study how trees adjust the mechanical and hydraulic functions of their wood to environmental stresses and how this acclimation may be beneficial for the tree to resist to future stresses. In this work, young poplars were grown under controlled climatic conditions that include permanent environmental stress (daily mechanical stress of the stem by bending and/or hydric stress). Then, the properties of wood formed under these stressed conditions were characterized. First, hydraulic conductivity and sensibility to cavitation were measured at the tissue level in order to evaluate the changes in water transport capacity. Secondly, bending tests and Charpy impact tests were carried out at the millimetric scale to locally measure mechanical parameters such as elastic modulus, elastic limit or rupture energy. These experimental data allow evaluating the impacts of mechanical and water stress on the wood material. At the stem level, they will be merged in an integrative model in order to evaluate the beneficial aspect of wood acclimation for trees.

Keywords: acclimation, environmental stresses, hydraulics, mechanics, wood

Procedia PDF Downloads 204
207 Emotional and Personal Characteristics of Children in Relation to the Parental Attitudes

Authors: Svetlana S. Saveysheva, Victoria E. Vasilenko

Abstract:

The purpose of the research was to study the emotional and personal characteristics of preschool children in relation to the characteristics of child-parent interaction and deviant parental attitudes. The study involved 172 mothers and 172 children (85 boys and 87 girls) aged 4,5 to 7 years (mean age 6 years) living in St. Petersburg, Russia. Methods used were, demographic questionnaire, projective drawing method 'House-Tree-Man', Test of anxiety (Temml, Dorki, Amen), technique of studying self-esteem 'Ladder', expert evaluation of sociability and aggressiveness, questionnaire for children-parent emotional interaction (E.I. Zaharova) and questionnaire 'Analysis of family relationships' (E.G. Eidemiller, V.V. Yustitsky). Results. The greatest number of links with personal characteristics have received such parental deviant attitudes as overprotection and characteristics of authoritarian style (prohibitions, sanctions). If the mother has such peculiarities of the parental relationship, the child is characterized by lower self-esteem, increased anxiety, distrust of themselves and hostility. Children have more pronounced manifestations of aggression in a conniving and unstable style of parenting. The sensitivity of the mother is positively associated with children’s self-esteem. Unconditional acceptance of the child, the predominance of a positive emotional background, orientation to the state of the child during interaction promote the development of communication skills and reduce of aggressiveness. But the excessive closeness of the mother with the child can make it difficult to develop the communicative skills. Conclusions. The greatest influence on emotional and personal characteristics is provided by such features of the parental relation as overprotection, characteristics of authoritarian style, underdevelopment of the sphere of parental feelings, sensitivity of mother and behavioral manifestations of emotional interaction. Research is supported by RFBR №18-013-00990.

Keywords: characteristics of personality, child-parent interaction, children, deviant parental attitudes

Procedia PDF Downloads 238
206 Predicting Low Birth Weight Using Machine Learning: A Study on 53,637 Ethiopian Birth Data

Authors: Kehabtimer Shiferaw Kotiso, Getachew Hailemariam, Abiy Seifu Estifanos

Abstract:

Introduction: Despite the highest share of low birth weight (LBW) for neonatal mortality and morbidity, predicting births with LBW for better intervention preparation is challenging. This study aims to predict LBW using a dataset encompassing 53,637 birth cohorts collected from 36 primary hospitals across seven regions in Ethiopia from February 2022 to June 2024. Methods: We identified ten explanatory variables related to maternal and neonatal characteristics, including maternal education, age, residence, history of miscarriage or abortion, history of preterm birth, type of pregnancy, number of livebirths, number of stillbirths, antenatal care frequency, and sex of the fetus to predict LBW. Using WEKA 3.8.2, we developed and compared seven machine learning algorithms. Data preprocessing included handling missing values, outlier detection, and ensuring data integrity in birth weight records. Model performance was evaluated through metrics such as accuracy, precision, recall, F1-score, and area under the Receiver Operating Characteristic curve (ROC AUC) using 10-fold cross-validation. Results: The results demonstrated that the decision tree, J48, logistic regression, and gradient boosted trees model achieved the highest accuracy (94.5% to 94.6%) with a precision of 93.1% to 93.3%, F1-score of 92.7% to 93.1%, and ROC AUC of 71.8% to 76.6%. Conclusion: This study demonstrates the effectiveness of machine learning models in predicting LBW. The high accuracy and recall rates achieved indicate that these models can serve as valuable tools for healthcare policymakers and providers in identifying at-risk newborns and implementing timely interventions to achieve the sustainable developmental goal (SDG) related to neonatal mortality.

Keywords: low birth weight, machine learning, classification, neonatal mortality, Ethiopia

Procedia PDF Downloads 21
205 Evaluation of Classification Algorithms for Diagnosis of Asthma in Iranian Patients

Authors: Taha SamadSoltani, Peyman Rezaei Hachesu, Marjan GhaziSaeedi, Maryam Zolnoori

Abstract:

Introduction: Data mining defined as a process to find patterns and relationships along data in the database to build predictive models. Application of data mining extended in vast sectors such as the healthcare services. Medical data mining aims to solve real-world problems in the diagnosis and treatment of diseases. This method applies various techniques and algorithms which have different accuracy and precision. The purpose of this study was to apply knowledge discovery and data mining techniques for the diagnosis of asthma based on patient symptoms and history. Method: Data mining includes several steps and decisions should be made by the user which starts by creation of an understanding of the scope and application of previous knowledge in this area and identifying KD process from the point of view of the stakeholders and finished by acting on discovered knowledge using knowledge conducting, integrating knowledge with other systems and knowledge documenting and reporting.in this study a stepwise methodology followed to achieve a logical outcome. Results: Sensitivity, Specifity and Accuracy of KNN, SVM, Naïve bayes, NN, Classification tree and CN2 algorithms and related similar studies was evaluated and ROC curves were plotted to show the performance of the system. Conclusion: The results show that we can accurately diagnose asthma, approximately ninety percent, based on the demographical and clinical data. The study also showed that the methods based on pattern discovery and data mining have a higher sensitivity compared to expert and knowledge-based systems. On the other hand, medical guidelines and evidence-based medicine should be base of diagnostics methods, therefore recommended to machine learning algorithms used in combination with knowledge-based algorithms.

Keywords: asthma, datamining, classification, machine learning

Procedia PDF Downloads 447
204 Social Networks in a Communication Strategy of a Large Company

Authors: Kherbache Mehdi

Abstract:

Within the framework of the validation of the Master in business administration marketing and sales in INSIM institute international in management Blida, we get the opportunity to do a professional internship in Sonelgaz Enterprise and a thesis. The thesis deals with the integration of social networking in the communication strategy of a company. The problematic is: How communicate with social network can be a solution for companies? The challenges stressed by this thesis were to suggest limits and recommendations to Sonelgaz Enterprise concerning social networks. The whole social networks represent more than a billion people as a potential target for the companies. Thanks to research and a qualitative approach, we have identified tree valid hypothesis. The first hypothesis allows confirming that using social networks cannot be ignored by any company in its communication strategy. However, the second hypothesis demonstrates that it’s necessary to prepare a strategy that integrates social networks in the communication plan of the company. The risk of this strategy is very limited because failure on social networks is not a restraint for the enterprise, social networking is not expensive and, a bad image which could result from it is not as important in the long-term. Furthermore, the return on investment is difficult to evaluate. Finally, the last hypothesis shows that firms establish a new relation between consumers and brands thanks to the proximity allowed by social networks. After the validation of the hypothesis, we suggested some recommendations to Sonelgaz Enterprise regarding the communication through social networks. Firstly, the company must use the interactivity of social network in order to have fruitful exchanges with the community. We also recommended having a strategy to treat negative comments. The company must also suggest delivering resources to the community thanks to a community manager, in order to have a good relation with the community. Furthermore, we advised using social networks to do business intelligence. Sonelgaz Enterprise can have some creative and interactive contents with some amazing applications on Facebook for example. Finally, we recommended to the company to be not intrusive with “fans” or “followers” and to be open to all the platforms: Twitter, Facebook, Linked-In for example.

Keywords: social network, buzz, communication, consumer, return on investment, internet users, web 2.0, Facebook, Twitter, interaction

Procedia PDF Downloads 422
203 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components

Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea

Abstract:

Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.

Keywords: assessment, part of speech, sentiment analysis, student feedback

Procedia PDF Downloads 142
202 The Côa Valley Ecosystem (Douro, Portugal) as a Cultural Landscape. Approach to the Management Challenges

Authors: Mariana Durana Pinto, Thierry Aubry, Eduarda Vieira

Abstract:

The Côa River is one of the tributaries of the Douro River, which in turn connects two Portuguese regions: Beira-Alta (Serra das Mesas, Sabugal) and Trás-os-Montes (Douro River, Vila Nova de Foz Côa). The river, which is approximately 140 kilometres in length, is surrounded by characteristic Northern-Estearn Portugal landscape. The dominant flora in the region includes olive and almond trees and vines, which provide habitat for a diverse range of native species. These include mammals such as the lynx and Iberian wolf, as well as birds of prey such as the Egyptian vulture and the griffon vulture. Additionally, herbivorous species such as red deer and roe deer also inhabit the region. However, the Vale Côa is inextricably linked with the rocky outcrops bearing the emblematic open-air Upper Palaeolithic rock art, indeed, it houses the world's largest collection of prehistoric open-air rock art, inscribed on the World Heritage list by UNESCO in 1998. From the initial discovery of the first engravings in 1991 to the present day, approximally 1,500 panels with rock art, mostly engravings and carving, but also some paintings, have been discovered, inventoried and recorded spanning from earlu Upper Paleolithic to the 20th century. The study and interpretation of the engravings and its geoarchaeological context, allow the construction of a chronological timeline of the human occupation and graphical production in this region. The area has been inhabited since the Early Palaeolithic, with human communities exploiting the diversity of the natural resources of the environment and adapting it to their needs. This led to the creation of an archaeological and historical cultural landscape.The region is currently inhabited by rural communities whose primary source of income is derived from agricultural activities, with a particular focus on olive oil and wine production, including the emblematic Vinho do Porto. Additionally, the region is distinguished by activities such as stone exploration and extraction (e.g. schist and granite quarries) and tourism. The latter has progressively assumed a role in the promotion and development of the region, primarily due to the engravings of the Côa Valley itself, as well as the Alto Douro Wine Region. Furthermore, this cultural landscape has been inscribed in the UNESCO World Heritage Site in 2001. The aforementioned factors give rise to a series of challenges and issues pertaining to the management and safeguarding of rock art on a daily basis. These include: I) the management of conflicts between cultural heritage and economic activity (between Rock art and vineyards, both classified as World Heritage Sites); II) the management of land-use planning in areas where the engravings are located (since the areas with engravings are larger than those identified as buffer zones by UNESCO); III) the absence of the legal figure of an 'archaeological park' and the need to solve this issue; IV) the management of tourist pressure and unauthorised visits; and V) the management of vandalism (as a consequence of misinformation and denial).

Keywords: Douro and Côa Valleys, archaeological cultural landscapes, rock art, Douro wine, conservation challenges

Procedia PDF Downloads 10
201 Documentary Filmmaking as Activism: Case Studies in Advocacy and Social Justice

Authors: Babatunde Kolawole

Abstract:

This paper embarks on an exploration of the compelling interplay between documentary filmmaking and activism, delving into their symbiotic relationship and profound impact on advocacy and social justice causes. Through an in-depth analysis of diverse case studies, it seeks to illuminate the instances where documentary films have emerged as potent tools for effecting social change and advancing the principles of justice. This research underscores the vital role played by documentary filmmakers in harnessing the medium's unique capacity to engage, educate, and mobilize audiences while advocating for societal transformation. The primary focus of this study is on a selection of compelling case studies spanning various topics and causes, each exemplifying the marriage between documentary filmmaking and activism. These case studies encompass a broad spectrum of subjects, from environmental conservation and climate change to civil rights movements and human rights struggles. By examining these real-world instances, this paper endeavors to provide a comprehensive understanding of the strategies, challenges, and ethical considerations that underpin the practice of documentary filmmaking as a form of activism. Throughout the paper, it becomes evident that the potency of documentary filmmaking lies in its ability to blend artistry with social impact. The selected case studies vividly demonstrate how documentary filmmakers, armed with cameras and a passion for change, have emerged as critical agents of societal transformation. Whether it be exposing environmental atrocities, shedding light on systemic inequalities, or giving voice to marginalized communities, these documentaries have played a pivotal role in pushing the boundaries of advocacy and social justice. One of the key themes explored in this paper is the evolving nature of documentary filmmaking as a tool for activism. It delves into the shift from traditional observational documentaries to more participatory and immersive approaches, highlighting the dynamic ways in which filmmakers engage with their subjects and audiences. This evolution is exemplified in case studies where filmmakers have collaborated with the communities they document, fostering a sense of agency and empowerment among those whose stories are being told. Furthermore, this research underscores the ethical considerations inherent in the intersection of documentary filmmaking and activism. It scrutinizes questions surrounding representation, objectivity, and the responsibility of filmmakers in portraying complex social issues. By dissecting ethical dilemmas faced by documentary filmmakers in these case studies, this paper encourages a critical examination of the ethical boundaries and obligations in the realm of advocacy-driven filmmaking. In conclusion, this paper aims to shed light on the remarkable potential of documentary filmmaking as a catalyst for activism and social justice. Through the lens of compelling case studies, it illustrates the transformative power of the medium in effecting change, amplifying underrepresented voices, and mobilizing global audiences. It is hoped that this research will not only inform the discourse on documentary activism but also inspire filmmakers, scholars, and advocates to continue leveraging the cinematic art form as a formidable force for a more just and equitable world.

Keywords: film, filmmaker, documentary, human right

Procedia PDF Downloads 55
200 Adaptive Response of Plants to Environmental Stress: Natural Oil Seepage; The Living Laboratory in Tramutola, Basilicata Region

Authors: Maria Francesca Scannone, Martina Bochicchio

Abstract:

One of the major environmental problems today is hydrocarbon contamination. The promising sustainable technologies for the treatment of these contaminated sites involves the use of biological organisms. In Agri Valley (Basilicata Region) there is a living laboratory (natural oil seeps) where the selective pressure has enriched the environmental matrices with microorganisms, fungi and plant species able to use the hydrocarbons as a source of metabolic energy, to degrade or tolerate hydrocarbons. Observers visiting this area are fascinated by its unspoiled nature, and the condition of the ecosystem does not appear to has been damaged. The amazing resiliency observed in Tramutola site is of key importance to try to bring green remediation technologies, but no research has been done to identify high-performing native species. The aim of this research was to study how natural processes affect the fate of released oil or how individual species or communities of plants and animals are capable of dealing with the burden of otherwise toxic chemicals. The survey of vegetation was carried out, more than 60 species have been identified and divided into tree, shrub and herb layer. Plant data sheets have been completed only for the species that showed the most appropriate properties for phytoremediation. In general, members of the Salicales, Cyperales, Poales, Fagales, Cornales, Equisetales orders were the most commonly identified orders. They are pioneer plants with high adaptive capacity and vegetative propagation. The literature review has highlighted the existence of rhizosphere effect and a green liver model on selected plants. The study provides significant information on the environmental stress adaptation processes of many indigenous plants that are living and growing on a natural leak of crude oil and gas that migrates up through subsurface.

Keywords: green liver, hydrocarbon degradation, oil seeps, phytoremediation

Procedia PDF Downloads 174