Search results for: risk curve analysis
31330 Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines
Authors: Alexander Guzman Urbina, Atsushi Aoyama
Abstract:
The sustainability of traditional technologies employed in energy and chemical infrastructure brings a big challenge for our society. Making decisions related with safety of industrial infrastructure, the values of accidental risk are becoming relevant points for discussion. However, the challenge is the reliability of the models employed to get the risk data. Such models usually involve large number of variables and with large amounts of uncertainty. The most efficient techniques to overcome those problems are built using Artificial Intelligence (AI), and more specifically using hybrid systems such as Neuro-Fuzzy algorithms. Therefore, this paper aims to introduce a hybrid algorithm for risk assessment trained using near-miss accident data. As mentioned above the sustainability of traditional technologies related with energy and chemical infrastructure constitutes one of the major challenges that today’s societies and firms are facing. Besides that, the adaptation of those technologies to the effects of the climate change in sensible environments represents a critical concern for safety and risk management. Regarding this issue argue that social consequences of catastrophic risks are increasing rapidly, due mainly to the concentration of people and energy infrastructure in hazard-prone areas, aggravated by the lack of knowledge about the risks. Additional to the social consequences described above, and considering the industrial sector as critical infrastructure due to its large impact to the economy in case of a failure the relevance of industrial safety has become a critical issue for the current society. Then, regarding the safety concern, pipeline operators and regulators have been performing risk assessments in attempts to evaluate accurately probabilities of failure of the infrastructure, and consequences associated with those failures. However, estimating accidental risks in critical infrastructure involves a substantial effort and costs due to number of variables involved, complexity and lack of information. Therefore, this paper aims to introduce a well trained algorithm for risk assessment using deep learning, which could be capable to deal efficiently with the complexity and uncertainty. The advantage point of the deep learning using near-miss accidents data is that it could be employed in risk assessment as an efficient engineering tool to treat the uncertainty of the risk values in complex environments. The basic idea of using a Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines is focused in the objective of improve the validity of the risk values learning from near-miss accidents and imitating the human expertise scoring risks and setting tolerance levels. In summary, the method of Deep Learning for Neuro-Fuzzy Risk Assessment involves a regression analysis called group method of data handling (GMDH), which consists in the determination of the optimal configuration of the risk assessment model and its parameters employing polynomial theory.Keywords: deep learning, risk assessment, neuro fuzzy, pipelines
Procedia PDF Downloads 29131329 Work-Related Risk Factors and Preventive Measures among Nurses and Dentists at Faculty of Oral and Dental Medicine
Authors: Marwa Mamdouh Shaban, Nagat Saied Habib, Shireen Ezz El-Din Taha, Eman Mahmoud Seif El-Naser
Abstract:
Background: Dental nurses and dentists were constantly exposed to a number of specific work related health risk factors which develop and intensify with years. Awareness regarding these work-related health risk factors and implementation of preventive health care measures could provide a safe work environment for all dental nurses and dentists. Aim of the study: to assess the work-related health risk factors among dental nurses and dentists and preventive health care measures applied among dental nurses and dentists. Research design: A descriptive design was utilized. Sample: Convenience sample of 50 dental nurses and 150 dentists were included in the current study. Setting: This study was conducted at the dental clinics at faculty of oral and dental medicine, Al-Kasr Al Ainy Hospital. Tools of data collection: Three tools were developed, tested for clarity, and feasibility: a-Socio-demographic data sheet, b-Work-related health risk factors questionnaire, and c-structured observational checklist. Results: The most common work risk factors prevailing among dental nurses were emotional exhaustion (82%), low back pain (76%) and latex allergy (62%) and the most common work risk factors prevailing among dentists were percutaneous exposure incident (100%), emotional exhaustion (100%) and low back pain (93.3%). Also, statistically significant negative correlation (r=-0.274, at p = 0.045) between the incidence of chemical health risk factors and application of chemical preventive measures among dental nurses. A statistically significant negative correlation (r=-0.177, at p = 0.030) between the incidences of mechanical health risk factors among dentists and application of mechanical preventive measures. Conclusion: The studied dental nurses and dentists exposed to many work related health risk factors as latex allergy, percutaneous exposure incidents, low back pain and emotional exhaustion related to inappropriate application of preventive health care measures. Recommendation: Raise awareness of dental nurses and dentists about work-related health risk factors, design and implement health education program for preventive health care measures.Keywords: work-related risk factors, preventive measures, nurses, dentists
Procedia PDF Downloads 39931328 Useful Lifetime Prediction of Chevron Rubber Spring for Railway Vehicle
Authors: Chang Su Woo, Hyun Sung Park
Abstract:
Useful lifetime evaluation of chevron rubber spring was very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of chevron rubber spring. In this study, we performed characteristic analysis and useful lifetime prediction of chevron rubber spring. Rubber material coefficient was obtained by curve fittings of uni-axial tension, equi bi-axial tension and pure shear test. Computer simulation was executed to predict and evaluate the load capacity and stiffness for chevron rubber spring. In order to useful lifetime prediction of rubber material, we carried out the compression set with heat aging test in an oven at the temperature ranging from 50°C to 100°C during a period 180 days. By using the Arrhenius plot, several useful lifetime prediction equations for rubber material was proposed.Keywords: chevron rubber spring, material coefficient, finite element analysis, useful lifetime prediction
Procedia PDF Downloads 56531327 The Correlation between Musculoskeletal Disorders and Body Postures during Playing among Guitarists
Authors: Navah Z. Ratzon, Shlomit Cohen, Sigal Portnoy
Abstract:
This work focuses on posture and risk factors for the musculoskeletal disorder in guitarists, which constitutes the largest group of musicians today. The source of the problems experienced by these musicians is linked to physical, psychosocial and personal risk factors. These muscular problems are referred to as Playing Related Musculoskeletal Disorder (PRMD). There is not enough research that specifically studies guitar players, and to the extent of our knowledge, there is almost no reference to the characteristics of their movement patterns while they play. This is in spite of the high prevalence of PRMD in this population. Kinematic research may provide a basis for the development of a prevention plan for this population and their unique characteristics of playing patterns. The aim of the study was to investigate the correlation between risk factors for PRMD among guitar players and self-reporting of pain in the skeletal muscles, and specifically to test whether there are differences in the kinematics of the upper body while playing in a sitting or standing posture. Twenty-five guitarists, aged 18-35, participated in the study. The methods included a motion analysis using a motion capture system, anthropometric measurements and questionnaires relating to risk factors. The questionnaires used were the Standardized Nordic Questionnaire for the Analysis of Musculoskeletal Symptoms and the Demand Control Support Questionnaire, as well as a questionnaire of personal details. All of the study participants complained of musculoskeletal pain in the past year; the most frequent complaints being in the left wrist. Statistically significant correlations were found between biodemographic indices and reports of pain in the past year and the previous week. No significant correlations were found between the physical posture while playing and reports of pain among professional guitarists. However, a difference was found in several kinematic parameters between seated and standing playing postures. In a majority of the joints, the joint angles while playing in a seated position were more extreme than those during standing. This finding may suggest a higher risk for musculoskeletal disorder while playing in a seated position. In conclusion, the results of the present research highlight the prevalence of musculoskeletal problems in guitar players and its correlation with various risk factors. The finding supports the need for intervention in the form of prevention through identifying the risk factors and addressing them. Relating to the person, to their occupation and environment, which are the basis of proper occupational therapy, can help meet this need.Keywords: body posture, motion tracking, PRMD, guitarists
Procedia PDF Downloads 22531326 A Copula-Based Approach for the Assessment of Severity of Illness and Probability of Mortality: An Exploratory Study Applied to Intensive Care Patients
Authors: Ainura Tursunalieva, Irene Hudson
Abstract:
Continuous improvement of both the quality and safety of health care is an important goal in Australia and internationally. The intensive care unit (ICU) receives patients with a wide variety of and severity of illnesses. Accurately identifying patients at risk of developing complications or dying is crucial to increasing healthcare efficiency. Thus, it is essential for clinicians and researchers to have a robust framework capable of evaluating the risk profile of a patient. ICU scoring systems provide such a framework. The Acute Physiology and Chronic Health Evaluation III and the Simplified Acute Physiology Score II are ICU scoring systems frequently used for assessing the severity of acute illness. These scoring systems collect multiple risk factors for each patient including physiological measurements then render the assessment outcomes of individual risk factors into a single numerical value. A higher score is related to a more severe patient condition. Furthermore, the Mortality Probability Model II uses logistic regression based on independent risk factors to predict a patient’s probability of mortality. An important overlooked limitation of SAPS II and MPM II is that they do not, to date, include interaction terms between a patient’s vital signs. This is a prominent oversight as it is likely there is an interplay among vital signs. The co-existence of certain conditions may pose a greater health risk than when these conditions exist independently. One barrier to including such interaction terms in predictive models is the dimensionality issue as it becomes difficult to use variable selection. We propose an innovative scoring system which takes into account a dependence structure among patient’s vital signs, such as systolic and diastolic blood pressures, heart rate, pulse interval, and peripheral oxygen saturation. Copulas will capture the dependence among normally distributed and skewed variables as some of the vital sign distributions are skewed. The estimated dependence parameter will then be incorporated into the traditional scoring systems to adjust the points allocated for the individual vital sign measurements. The same dependence parameter will also be used to create an alternative copula-based model for predicting a patient’s probability of mortality. The new copula-based approach will accommodate not only a patient’s trajectories of vital signs but also the joint dependence probabilities among the vital signs. We hypothesise that this approach will produce more stable assessments and lead to more time efficient and accurate predictions. We will use two data sets: (1) 250 ICU patients admitted once to the Chui Regional Hospital (Kyrgyzstan) and (2) 37 ICU patients’ agitation-sedation profiles collected by the Hunter Medical Research Institute (Australia). Both the traditional scoring approach and our copula-based approach will be evaluated using the Brier score to indicate overall model performance, the concordance (or c) statistic to indicate the discriminative ability (or area under the receiver operating characteristic (ROC) curve), and goodness-of-fit statistics for calibration. We will also report discrimination and calibration values and establish visualization of the copulas and high dimensional regions of risk interrelating two or three vital signs in so-called higher dimensional ROCs.Keywords: copula, intensive unit scoring system, ROC curves, vital sign dependence
Procedia PDF Downloads 15131325 Mechanical Properties of Lithium-Ion Battery at Different Packing Angles Under Impact Loading
Authors: Wei Zhao, Yuxuan Yao, Hao Chen
Abstract:
In order to find out the mechanical properties and failure behavior of lithium-ion batteries, drop hammer impact experiments and finite element simulations are carried out on batteries with different packed angles. Firstly, a drop hammer impact experiment system, which is based on the DHR-1808 drop hammer and oscilloscope, is established, and then a drop test of individual batteries and packed angles of 180 ° and 120 ° are carried out. The image of battery deformation, force-time curve and voltage-time curve are recorded. Secondly, finite element models of individual batteries and two packed angles are established, and the results of the test and simulation are compared. Finally, the mechanical characteristics and failure behavior of lithium-ion battery modules with the packed arrangement of 6 * 6 and packing angles of 180 °, 120 °, 90 ° and 60 ° are analyzed under the same velocity with different battery packing angles, and the same impact energy with different impact velocity and different packing angles. The result shows that the individual battery is destroyed completely in the drop hammer impact test with an initial impact velocity of 3m/s and drop height of 459mm, and the voltage drops to close to 0V when the test ends. The voltage drops to 12V when packed angle of 180°, and 3.6V when packed angle of 120°. It is found that the trend of the force-time curve between simulation and experiment is generally consistent. The difference in maximum peak value is 3.9kN for a packing angle of 180° and 1.3kN for a packing angle of 120°. Under the same impact velocity and impact energy, the strain rate of the battery module with a packing angle of 180° is the lowest, and the maximum stress can reach 26.7MPa with no battery short-circuited. The research under our experiment and simulation shows that the lithium-ion battery module with a packing angle of 180 ° is the least likely to be damaged, which can sustain the maximum stress under the same impact load.Keywords: battery module, finite element simulation, power battery, packing angle
Procedia PDF Downloads 6831324 Evaluating the Impact of Extreme Weather (Flooding) Experience on Climate Change Perceptions in Accra, Ghana
Authors: Bright Annang Baah
Abstract:
Evaluating public perceptions of climate change risk and the elements that impact them has been shown to be critical in developing support for climate change action. Previous research has found a variety of elements, including the experience of extreme weather events, that impact public perceptions and worries about climate change. However, little is known about the public's perception of climate change risks and the variables that influence them in developing countries. Using a household survey, this study attempted to evaluate respondents' risk perceptions of climate change, as well as the impact of flooding experience on such beliefs. The findings demonstrate that flood victims have a greater risk perception and are more concerned about climate change than non-victims. Concerns regarding the effects of climate change, on the other hand, were found to be the lowest when compared to other pressing challenges confronting the country. This study's findings contribute to the understanding of climate change risk perception and the impact of extreme weather events from the perspective of a developing nation.Keywords: climate change risk perception, harsh weather, perceived concern, Accra, Ghana
Procedia PDF Downloads 4731323 Development of a Risk Governance Index and Examination of Its Determinants: An Empirical Study in Indian Context
Authors: M. V. Shivaani, P. K. Jain, Surendra S. Yadav
Abstract:
Risk management has been gaining extensive focus from international organizations like Committee of Sponsoring Organizations and Financial Stability Board, and, the foundation of such an effective and efficient risk management system lies in a strong risk governance structure. In view of this, an attempt (perhaps a first of its kind) has been made to develop a risk governance index, which could be used as proxy for quality of risk governance structures. The index (normative framework) is based on eleven variables, namely, size of board, board diversity in terms of gender, proportion of executive directors, executive/non-executive status of chairperson, proportion of independent directors, CEO duality, chief risk officer (CRO), risk management committee, mandatory committees, voluntary committees and existence/non-existence of whistle blower policy. These variables are scored on a scale of 1 to 5 with the exception of the variables, namely, status of chairperson and CEO duality (which have been scored on a dichotomous scale with the score of 3 or 5). In case there is a legal/statutory requirement in respect of above-mentioned variables and there is a non-compliance with such requirement a score of one has been envisaged. Though there is no legal requirement, for the larger part of study, in context of CRO, risk management committee and whistle blower policy, still a score of 1 has been assigned in the event of their non-existence. Recognizing the importance of these variables in context of risk governance structure and the fact that the study basically focuses on risk governance, the absence of these variables has been equated to non-compliance with a legal/statutory requirement. Therefore, based on this the minimum score is 15 and the maximum possible is 55. In addition, an attempt has been made to explore the determinants of this index. For this purpose, the sample consists of non-financial companies (429) that constitute S&P CNX500 index. The study covers a 10 years period from April 1, 2005 to March 31, 2015. Given the panel nature of data, Hausman test was applied, and it suggested that fixed effects regression would be appropriate. The results indicate that age and size of firms have significant positive impact on its risk governance structures. Further, post-recession period (2009-2015) has witnessed significant improvement in quality of governance structures. In contrast, profitability (positive relationship), leverage (negative relationship) and growth (negative relationship) do not have significant impact on quality of risk governance structures. The value of rho indicates that about 77.74% variation in risk governance structures is due to firm specific factors. Given the fact that each firm is unique in terms of its risk exposure, risk culture, risk appetite, and risk tolerance levels, it appears reasonable to assume that the specific conditions and circumstances that a company is beset with, could be the biggest determinants of its risk governance structures. Given the recommendations put forth in the paper (particularly for regulators and companies), the study is expected to be of immense utility in an important yet neglected aspect of risk management.Keywords: corporate governance, ERM, risk governance, risk management
Procedia PDF Downloads 25231322 Comparison of Various Response Spectrum of Nuclear Power Plant at Chashma Site
Authors: J. Iqbal, A. Shah, M. Zeeshan
Abstract:
UBC-97, USNRC, chines origin code GB50011-2011 and site response spectrum was used to make comparison between them for Chashma site and most conservative one was selected and the USNRC was the most conservative one. The dynamic analysis of CHASNUPP-2 containment building was performed using SAP-2000 for dead load, live load (crane), pre stressed loads, wind load, temperature load, accidental pressure during LOCA, earthquake loads and the conservative response spectrum. After applying selected response spectrum on model, detail comparison was made against area of steal calculated from the analysis and the actually provided. Then prepared curve of area of steal vs. g value which shows that if the particular site was design on that spectrum that much steel needed for structural integrity.Keywords: response spectrum, USNRC, LOCA, area of steel, structure integrity
Procedia PDF Downloads 67831321 Spectroscopic Constant Calculation of the BeF Molecule
Authors: Nayla El-Kork, Farah Korjieh, Ahmed Bentiba, Mahmoud Korek
Abstract:
Ab-initio calculations have been performed to investigate the spectroscopic constants for the diatomic compound BeF. Values of the internuclear distance Re, the harmonic frequency ωe, the rotational constants Be, the electronic transition energy with respect to the ground state Te, the eignvalues Ev, the abscissas of the turning points Rmin, Rmax, the rotational constants Bv and the centrifugal distortion constants Dv have been calculated for the molecule’s ground and excited electronic states. Results are in agreement with experimental data.Keywords: spectroscopic constant, potential energy curve, diatomic molecule, spectral analysis
Procedia PDF Downloads 56731320 Fuzzy Expert Approach for Risk Mitigation on Functional Urban Areas Affected by Anthropogenic Ground Movements
Authors: Agnieszka A. Malinowska, R. Hejmanowski
Abstract:
A number of European cities are strongly affected by ground movements caused by anthropogenic activities or post-anthropogenic metamorphosis. Those are mainly water pumping, current mining operation, the collapse of post-mining underground voids or mining-induced earthquakes. These activities lead to large and small-scale ground displacements and a ground ruptures. The ground movements occurring in urban areas could considerably affect stability and safety of structures and infrastructures. The complexity of the ground deformation phenomenon in relation to the structures and infrastructures vulnerability leads to considerable constraints in assessing the threat of those objects. However, the increase of access to the free software and satellite data could pave the way for developing new methods and strategies for environmental risk mitigation and management. Open source geographical information systems (OS GIS), may support data integration, management, and risk analysis. Lately, developed methods based on fuzzy logic and experts methods for buildings and infrastructure damage risk assessment could be integrated into OS GIS. Those methods were verified base on back analysis proving their accuracy. Moreover, those methods could be supported by ground displacement observation. Based on freely available data from European Space Agency and free software, ground deformation could be estimated. The main innovation presented in the paper is the application of open source software (OS GIS) for integration developed models and assessment of the threat of urban areas. Those approaches will be reinforced by analysis of ground movement based on free satellite data. Those data would support the verification of ground movement prediction models. Moreover, satellite data will enable our mapping of ground deformation in urbanized areas. Developed models and methods have been implemented in one of the urban areas hazarded by underground mining activity. Vulnerability maps supported by satellite ground movement observation would mitigate the hazards of land displacements in urban areas close to mines.Keywords: fuzzy logic, open source geographic information science (OS GIS), risk assessment on urbanized areas, satellite interferometry (InSAR)
Procedia PDF Downloads 15931319 Real-Time Working Environment Risk Analysis with Smart Textiles
Authors: Jose A. Diaz-Olivares, Nafise Mahdavian, Farhad Abtahi, Kaj Lindecrantz, Abdelakram Hafid, Fernando Seoane
Abstract:
Despite new recommendations and guidelines for the evaluation of occupational risk assessments and their prevention, work-related musculoskeletal disorders are still one of the biggest causes of work activity disruption, productivity loss, sick leave and chronic work disability. It affects millions of workers throughout Europe, with a large-scale economic and social burden. These specific efforts have failed to produce significant results yet, probably due to the limited availability and high costs of occupational risk assessment at work, especially when the methods are complex, consume excessive resources or depend on self-evaluations and observations of poor accuracy. To overcome these limitations, a pervasive system of risk assessment tools in real time has been developed, which has the characteristics of a systematic approach, with good precision, usability and resource efficiency, essential to facilitate the prevention of musculoskeletal disorders in the long term. The system allows the combination of different wearable sensors, placed on different limbs, to be used for data collection and evaluation by a software solution, according to the needs and requirements in each individual working environment. This is done in a non-disruptive manner for both the occupational health expert and the workers. The creation of this solution allows us to attend different research activities that require, as an essential starting point, the recording of data with ergonomic value of very diverse origin, especially in real work environments. The software platform is here presented with a complimentary smart clothing system for data acquisition, comprised of a T-shirt containing inertial measurement units (IMU), a vest sensorized with textile electronics, a wireless electrocardiogram (ECG) and thoracic electrical bio-impedance (TEB) recorder and a glove sensorized with variable resistors, dependent on the angular position of the wrist. The collected data is processed in real-time through a mobile application software solution, implemented in commercially available Android-based smartphones and tablet platforms. Based on the collection of this information and its analysis, real-time risk assessment and feedback about postural improvement is possible, adapted to different contexts. The result is a tool which provides added value to ergonomists and occupational health agents, as in situ analysis of postural behavior can assist in a quantitative manner in the evaluation of work techniques and the occupational environment.Keywords: ergonomics, mobile technologies, risk assessment, smart textiles
Procedia PDF Downloads 11731318 Risk Assessment and Haloacetic Acids Exposure in Drinking Water in Tunja, Colombia
Authors: Bibiana Matilde Bernal Gómez, Manuel Salvador Rodríguez Susa, Mildred Fernanda Lemus Perez
Abstract:
In chlorinated drinking water, Haloacetic acids have been identified and are classified as disinfection byproducts originating from reaction between natural organic matter and/or bromide ions in water sources. These byproducts can be generated through a variety of chemical and pharmaceutical processes. The term ‘Total Haloacetic Acids’ (THAAs) is used to describe the cumulative concentration of dichloroacetic acid, trichloroacetic acid, monochloroacetic acid, monobromoacetic acid, and dibromoacetic acid in water samples, which are usually measured to evaluate water quality. Chronic presence of these acids in drinking water has a risk of cancer in humans. The detection of THAAs for the first time in 15 municipalities of Boyacá was accomplished in 2023. Aim is to describe the correlation between the levels of THAAs and digestive cancer in Tunja, a city in Colombia with higher rates of digestive cancer and to compare the risk across 15 towns, taking into account factors such as water quality. A research project was conducted with the aim of comparing water sources based on the geographical features of the town, describing the disinfection process in 15 municipalities, and exploring physical properties such as water temperature and pH level. The project also involved a study of contact time based on habits documented through a survey, and a comparison of socioeconomic factors and lifestyle, in order to assess the personal risk of exposure. Data on the levels of THAAs were obtained after characterizing the water quality in urban sectors in eight months of 2022. This, based on the protocol described in the Stage 2 DBP of the United States Environmental Protection Agency (USEPA) from 2006, which takes into account the size of the population being supplied. A cancer risk assessment was conducted to evaluate the likelihood of an individual developing cancer due to exposure to pollutants THAAs. The assessment considered exposure methods like oral ingestion, skin absorption, and inhalation. The chronic daily intake (CDI) for these exposure routes was calculated using specific equations. The lifetime cancer risk (LCR) was then determined by adding the cancer risks from the three exposure routes for each HAA. The risk assessment process involved four phases: exposure assessment, toxicity evaluation, data gathering and analysis, and risk definition and management. The results conclude that there is a cumulative higher risk of digestive cancer due to THAAs exposure in drinking water.Keywords: haloacetic acids, drinking water, water quality, cancer risk assessment
Procedia PDF Downloads 5631317 Impact of Diabetes Mellitus Type 2 on Clinical In-Stent Restenosis in First Elective Percutaneous Coronary Intervention Patients
Authors: Leonard Simoni, Ilir Alimehmeti, Ervina Shirka, Endri Hasimi, Ndricim Kallashi, Verona Beka, Suerta Kabili, Artan Goda
Abstract:
Background: Diabetes Mellitus type 2, small vessel calibre, stented length of vessel, complex lesion morphology, and prior bypass surgery have resulted risk factors for In-Stent Restenosis (ISR). However, there are some contradictory results about body mass index (BMI) as a risk factor for ISR. Purpose: We want to identify clinical, lesional and procedural factors that can predict clinical ISR in our patients. Methods: Were enrolled 759 patients who underwent first-time elective PCI with Bare Metal Stents (BMS) from September 2011 to December 2013 in our Department of Cardiology and followed them for at least 1.5 years with a median of 862 days (2 years and 4 months). Only the patients re-admitted with ischemic heart disease underwent control coronary angiography but no routine angiographic control was performed. Patients were categorized in ISR and non-ISR groups and compared between them. Multivariate analysis - Binary Logistic Regression: Forward Conditional Method was used to identify independent predictive risk factors. P was considered statistically significant when <0.05. Results: ISR compared to non-ISR individuals had a significantly lower BMI (25.7±3.3 vs. 26.9±3.7, p=0.004), higher risk anatomy (LM + 3-vessel CAD) (23% vs. 14%, p=0.03), higher number of stents/person used (2.1±1.1 vs. 1.75±0.96, p=0.004), greater length of stents/person used (39.3±21.6 vs. 33.3±18.5, p=0.01), and a lower use of clopidogrel and ASA (together) (95% vs. 99%, p=0.012). They also had a higher, although not statistically significant, prevalence of Diabetes Mellitus (42% vs. 32%, p=0.072) and a greater number of treated vessels (1.36±0.5 vs. 1.26±0.5, p=0.08). In the multivariate analysis, Diabetes Mellitus type 2 and multiple stents used were independent predictors risk factors for In-Stent Restenosis, OR 1.66 [1.03-2.68], p=0.039, and OR 1.44 [1.16-1.78,] p=0.001, respectively. On the other side higher BMI and use of clopidogrel and ASA together resulted protective factors OR 0.88 [0.81-0.95], p=0.001 and OR 0.2 [0.06-0.72] p=0.013, respectively. Conclusion: Diabetes Mellitus and multiple stents are strong predictive risk factors, whereas the use of clopidogrel and ASA together are protective factors for clinical In-Stent Restenosis. Paradoxically High BMI is a protective factor for In-stent Restenosis, probably related to a larger diameter of vessels and consequently a larger diameter of stents implanted in these patients. Further studies are needed to clarify this finding.Keywords: body mass index, diabetes mellitus, in-stent restenosis, percutaneous coronary intervention
Procedia PDF Downloads 20931316 Risk Association of RANKL and OPG Gene Polymorphism with Breast to Bone Metastasis
Authors: Najeeb Ullah Khan
Abstract:
Background: The receptor activator NF-κβ ligand (RANKL) and Osteoprotegerin (OPG) polymorphisms have been associated with the progression of breast cancer to bone metastasis. Here, we aimed to investigate the association of RANKL and OPG gene polymorphism with breast to bone metastasis in the Pashtun population, Pakistan. Methods: Genomic DNA was obtained from all the study subjects (106 breast cancer, 58 breast to bone metastasis, and 51 healthy controls). RANKL (rs9533156) and OPG (rs2073618, rs3102735) polymorphisms were genotyped using Tetra-ARMS PCR. Results: Our results indicated that the frequencies of OPG (rs3102735) risk allele and genotypes carrying risk allele in breast cancer vs healthy control (C- p=0.005; CC- p=0.0208; TC- p=0.0181), bone metastasis vs healthy control (C- p=0.0211; CC- p=0.0153; TC- p=0.0775), and breast cancer vs breast to bone metastasis (C- p=0.0001; CC- p=0.0001; TC- p=0.001) were found significantly associated with disease risk. However, there was no significant association observed for OPG (rs2073618) risk allele and risk allele containing genotypes in all study groups. Similarly, RANKL (rs9533156) risk alleles and corresponding genotypes in breast cancer vs healthy control (C- p=0.0001; CC- p=0.0001; TC- p=0.0084), bone metastasis vs healthy control (C- p=0.0001; CC- p=0.0001; TC- p=0.5593), and breast cancer vs breast to bone metastasis (C- p=0.0185; CC- p=0.6077; TC- p=0.1436) showed significant association except for the risk allele carrying genotypes in breast cancer to bone metastasis (TC, p=0.1436; CC, p=0.6077). Conclusion: OPG (rs3102735) and RANKL (rs9533156) showed significant association with breast to bone metastasis, while OPG (rs2073618) didn’t show a significant association with breast to bone metastasis in Pashtun population of Pakistan. However, more investigation will be required to disseminate the results while gene sequencing or whole-exome sequencing.Keywords: breast cancer, bone metastasis, OPG, RANKL, polymorphism
Procedia PDF Downloads 18931315 Performativity and Valuation Techniques: Evidence from Investment Banks in the Wake of the Global Financial Crisis
Authors: Alicja Reuben, Amira Annabi
Abstract:
In this paper, we explore the relationship between the selection of valuation techniques by investment banks and the banks’ risk perceptions and performance in the context of the theory of performativity. We use inferential statistics to study these relationships by building a unique dataset based on the disclosure of 12 investment banks’ 2012-2015 annual financial statements. Moreover, we create two constructs, namely intensity of use and risk perception. We measure the intensity of use as a frequency metric of how often a particular bank adopts valuation techniques for a particular asset or liability. We measure risk perception based on disclosed ranges of values for unobservable inputs. Our results are twofold: we find a significant negative correlation between (1) intensity of use and investment bank performance and (2) intensity of use and risk perception. These results indicate that a performative process takes place, and the valuation techniques are enacting their environment.Keywords: language, linguistics, performativity, financial techniques
Procedia PDF Downloads 15831314 New-Born Children and Marriage Stability: An Evaluation of Divorce Risk Based on 2010-2018 China Family Panel Studies Data
Authors: Yuchao Yao
Abstract:
As two of the main characteristics of Chinese demographic trends, increasing divorce rates and decreasing fertility rates both shaped the population structure in the recent decade. Figuring out to what extent can be having a child make a difference in the divorce rate of a couple will not only draw a picture of Chinese families but also bring about a new perspective to evaluate the Chinese child-breeding policies. Based on China Family Panel Studies (CFPS) Data 2010-2018, this paper provides a systematic evaluation of how children influence a couple’s marital stability through a series of empirical models. Using survival analysis and propensity score matching (PSM) model, this paper finds that the number and age of children that a couple has mattered in consolidating marital relationship, and these effects vary little over time; during the last decade, newly having children can in fact decrease the possibility of divorce for Chinese couples; the such decreasing effect is largely due to the birth of a second child. As this is an inclusive attempt to study and compare not only the effects but also the causality of children on divorce risk in the last decade, the results of this research will do a good summary of the status quo of divorce in China. Furthermore, this paper provides implications for further reforming the current marriage and child-breeding policies.Keywords: divorce risk, fertility, China, survival analysis, propensity score matching
Procedia PDF Downloads 7231313 Systematic and Meta-Analysis of Navigation in Oral and Maxillofacial Trauma and Impact of Machine Learning and AI in Management
Authors: Shohreh Ghasemi
Abstract:
Introduction: Managing oral and maxillofacial trauma is a multifaceted challenge, as it can have life-threatening consequences and significant functional and aesthetic impact. Navigation techniques have been introduced to improve surgical precision to meet this challenge. A machine learning algorithm was also developed to support clinical decision-making regarding treating oral and maxillofacial trauma. Given these advances, this systematic meta-analysis aims to assess the efficacy of navigational techniques in treating oral and maxillofacial trauma and explore the impact of machine learning on their management. Methods: A detailed and comprehensive analysis of studies published between January 2010 and September 2021 was conducted through a systematic meta-analysis. This included performing a thorough search of Web of Science, Embase, and PubMed databases to identify studies evaluating the efficacy of navigational techniques and the impact of machine learning in managing oral and maxillofacial trauma. Studies that did not meet established entry criteria were excluded. In addition, the overall quality of studies included was evaluated using Cochrane risk of bias tool and the Newcastle-Ottawa scale. Results: Total of 12 studies, including 869 patients with oral and maxillofacial trauma, met the inclusion criteria. An analysis of studies revealed that navigation techniques effectively improve surgical accuracy and minimize the risk of complications. Additionally, machine learning algorithms have proven effective in predicting treatment outcomes and identifying patients at high risk for complications. Conclusion: The introduction of navigational technology has great potential to improve surgical precision in oral and maxillofacial trauma treatment. Furthermore, developing machine learning algorithms offers opportunities to improve clinical decision-making and patient outcomes. Still, further studies are necessary to corroborate these results and establish the optimal use of these technologies in managing oral and maxillofacial traumaKeywords: trauma, machine learning, navigation, maxillofacial, management
Procedia PDF Downloads 5731312 Validation of Existing Index Properties-Based Correlations for Estimating the Soil–Water Characteristic Curve of Fine-Grained Soils
Authors: Karim Kootahi, Seyed Abolhasan Naeini
Abstract:
The soil-water characteristic curve (SWCC), which represents the relationship between suction and water content (or degree of saturation), is an important property of unsaturated soils. The conventional method for determining SWCC is through specialized testing procedures. Since these procedures require specialized unsaturated soil testing apparatus and lengthy testing programs, several index properties-based correlations have been developed for estimating the SWCC of fine-grained soils. There are, however, considerable inconsistencies among the published correlations and there is no validation study on the predictive ability of existing correlations. In the present study, all existing index properties-based correlations are evaluated using a high quality worldwide database. The performances of existing correlations are assessed both graphically and quantitatively using statistical measures. The results of the validation indicate that most of the existing correlations provide unacceptable estimates of degree of saturation but the most recent model appears to be promising.Keywords: SWCC, correlations, index properties, validation
Procedia PDF Downloads 17431311 Capital Accumulation, Technology Diffusion and Economic Growth: An Empirical Application to Tunisian Case
Authors: Ahmed Bellakhdhar
Abstract:
This paper aims to test the impact of various variables-namely, investment in physical capital, investment in human capital, openness to trade and foreign direct investments, and distance from the technology frontier-on economic growth in the Tunisian context during the period 1976-2010. Empirical results identify that the impact of human capital is significantly positive. This finding confirms the hypothesis that human capital is a main driver of economic performance through its role of improving the internal productive capacity and the absorption of foreign technology especially via foreign direct investments. The effect of FDI is significantly positive in all alternative regressions and the coefficient associated to physical capital variable is positive, but not significant overall. Concerning the import of technologically advanced equipments, our estimates show the absence of a significant direct impact on economic growth in Tunisia. Our empirical results also support the assumption of a non linear relationship between tax and growth and demonstrate the existence of an inverted-U curve between the two variables, in the spirit of the “Laffer curve”.Keywords: Endogenous growth, Human capital, Technology transfer, Absorptive capacity
Procedia PDF Downloads 13131310 The Benefit of a Universal Screening Program for Lipid Disorders in Two to Ten Years Old Lebanese Children
Authors: Nicolas Georges, Akiki Simon, Bassil Naim, Nawfal Georges, Abi Fares Georges
Abstract:
Introduction: Dyslipidemia has been recognized as a risk factor for cardiovascular diseases. While the development of atherosclerotic lesions begins in childhood and progresses throughout life, data on the prevalence of dyslipidemic children in Lebanon is lacking. Objectives: This study was conducted to assess the benefit of a protocol for universal screening for lipid disorder in Lebanese children aged between two and ten years old. Materials and Methods: A total of four hundred children aged 2 to 10 years old (51.5% boys) were included in the study. The subjects were recruited from private pediatric clinics after parental consent. Fasting total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL) levels were measured and non-HDL cholesterol was calculated. The values were categorized according to 2011 Expert on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents. Results: The overall prevalence of high TC ( ≥ 200 mg/dL), high non-HDL-C ( ≥ 145 mg/dL), high LDL ( ≥ 130 mg/dL), high TG ( ≥ 100 mg/dL) and low HDL ( < 40 mg/dL) was respectively 19.5%, 23%, 19%, 31.8% and 20%. The overall frequency of dyslipidemia was 51.7%. In a bivariate analysis, dyslipidemia in children was associated with a BMI ≥ 95ᵗʰ percentile and parents having TC > 240 mg/dL with a P value respectively of 0.006 and 0.0001. Furthermore, high TG was independently associated with a BMI ≥ 95ᵗʰ percentile (P=0.0001). Children with parents having TC > 240 mg/dL was significantly correlated with high TC, high non-HDL-C and high LDL (P=0.0001 for all variables). Finally, according to the Pediatric dyslipidemia screening guidelines from the 2011 Expert Panel, 62.3% of dyslipidemic children had at least 1 risk factor that qualified them for screening while 37.7% of them didn’t have any risk factor. Conclusions: It is preferable to review the latest pediatric dyslipidemia screening guidelines by performing a universal screening program since a third of our dyslipidemic Lebanese children have been missed.Keywords: cardiovascular risk factors, dyslipidemia, Lebanese children, screening
Procedia PDF Downloads 23031309 The Role of Group Interaction and Managers’ Risk-willingness for Business Model Innovation Decisions: A Thematic Analysis
Authors: Sarah Müller-Sägebrecht
Abstract:
Today’s volatile environment challenges executives to make the right strategic decisions to gain sustainable success. Entrepreneurship scholars postulate mainly positive effects of environmental changes on entrepreneurship behavior, such as developing new business opportunities, promoting ingenuity, and the satisfaction of resource voids. A strategic solution approach to overcome threatening environmental changes and catch new business opportunities is business model innovation (BMI). Although this research stream has gained further importance in the last decade, BMI research is still insufficient. Especially BMI barriers, such as inefficient strategic decision-making processes, need to be identified. Strategic decisions strongly impact organizational future and are, therefore, usually made in groups. Although groups draw on a more extensive information base than single individuals, group-interaction effects can influence the decision-making process - in a favorable but also unfavorable way. Decisions are characterized by uncertainty and risk, whereby their intensity is perceived individually differently. The individual risk-willingness influences which option humans choose. The special nature of strategic decisions, such as in BMI processes, is that these decisions are not made individually but in groups due to their high organizational scope. These groups consist of different personalities whose individual risk-willingness can vary considerably. It is known from group decision theory that these individuals influence each other, observable in different group-interaction effects. The following research questions arise: i) How does group interaction shape BMI decision-making from managers’ perspective? ii) What are the potential interrelations among managers’ risk-willingness, group biases, and BMI decision-making? After conducting 26 in-depth interviews with executives from the manufacturing industry, applied Gioia methodology reveals the following results: i) Risk-averse decision-makers have an increased need to be guided by facts. The more information available to them, the lower they perceive uncertainty and the more willing they are to pursue a specific decision option. However, the results also show that social interaction does not change the individual risk-willingness in the decision-making process. ii) Generally, it could be observed that during BMI decisions, group interaction is primarily beneficial to increase the group’s information base for making good decisions, less than for social interaction. Further, decision-makers mainly focus on information available to all decision-makers in the team but less on personal knowledge. This work contributes to strategic decision-making literature twofold. First, it gives insights into how group-interaction effects influence an organization’s strategic BMI decision-making. Second, it enriches risk-management research by highlighting how individual risk-willingness impacts organizational strategic decision-making. To date, it was known in BMI research that risk aversion would be an internal BMI barrier. However, with this study, it becomes clear that it is not risk aversion that inhibits BMI. Instead, the lack of information prevents risk-averse decision-makers from choosing a riskier option. Simultaneously, results show that risk-averse decision-makers are not easily carried away by the higher risk-willingness of their team members. Instead, they use social interaction to gather missing information. Therefore, executives need to provide sufficient information to all decision-makers to catch promising business opportunities.Keywords: business model innovation, cognitive biases, group-interaction effects, strategic decision-making, risk-willingness
Procedia PDF Downloads 7831308 Mental Health Conditions and Their Risk Factors Among Women in Garissa County, Kenya
Authors: Njoroge Margaret W., Johnson Deborah
Abstract:
Gender-specific risk factors for common mental disorders that disproportionately affect women include but are not limited to gender-based violence, socioeconomic disadvantage, sociocultural factors and unrelenting responsibility for the care of others. The overall objective of this study was to assess mental health conditions and their risk factors among women in Garissa County, Kenya. The study adopted both quantitative and qualitative research designs. The study participants were 100 adult women and 20 key informants from different sectors in the region. Data was collected using DSM-5 (PCL-5) and Kessler Psychological Distress, interviews schedule and focus group discussions. Analysis of quantitative data was done using univariate analysis, while qualitative data was analyzed using thematic analysis. The results revealed that about 60% of women presented with moderate to severe psychological distress (PD), while 53% presented with PTSD. Additionally, women who have undergone female genital mutilation had higher PTSD and PD scores. They also presented with low self-esteem, depressive symptoms, sex anxiety, avoidance of reminders and intrusive memories of the event, especially those who developed fistula. The risk factors for poor mental health outcomes include lack of awareness/knowledge of mental health, retrogressive cultural practices (child marriage and female genital mutilation), as well as beliefs about the causes of mental disorders. The study also established that people with mental illness are neglected, abused and stigmatized. Preferred treatment approaches include prayers and the use of witch doctors and traditional healers. The study recommends gendered and culturally responsive interventions geared towards increasing community awareness and knowledge on mental health, reducing stigma and improving mental-health-seeking behaviors for women and girls in the region. Supported by the Ministry of Health, the approach should be spearheaded by trained community lay counselors.Keywords: women, mental health conditions, cultural beliefs/practices, stigma, poverty, psychological distress, PTSD
Procedia PDF Downloads 5131307 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform
Authors: Reza Mohammadzadeh
Abstract:
The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.Keywords: data model, geotechnical risks, machine learning, underground coal mining
Procedia PDF Downloads 27431306 The Value of Audit in Managing Supplier’s Process Improvement
Authors: Mohammad E. Nikoofal, Mehmet Gumus
Abstract:
Besides the many benefits of outsourcing, firms are still concerned about the lack of critical information regarding both the risk levels and actions of their suppliers that are just a few links away. In this paper, we study the effectiveness of audit for the manufacturer in managing her supplier’s process improvement effort when the supplier is privately informed about his disruption risk and actions. By comparing the agency costs associated with the optimal menu of contracts with and without audit, we completely characterize the value of audit for all the cases from the perspectives of both manufacturer, and supplier as well as total supply chain. First, the analysis of value of audit from the manufacturer’s perspective shows that she can strictly benefit from auditing her supplier’s actions. To the best of our knowledge, this result has not been documented before in the principal-agent literature under a standard setting where the agent is assumed to be risk-neutral and not protected by limited liability constraints. Second, we find that not only the manufacturer but also the supplier can strictly benefit from audit. Third, the audit enables the manufacturer to customize her contract offerings based on the reliability of the supplier. Finally, by analyzing the impact of problem parameters on the value of audit, we identify the conditions under which an audit would be beneficial for individual supply chain parties as well as total supply chain.Keywords: supply disruption, adverse selection, moral hazard incentives, audit
Procedia PDF Downloads 46031305 Examining the Dynamics of FDI Inflows in Both BRICS and G7 Economies: Dissecting the Influence of Geopolitical Risk versus Economic Policy Uncertainty
Authors: Adelakun O. Johnson
Abstract:
The quest to mitigate the probable adverse effects of geopolitical risk on FDI inflows tends to result in more frequent changes in economic policies and, as a result, heightened policy uncertainty. In this regard, we extend the literature on the dynamics of FDI inflows to include the hypothesis of the possibility of geopolitical risk escalating the adverse effects of economic policy uncertainty on FDI inflows. To test the robustness of this hypothesis, we use the cases of different economic groups characterized by different levels of economic development and varying degrees of FDI confidence. Employing an ARDL-based dynamic panel data model that accounts for both non-stationarity and heterogeneity effects, we show result that suggests GPR and EPU retard the inflows of FDI in both economies but mainly in the short-run situation. In the long run, however, higher EPU not attributed to GPR is likely to boost the inflows of FDI rather than retarding, at least in the case of the G7 economy.Keywords: FDI inflows, geopolitical risk, economic policy uncertainty, panel ARDL model
Procedia PDF Downloads 2331304 A Supply Chain Risk Management Model Based on Both Qualitative and Quantitative Approaches
Authors: Henry Lau, Dilupa Nakandala, Li Zhao
Abstract:
In today’s business, it is well-recognized that risk is an important factor that needs to be taken into consideration before a decision is made. Studies indicate that both the number of risks faced by organizations and their potential consequences are growing. Supply chain risk management has become one of the major concerns for practitioners and researchers. Supply chain leaders and scholars are now focusing on the importance of managing supply chain risk. In order to meet the challenge of managing and mitigating supply chain risk (SCR), we must first identify the different dimensions of SCR and assess its relevant probability and severity. SCR has been classified in many different ways, and there are no consistently accepted dimensions of SCRs and several different classifications are reported in the literature. Basically, supply chain risks can be classified into two dimensions namely disruption risk and operational risk. Disruption risks are those caused by events such as bankruptcy, natural disasters and terrorist attack. Operational risks are related to supply and demand coordination and uncertainty, such as uncertain demand and uncertain supply. Disruption risks are rare but severe and hard to manage, while operational risk can be reduced through effective SCM activities. Other SCRs include supply risk, process risk, demand risk and technology risk. In fact, the disorganized classification of SCR has created confusion for SCR scholars. Moreover, practitioners need to identify and assess SCR. As such, it is important to have an overarching framework tying all these SCR dimensions together for two reasons. First, it helps researchers use these terms for communication of ideas based on the same concept. Second, a shared understanding of the SCR dimensions will support the researchers to focus on the more important research objective: operationalization of SCR, which is very important for assessing SCR. In general, fresh food supply chain is subject to certain level of risks, such as supply risk (low quality, delivery failure, hot weather etc.) and demand risk (season food imbalance, new competitors). Effective strategies to mitigate fresh food supply chain risk are required to enhance operations. Before implementing effective mitigation strategies, we need to identify the risk sources and evaluate the risk level. However, assessing the supply chain risk is not an easy matter, and existing research mainly use qualitative method, such as risk assessment matrix. To address the relevant issues, this paper aims to analyze the risk factor of the fresh food supply chain using an approach comprising both fuzzy logic and hierarchical holographic modeling techniques. This novel approach is able to take advantage the benefits of both of these well-known techniques and at the same time offset their drawbacks in certain aspects. In order to develop this integrated approach, substantial research work is needed to effectively combine these two techniques in a seamless way, To validate the proposed integrated approach, a case study in a fresh food supply chain company was conducted to verify the feasibility of its functionality in a real environment.Keywords: fresh food supply chain, fuzzy logic, hierarchical holographic modelling, operationalization, supply chain risk
Procedia PDF Downloads 24031303 Dynamic Correlations and Portfolio Optimization between Islamic and Conventional Equity Indexes: A Vine Copula-Based Approach
Authors: Imen Dhaou
Abstract:
This study examines conditional Value at Risk by applying the GJR-EVT-Copula model, and finds the optimal portfolio for eight Dow Jones Islamic-conventional pairs. Our methodology consists of modeling the data by a bivariate GJR-GARCH model in which we extract the filtered residuals and then apply the Peak over threshold model (POT) to fit the residual tails in order to model marginal distributions. After that, we use pair-copula to find the optimal portfolio risk dependence structure. Finally, with Monte Carlo simulations, we estimate the Value at Risk (VaR) and the conditional Value at Risk (CVaR). The empirical results show the VaR and CVaR values for an equally weighted portfolio of Dow Jones Islamic-conventional pairs. In sum, we found that the optimal investment focuses on Islamic-conventional US Market index pairs because of high investment proportion; however, all other index pairs have low investment proportion. These results deliver some real repercussions for portfolio managers and policymakers concerning to optimal asset allocations, portfolio risk management and the diversification advantages of these markets.Keywords: CVaR, Dow Jones Islamic index, GJR-GARCH-EVT-pair copula, portfolio optimization
Procedia PDF Downloads 25531302 Sewer Culvert Installation Method to Accommodate Underground Construction in an Urban Area with Narrow Streets
Authors: Osamu Igawa, Hiroshi Kouchiwa, Yuji Ito
Abstract:
In recent years, a reconstruction project for sewer pipelines has been progressing in Japan with the aim of renewing old sewer culverts. However, it is difficult to secure a sufficient base area for shafts in an urban area because many streets are narrow with a complex layout. As a result, construction in such urban areas is generally very demanding. In urban areas, there is a strong requirement for a safe, reliable and economical construction method that does not disturb the public’s daily life and urban activities. With this in mind, we developed a new construction method called the 'shield switching type micro-tunneling method' which integrates the micro-tunneling method and shield method. In this method, pipeline is constructed first for sections that are gently curved or straight using the economical micro-tunneling method, and then the method is switched to the shield method for sections with a sharp curve or a series of curves without establishing an intermediate shaft. This paper provides the information, features and construction examples of this newly developed method.Keywords: micro-tunneling method, secondary lining applied RC segment, sharp curve, shield method, switching type
Procedia PDF Downloads 40231301 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios
Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong
Abstract:
Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.Keywords: decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle
Procedia PDF Downloads 134