Search results for: kinetic and mechanistic approaches
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4596

Search results for: kinetic and mechanistic approaches

3756 Biosorption of Chromium (VI) Ions Using Polyaniline Coated Maize Tassels

Authors: F. Chigondo, G. Chitabati

Abstract:

Hexavalent chromium is toxic and is widely used in many industries hence efficient and economical methods must be explored to remove the chromium(VI) from the environment. The removal of Cr (VI) from aqueous solutions onto polyaniline coated maize tassel was studied in batch mode at varying initial metal concentrations, adsorbent doses, pH and contact times. The residual Cr (VI) concentrations before and after adsorption were analyzed by Ultraviolet–visible spectroscopy. FTIR analysis of the polyaniline coated maize tassel showed the presence of C=C, C=N, C-H, C-N and N-H groups. Adsorption conditions were deduced to be pH of 2, adsorbent dosage 1g/L, Cr(VI) initial concentration of 40mg/L contact time of 150 minutes and agitation speed of 140rpm. Data obtained fitted best to the Langmuir isotherm (R2 = 0.972) compared to the Freundlich isotherm (R2 0.671. The maximum adsorption capacity was found to be 125mg/L. Correlation coefficients for pseudo first order and pseudo second order were 0.952 and 0.971 respectively. The adsorption process followed the pseudo-second order kinetic model. The studied polyaniline coated maize tassel can therefore be used as a promising adsorbent for the removal of Cr (VI) ion from aqueous solution.

Keywords: polyaniline-coated, maize tassels, adsorption, hexavalent chromium

Procedia PDF Downloads 191
3755 Engage, Connect, Empower: Agile Approach in the University Students' Education

Authors: D. Bjelica, T. Slavinski, V. Vukimrovic, D. Pavlovic, D. Bodroza, V. Dabetic

Abstract:

Traditional methods and techniques used in higher education may be significantly persuasive on the university students' perception about quality of the teaching process. Students’ satisfaction with the university experience may be affected by chosen educational approaches. Contemporary project management trends recognize agile approaches' beneficial, so modern practice highlights their usage, especially in the IT industry. A key research question concerns the possibility of applying agile methods in youth education. As agile methodology pinpoint iteratively-incremental delivery of results, its employment could be remarkably fruitful in education. This paper demonstrates the agile concept's application in the university students’ education through the continuous delivery of student solutions. Therefore, based on the fundamental values and principles of the agile manifest, paper will analyze students' performance and learned lessons in their encounter with the agile environment. The research is based on qualitative and quantitative analysis that includes sprints, as preparation and realization of student tasks in shorter iterations. Consequently, the performance of student teams will be monitored through iterations, as well as the process of adaptive planning and realization. Grounded theory methodology has been used in this research, as so as descriptive statistics and Man Whitney and Kruskal Wallis test for group comparison. Developed constructs of the model will be showcase through qualitative research, then validated through a pilot survey, and eventually tested as a concept in the final survey. The paper highlights the variability of educational curricula based on university students' feedbacks, which will be collected at the end of every sprint and indicates to university students' satisfaction inconsistency according to approaches applied in education. Values delivered by the lecturers will also be continuously monitored; thus, it will be prioritizing in order to students' requests. Minimal viable product, as the early delivery of results, will be particularly emphasized in the implementation process. The paper offers both theoretical and practical implications. This research contains exceptional lessons that may be applicable by educational institutions in curriculum creation processes, or by lecturers in curriculum design and teaching. On the other hand, they can be beneficial regarding university students' satisfaction increscent in respect of teaching styles, gained knowledge, or even educational content.

Keywords: academic performances, agile, high education, university students' satisfaction

Procedia PDF Downloads 116
3754 Innovative Pump Design Using the Concept of Viscous Fluid Sinusoidal Excitation

Authors: Ahmed H. Elkholy

Abstract:

The concept of applying a prescribed oscillation to viscous fluids to aid or increase flow is used to produce a maintenance free pump. Application of this technique to fluids presents unique problems such as physical separation; control of heat and mass transfer in certain industrial applications; and improvement of some fluid process methods. The problem as stated is to obtain the velocity distribution, wall shear stress and energy expended when a pipe containing a stagnant viscous fluid is externally excited by a sinusoidal pulse, one end of the pipe being pinned. On the other hand, the effect of different parameters on the results are presented. Such parameters include fluid viscosity, frequency of oscillations and pipe geometry. It was found that the flow velocity through the pump is maximum at the pipe wall, and it decreases rapidly towards the pipe centerline. The frequency of oscillation should be above a certain value in order to obtain meaningful flow velocity. The amount of energy absorbed in the system is mainly due to pipe wall strain energy, while the fluid pressure and kinetic energies are comparatively small.

Keywords: sinusoidal excitation, pump, shear stress, flow

Procedia PDF Downloads 305
3753 A Comparative Study of Murayya Koenigii Varieties for the Removal of Cr (VI) from Aqueous Solutions

Authors: Mesfin Tsegaw, Sivakumar C. V., Chandrakal Gunturu, Meera Indracanti

Abstract:

Chromium (VI), a toxic metal ion, is widely used in electroplating, stainless steel production, leather tanning, paint, and textile manufacturing. Cr (VI) is mobile in the environment, acutely toxic and carcinogenic. In the present study, the ability to remove Cr (VI) from aqueous solutions has been compared using leaves of dwarf and gamthi varieties of Murayya koerigii abundantly available in Selaqui region of Dehradun as an adsorbent. Effects of temperature, pH, initial concentration of adsorbate and adsorbent dosage have been studied for effective removal of Cr (VI). The biosorptive ability of biosorbent was reliant on the pH of the biosorbate, with pH 2 being most favorable for both the varieties. The obtained results were analyzed by the Freundlich and Langmuir equation at different temperature and related parameters were determined for each adsorption isotherm. The study also includes results on the kinetic dimensions of adsorption of the Cr (VI) on the derived adsorbent. Gamthi variety has a promising absorption rate of 80% over the dwarf variety. FTIR studies confirmed that carboxyl and hydroxyl groups were the main groups involved in the metal uptake.

Keywords: adsorption, cromium, kinetics, variety

Procedia PDF Downloads 134
3752 Guarding the Fortress: Intellectual Property Rights and the European Union’s Cross-Border Jurisdiction

Authors: Sara Vora (Hoxha)

Abstract:

The present article delves into the intricate matters concerning Intellectual Property Rights (IPR) and cross-border jurisdiction within the confines of the European Union (EU). The prevalence of cross-border intellectual property rights (IPR) disputes has increased in tandem with the globalization of commerce and the widespread adoption of technology. The European Union (EU) is not immune to this trend. The manuscript presents a comprehensive analysis of various forms of intellectual property rights (IPR), such as patents, trademarks, and copyrights, and the regulatory framework established by the European Union (EU) to oversee these rights. The present article examines the diverse approaches employed for ascertaining the appropriate jurisdiction within the European Union (EU), and their potential application in the sphere of cross-border intellectual property rights (IPR) conflicts. The article sheds light on jurisdictional issues and outcomes of significant cross-border intellectual property rights (IPR) disputes in the European Union (EU). Additionally, the document provides suggestions for effectively managing intellectual property rights conflicts across borders within the European Union, which encompasses the utilization of alternative methods for resolving disputes. The article highlights the significance of comprehending the relevant jurisdiction in the European Union for Intellectual Property Rights (IPR). It also offers optimal approaches for enterprises and individuals who aim to safeguard their intellectual property beyond national boundaries. The primary objective of this article is to furnish a thorough comprehension of Intellectual Property Rights (IPR) and the relevant jurisdiction in the European Union (EU). Additionally, it endeavors to provide pragmatic recommendations for managing cross-border IPR conflicts in this intricate and ever-changing legal milieu.

Keywords: intellectual property rights (IPR), cross-border jurisdiction, applicable laws and regulations, dispute resolution, best practices

Procedia PDF Downloads 65
3751 A Collaborative, Arts-Informed Action Research Investigation of Child-Led Assessment

Authors: Dragana Gnjatovic

Abstract:

Assessment is a burning topic in education policy and practice due to measurement-driven neoliberal agendas of quality and standardisation of assessment practice through high stakes standardised testing systems that are now influencing early childhood education. This paper presents a collaborative, arts-informed action research project which places children at the centre of their learning, with assessment as an integral part of play-based learning processes. It aims to challenge traditional approaches to assessment that are often teacher-led and decontextualised from the processes of learning through exploring approaches where children's voices are central, and their creative arts expressions are used to assess learning and development. The theoretical framework draws on Vygotsky's sociocultural theory and Freire's critical pedagogy, which indicate the importance of socially constructed reality where knowledge is the result of collaboration between children and adults. This reality perceives children as competent agents of their own learning processes. An interpretive-constructivist and critical-transformative paradigm underpin collaborative action research in a three to five-year-old setting, where creative methods like storytelling, play, drama, drawing are used to assess children's learning. As data collection and analysis are still in process, this paper will present the methodology and some data vignettes, with the aim of stimulating discussion about innovation in assessment and contribution of the collaborative enquiry in the field of Early Childhood Education and Care.

Keywords: assessment for learning, creative methodologies, collaborative action research, early childhood education and care

Procedia PDF Downloads 122
3750 Photocatalytic Degradation of Gaseous Toluene: Effects of Operational Variables on Efficiency Rate of TiO2 Coated on Nickel Foam

Authors: Jafar Akbari, Masoud Rismanchian, Samira Ramezani

Abstract:

Purpose: The photocatalytic degradation of pollutants is a novel technology with various advantages such as high efficiency and energy saving. In this research, the effects of operational variables on the photocatalytic efficiency of TiO₂ coated on nickel foam in the removal of toluene from the simulated indoor air have been investigated. Methods: TiO₂ film were prepared via the sol-gel method and coated on nickel foam. The characteristics and morphology were found using XRD, SEM, and BET technique. Then, the effects of relative humidity, UV-A intensity, the initial toluene concentration, TiO₂ loading, and the air circulation velocity on the photocatalytic degradation rate have been evaluated. Results: The optimal degradation of toluene has been achieved with loading 4.35 g TiO2 on the foam, 30% RH, 5.4 µW.cm−2 UV-A intensity, and 20 ppm initial concentration in the air circulation velocity of 0.15 fpm. Conclusion: The changes of toluene photocatalytic degradation rate have been studied at various times. Also, the kinetic behavior of toluene photocatalytic degradation has been investigated using Langmuir-Hinshelwood (L-H) model.

Keywords: photocatalytic degradation, operational variables, tio₂, nickel foam, gaseous toluene, nanotechnology

Procedia PDF Downloads 70
3749 Characterization of the Worn Surfaces of Brake Discs and Friction Materials after Dynobench Tests

Authors: Ana Paula Gomes Nogueira, Pietro Tonolini, Andrea Bonfanti

Abstract:

Automotive braking systems must convert kinetic into thermal energy by friction. Nowadays, the disc brake system is the most widespread configuration on the automotive market, which its specific configuration provides a very efficient heat dissipation. At the same time, both discs and pads wear out. Different wear mechanisms can act during the braking, which makes the understanding of the phenomenon essential for the strategies to be applied when an increased lifetime of the components is required. In this study, a specific characterization approach was conducted to analyze the worn surfaces of commercial pad friction materials and its conterface cast iron disc after dynobench tests. Scanning electronic microscope (SEM), confocal microscope, and focus ion beam microscope (FIB) were used as the main tools of the analysis, and they allowed imaging of the footprint of the different wear mechanisms presenting on the worn surfaces. Aspects such as the temperature and specific ingredients of the pad friction materials are discussed since they play an important role in the wear mechanisms.

Keywords: wear mechanism, surface characterization, brake tests, friction materials, disc brake

Procedia PDF Downloads 42
3748 A Comparative Assessment of the FoodSupply Vulnerability to Large-Scale Disasters in OECD Countries

Authors: Karolin Bauer, Anna Brinkmann

Abstract:

Vulnerabilities in critical infrastructure can cause significant difficulties for the affected population during crises. Securing the food supply as part of the critical infrastructure in crisis situations is an essential part of public services and a ground stone for a successful concept of civil protection. In most industrialized countries, there are currently no comparative studies regarding the food supply of the population during crisis and disaster events. In order to mitigate the potential impact in case of major disasters in Germany, it is absolutely necessary to investigate how the food supply can be secured. The research project aims to provide in-depth research on the experiences gathered during past large-scale disasters in the 34 OECD member countries in order to discover alternatives for an updated civil protection system in Germany. The basic research question is: "Which international approaches and structures of civil protection have been proven and would be useful to modernize the German civil protection with regards to the critical infrastructure and food supply?" Research findings should be extracted from an extensive literature review covering the entire research period as well as from personal and online-based interviews with experts and responsible persons from involved institutions. The capability of the research project insists on the deliberate choice to investigate previous large-scale disasters to formulate important and practical approaches to modernize civil protection in Germany.

Keywords: food supply, vulnerabilty, critical infratstructure, large-scale disaster

Procedia PDF Downloads 324
3747 Surface Modification of Co-Based Nanostructures to Develop Intrinsic Fluorescence and Catalytic Activity

Authors: Monalisa Pal, Kalyan Mandal

Abstract:

Herein we report the molecular functionalization of promising transition metal oxide nanostructures, such as Co3O4 nanocubes, using nontoxic and biocompati-ble organic ligand sodium tartrate. The electronic structural modification of the nanocubes imparted through functionalization and subsequent water solubilization reveals multiple absorption bands in the UV-vis region. Further surface modification of the solubilized nanocubes, leads to the emergence of intrinsic multi-color fluorescence (from blue, cyan, green to red region of the spectrum), upon excitation at proper wavelengths, where the respective excitation wavelengths have a direct correlation with the observed UV-vis absorption bands. Using a multitude of spectroscopic tools we have investigated the mechanistic insight behind the origin of different UV-vis absorption bands and emergence of multicolor photoluminescence from the functionalized nanocubes. Our detailed study shows that ligand to metal charge transfer (LMCT) from tartrate ligand to Co2+/Co3+ ions and d-d transitions involving Co2+/Co3+ ions are responsible for generation of this novel optical properties. Magnetic study reveals that, antiferromagnetic nature of Co3O4 nanocubes changes to ferromagnetic behavior upon functionalization, however, the overall magnetic response was very weak. To combine strong magnetism with this novel optical property, we followed the same surface modification strategy in case of CoFe2O4 nanoparticles, which reveals that irrespective of size and shape, all Co-based oxides can develop intrinsic multi-color fluorescence upon facile functionalization with sodium tartrate ligands and the magnetic response was significantly higher. Surface modified Co-based oxide nanostructures also show excellent catalytic activity in degradation of biologically and environmentally harmful dyes. We hope that, our developed facile functionalization strategy of Co-based oxides will open up new opportunities in the field of biomedical applications such as bio-imaging and targeted drug delivery.

Keywords: co-based oxide nanostructures, functionalization, multi-color fluorescence, catalysis

Procedia PDF Downloads 378
3746 MIL-88b(Fe)-MOF Grafted Carbon Dot Nanocomposites as Effective Photocatalysts for Fenton-Like Photodegradation of Amphotericin B and Naproxen Under Visible Light Irradiation

Authors: Payam Hayati, Fateme Firoozbakht, Gholamhassan Azimi, Shahram Tangestaninejad

Abstract:

The synthesis of a photocatalytic adsorbent involved the integration of carbon dots (CD) into a metal-organic framework (MOF) of MIL-88B(Fe) using the solvothermal technique. Characterization of the resulting CD@MIL-88B(Fe) was conducted using various analytical methods, including X-ray-based microscopic and spectroscopic techniques, electrochemical impedance spectroscopy, UV–Vis, FT-IR, DRS, TGA, and photoluminescence (PL) analysis. The adsorbent demonstrated significant photocatalytic activity, achieving up to 92% and 90% removal of amphotericin B (AmB) and naproxen (Nap) from aqueous solutions under visible light, with an RSD value of around 5%. The study explored the factors influencing the degradation of pharmaceuticals and determined the optimal conditions for the process, including pH values of 3 and 4 for AmB and Nap, a photocatalyst concentration of 0.2 g L-1, and an H2O2 concentration ranging from 40 to 50 mM. Reactive oxidative species such as ⋅OH and ⋅O2 were identified through the examination of different scavengers. Additionally, the adsorption isotherm and kinetic studies revealed that the synthesized photocatalyst functions as an effective adsorbent, with maximum adsorption capacities of 42.5 and 121.5 mg g-1 for AmB and Nap, while also serving as a photocatalytic agent for removal purposes.

Keywords: fenton-like degradation, metal-organic frameworks, heterogenous photocatalysts, naproxen

Procedia PDF Downloads 63
3745 Development of High Strength Filler Consumables by Means of Calculations and Microstructural Characterization

Authors: S. Holly, R. Schnitzer, P. Haslberger, D. Zügner

Abstract:

The development of new filler consumables necessitates a high effort regarding samples and experiments to achieve the required mechanical properties and chemistry. In the scope of the development of a metal-cored wire with the target tensile strength of 1150 MPa and acceptable impact toughness, thermodynamic and kinetic calculations via MatCalc were used to reduce the experimental work and the resources required. Micro alloying elements were used to reach the high strength as an alternative approach compared to the conventional solid solution hardening. In order to understand the influence of different micro alloying elements in more detail, the influence of different elements on the precipitation behavior in the weld metal was evaluated. Investigations of the microstructure were made via atom probe and EBSD to understand the effect of micro alloying elements. The calculated results are in accordance with the results obtained by experiments and can be explained by the microstructural investigations. On the example of aluminium, the approach is exemplified and clarifies the efficient way of development.

Keywords: alloy development, high strength steel, MatCalc, metal-cored wire

Procedia PDF Downloads 226
3744 Measuring the Economic Impact of Cultural Heritage: Comparative Analysis of the Multiplier Approach and the Value Chain Approach

Authors: Nina Ponikvar, Katja Zajc Kejžar

Abstract:

While the positive impacts of heritage on a broad societal spectrum have long been recognized and measured, the economic effects of the heritage sector are often less visible and frequently underestimated. At macro level, economic effects are usually studied based on one of the two mainstream approach, i.e. either the multiplier approach or the value chain approach. Consequently, there is limited comparability of the empirical results due to the use of different methodological approach in the literature. Furthermore, it is also not clear on which criteria the used approach was selected. Our aim is to bring the attention to the difference in the scope of effects that are encompassed by the two most frequent methodological approaches to valuation of economic effects of cultural heritage on macroeconomic level, i.e. the multiplier approach and the value chain approach. We show that while the multiplier approach provides a systematic, theory-based view of economic impacts but requires more data and analysis, the value chain approach has less solid theoretical foundations and depends on the availability of appropriate data to identify the contribution of cultural heritage to other sectors. We conclude that the multiplier approach underestimates the economic impact of cultural heritage, mainly due to the narrow definition of cultural heritage in the statistical classification and the inability to identify part of the contribution of cultural heritage that is hidden in other sectors. Yet it is not possible to clearly determine whether the value chain method overestimates or underestimates the actual economic impact of cultural heritage since there is a risk that the direct effects are overestimated and double counted, but not all indirect and induced effects are considered. Accordingly, these two approaches are not substitutes but rather complementary. Consequently, a direct comparison of the estimated impacts is not possible and should not be done due to the different scope. To illustrate the difference of the impact assessment of the cultural heritage, we apply both approaches to the case of Slovenia in the 2015-2022 period and measure the economic impact of cultural heritage sector in terms of turnover, gross value added and employment. The empirical results clearly show that the estimation of the economic impact of a sector using the multiplier approach is more conservative, while the estimates based on value added capture a much broader range of impacts. According to the multiplier approach, each euro in cultural heritage sector generates an additional 0.14 euros in indirect effects and an additional 0.44 euros in induced effects. Based on the value-added approach, the indirect economic effect of the “narrow” heritage sectors is amplified by the impact of cultural heritage activities on other sectors. Accordingly, every euro of sales and every euro of gross value added in the cultural heritage sector generates approximately 6 euros of sales and 4 to 5 euros of value added in other sectors. In addition, each employee in the cultural heritage sector is linked to 4 to 5 jobs in other sectors.

Keywords: economic value of cultural heritage, multiplier approach, value chain approach, indirect effects, slovenia

Procedia PDF Downloads 66
3743 Internet of Things-Based Smart Irrigation System

Authors: Ahmed Abdulfatah Yusuf, Collins Oduor Ondiek

Abstract:

The automation of farming activities can have a transformational impact on the agricultural sector, especially from the emerging new technologies such as the Internet of Things (IoT). The system uses water level sensors and soil moisture sensors that measure the content of water in the soil as the values generated from the sensors enable the system to use an appropriate quantity of water, which avoids over or under irrigation. Due to the increase in the world’s population, there is a need to increase food production. With this demand in place, it is difficult to increase crop yield using the traditional manual approaches that lead to the wastage of water, thus affecting crop production. Food insecurity has become a scourge greatly affecting the developing countries and agriculture is an essential part of human life and tends to be the mainstay of the economy in most developing nations. Thus, without the provision of adequate food supplies, the population of those living in poverty is likely to multiply. The project’s main objective is to design and develop an IoT (Internet of Things) microcontroller-based Smart Irrigation System. In addition, the specific research objectives are to find out the challenges with traditional irrigation approaches and to determine the benefits of IoT-based smart irrigation systems. Furthermore, the system includes Arduino, a website and a database that works simultaneously in collecting and storing the data. The system is designed to pave the way in attaining the Sustainable Development Goal (SDG 1), which aims to end extreme poverty in all forms by 2030. The research design aimed at this project is a descriptive research design. Data was gathered through online questionnaires that used both quantitative and qualitative in order to triangulate the data. Out of the 32 questionnaires sent, there were 32 responses leading to a 100% response rate. In terms of sampling, the target group of this project is urban farmers, which account for about 25% of the population of Nairobi. From the findings of the research carried out, it is evident that there is a need to move away from manual irrigation approaches due to the high wastage of water to the use of smart irrigation systems that propose a better way of conserving water while maintaining the quality and moisture of the soil. The research also found out that urban farmers are willing to adopt this system to better their farming practices. However, this system can be improved in the future by incorporating it with other features and deploying it to a larger geographical area.

Keywords: crop production, food security, smart irrigation system, sustainable development goal

Procedia PDF Downloads 144
3742 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose

Authors: Kumar Shashvat, Amol P. Bhondekar

Abstract:

In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.

Keywords: odor classification, generative models, naive bayes, linear discriminant analysis

Procedia PDF Downloads 370
3741 Characteristics of Handgrip (Kumi-Kata) Profile of Georgian Elite Judo Athletes

Authors: Belkadi Adel, Beboucha Wahib, Cherara lalia

Abstract:

Objective: The aim of this study was to investigate the characteristics of Kumi-kata in elite judokas and characterize the kinematic and temporal parameters of different types of handgrip (HG). Method: fourteen participated in this study male athlete (23.5±2.61 years; 1.81±0.37 0 m; 87.25±22.75 kg), members of the Georgian Judo team. To characterize the dominance and types of kumi-kata used, videos of international competitions from each athlete were analyzed, and to characterize kinematic and temporal parameters and handgrip, and the volunteers pressed a digital dynamometer with each hand for 30 seconds(s) after a visual signal. Results: The values of 0.26±0.69s and 0.31±0.03s for reaction time were obtained, respectively, in the full grip and pinch grip; 19.62±18.83N/cm/s and 6.17±3.48N/cm/s for the rate of force development; 475,21 ± 101,322N and 494,65±112,73 for the FDR; 1,37 ± 0,521s and 1,45 ± 0,824s for the time between the force onset to the TFP; and 41,27±4,54N/cm/s and 45,16 ± 5,64N/cm/s for the fall index, in the dominant hand. There was no significant difference between hands for any variable, except for the dominance of Kumi-kata (p<0.05) used in combat. Conclusion: The dominance of application of the Kumi-kata is a technical option, as it does not depend on the kinetic-temporal parameters of the handgrip.

Keywords: hand grip, judo, athletes, Kumi-Kata

Procedia PDF Downloads 172
3740 Empirical Modeling of Air Dried Rubberwood Drying System

Authors: S. Khamtree, T. Ratanawilai, C. Nuntadusit

Abstract:

Rubberwood is a crucial commercial timber in Southern Thailand. All processes in a rubberwood production depend on the knowledge and expertise of the technicians, especially the drying process. This research aims to develop an empirical model for drying kinetics in rubberwood. During the experiment, the temperature of the hot air and the average air flow velocity were kept at 80-100 °C and 1.75 m/s, respectively. The moisture content in the samples was determined less than 12% in the achievement of drying basis. The drying kinetic was simulated using an empirical solver. The experimental results illustrated that the moisture content was reduced whereas the drying temperature and time were increased. The coefficient of the moisture ratio between the empirical and the experimental model was tested with three statistical parameters, R-square (), Root Mean Square Error (RMSE) and Chi-square (χ²) to predict the accuracy of the parameters. The experimental moisture ratio had a good fit with the empirical model. Additionally, the results indicated that the drying of rubberwood using the Henderson and Pabis model revealed the suitable level of agreement. The result presented an excellent estimation (= 0.9963) for the moisture movement compared to the other models. Therefore, the empirical results were valid and can be implemented in the future experiments.

Keywords: empirical models, rubberwood, moisture ratio, hot air drying

Procedia PDF Downloads 254
3739 Direct Fed Microbes: A Better Approach to Maximize Utilization of Roughages in Tropical Ruminants

Authors: Muhammad Adeel Arshad, Shaukat Ali Bhatti, Faiz-ul Hassan

Abstract:

Manipulating microbial ecosystem in the rumen is considered as an important strategy to optimize production efficiency in ruminants. In the past, antibiotics and synthetic chemical compounds have been used for the manipulation of rumen fermentation. However, since the non-therapeutic use of antibiotics has been banned, efforts are being focused to search out safe alternative products. In tropics, crop residues and forage grazing are major dietary sources for ruminants. Poor digestibility and utilization of these feedstuffs by animals is a limiting factor to exploit the full potential of ruminants in this area. Hence, there is a need to enhance the utilization of these available feeding resources. One of the potential strategies in this regard is the use of direct-fed microbes. Bacteria and fungi are mostly used as direct-fed microbes to improve animal health and productivity. Commonly used bacterial species include lactic acid-producing and utilizing bacteria (Lactobacillus, Streptococcus, Enterococcus, Bifidobacterium, and Bacillus) and fungal species of yeast are Saccharomyces and Aspergillus. Direct-fed microbes modulate microbial balance in the gastrointestinal tract through the competitive exclusion of pathogenic species and favoring beneficial microbes. Improvement in weight gain and feed efficiency has been observed as a result of feeding direct-fed bacteria. The use of fungi as a direct-fed microbe may prevent excessive production of lactate and harmful oxygen in the rumen leading to better feed digestibility. However, the mechanistic mode of action for bacterial or fungal direct-fed microbes has not been established yet. Various reports have confirmed an increase in dry matter intake, milk yield, and milk contents in response to the administration of direct-fed microbes. However, the application of a direct-fed microbe has shown variable responses mainly attributed to dosages and strains of microbes. Nonetheless, it is concluded that the inclusion of direct-fed microbes may mediate the rumen ecosystem to manage lactic acid production and utilization in both clinical and sub-acute rumen acidosis.

Keywords: microbes, roughages, rumen, feed efficiency, production, fermentation

Procedia PDF Downloads 126
3738 Reaction Rate Behavior of a Methane-Air Mixture over a Platinum Catalyst in a Single Channel Catalytic Reactor

Authors: Doo Ki Lee, Kumaresh Selvakumar, Man Young Kim

Abstract:

Catalytic combustion is an environmentally friendly technique to combust fuels in gas turbines. In this paper, the behavior of surface reaction rate on catalytic combustion is studied with respect to the heterogeneous oxidation of methane-air mixture in a catalytic reactor. Plug flow reactor (PFR), the simplified single catalytic channel assists in investigating the catalytic combustion phenomenon over the Pt catalyst by promoting the desired chemical reactions. The numerical simulation with multi-step elementary surface reactions is governed by the availability of free surface sites onto the catalytic surface and thereby, the catalytic combustion characteristics are demonstrated by examining the rate of the reaction for lean fuel mixture. Further, two different surface reaction mechanisms are adopted and compared for surface reaction rates to indicate the controlling heterogeneous reaction for better fuel conversion. The performance of platinum catalyst under heterogeneous reaction is analyzed under the same temperature condition, where the catalyst with the higher kinetic rate of reaction would have a maximum catalytic activity for enhanced methane catalytic combustion.

Keywords: catalytic combustion, heterogeneous reaction, plug flow reactor, surface reaction rate

Procedia PDF Downloads 262
3737 Targeting Glucocorticoid Receptor Eliminate Dormant Chemoresistant Cancer Stem Cells in Glioblastoma

Authors: Aoxue Yang, Weili Tian, Yonghe Wu, Haikun Liu

Abstract:

Brain tumor stem cells (BTSCs) are resistant to therapy and give rise to recurrent tumors. These rare and elusive cells are likely to disseminate during cancer progression, and some may enter dormancy, remaining viable but not increasing. The identification of dormant BTSCs is thus necessary to design effective therapies for glioblastoma (GBM) patients. Little progress has been made in therapeutic treatment of glioblastoma in the last decade despite rapid progress in molecular understanding of brain tumors1. Here we show that the stress hormone glucocorticoid is essential for the maintenance of brain tumor stem cells (BTSCs), which are resistant to conventional therapy. The glucocorticoid receptor (GR) regulates metabolic plasticity and chemoresistance of the dormant BTSC via controlling expression of GPD1 (glycerol-3-phosphate dehydrogenase 1), which is an essential regulator of lipid metabolism in BTSCs. Genomic, lipidomic and cellular analysis confirm that GR/GPD1 regulation is essential for BTSCs metabolic plasticity and survival. We further demonstrate that the GR agonist dexamethasone (DEXA), which is commonly used to control edema in glioblastoma, abolishes the effect of chemotherapy drug temozolomide (TMZ) by upregulating GPD1 and thus promoting tumor cell dormancy in vivo, this provides a mechanistic explanation and thus settle the long-standing debate of usage of steroid in brain tumor patient edema control. Pharmacological inhibition of GR/GPD1 pathway disrupts metabolic plasticity of BTSCs and prolong animal survival, which is superior to standard chemotherapy. Patient case study shows that GR antagonist mifepristone blocks tumor progression and leads to symptomatic improvement. This study identifies an important mechanism regulating cancer stem cell dormancy and provides a new opportunity for glioblastoma treatment.

Keywords: cancer stem cell, dormancy, glioblastoma, glycerol-3-phosphate dehydrogenase 1, glucocorticoid receptor, dexamethasone, RNA-sequencing, phosphoglycerides.

Procedia PDF Downloads 77
3736 Functionality of Promotional and Advertising Texts: Pragmatic Implications for English-Arabic Translation

Authors: Jamal Gaber Abdalla

Abstract:

In business promotion and advertising, language is used intentionally to create a powerful influence over people and their behavior. In commercial and marketing activities, the choice of language to convey specific messages with the intention of influencing people is pragmatically important. Design and visual content in promotional and advertising texts also have a great persuasive impact on consumers. It is the functional combination of design, language and visual content that helps people to identify a product or service and remember it. Translating promotional and advertising texts between structurally and culturally different languages, such as English and Arabic, usually involves pragmatic/functional shifts that decide the quality of translation. This study explores some of these shifts in translating promotional and advertising texts between English and Arabic and their implications for translation quality. The study is based on a contrastive analysis of data collected from real samples of English-Arabic translations of promotional and advertising texts. The samples cover different promotional and advertising text types and different business domains. The aim is to identify the most recurrent translation shifts and most used translation approaches/strategies that achieve quality in view of the functional nature of promotional and advertising texts and target language culture conventions. The study shows that linguistic shifts and visual shifts are recurrent in English-Arabic translations of promotional and advertising texts. The study also shows that the most commonly used translation approaches/strategies are functional translation, domestication, communicative translation.

Keywords: advertising, Arabic, English, functional translation, promotion

Procedia PDF Downloads 343
3735 Higher-Level Return to Female Karate Competition Following Multiple Patella Dislocations

Authors: A. Maso, C. Bellissimo, G. Facchinetti, N. Milani, D. Panzin, D. Pogliana, L. Garlaschelli, L. Rivaroli, S. Rivaroli, M. Zurek, J. Konin

Abstract:

15 year-old female karate athlete experienced two unilateral patella dislocations: one contact and one non-contact. This challenged her from competing as planned at the regional and national competitions as a result of her inability to perform at a high level. Despite these injuries and other complicated factors, she was able to modify her training timeline and successfully perform, winning third at the National Cup. Initial pain numeric rating scale 8/10 during karate training isometric figures, taking the stairs, long walking, a positive rasp test, palpation pain on the lateral patella joint 9/10, pain performing open kinetic chain 0°-45° and close kinetic chain 30°-90°, tensor fascia lata, vastus lateralis, psoas muscles retraction/stiffness. Foot hyper pronation, internally rotated femur, and knee flexion 15° were the postural findings. Exercise prescription for three days/week for three weeks to include exercise-based rehabilitation and soft tissue mobilization with massage and foam rolling. After three weeks, the pain was improved during activity daily living 5/10, and soft tissue stiffness decreased. An additional four weeks of exercise-based rehabilitation was continued. At this time, axial x-rays and TA-GT TAC were taken, and an orthopaedic medical check was recommended to continue conservative treatment. At week seven, she performed 2/4 karate position technique without pain and 2/4 with pain. An isokinetic test was performed at week 12, demonstrating a 10% strength deficit and 6% resistance deficit both to the left hamstrings. Moreover, an 8% strength and resistance surplus to the left quadriceps was found. No pain was present during activity, daily living and sports activity, allowing a return to play training to begin. A plan for the return to play framework collaborated with her trainer, her father, a physiotherapist, a sports scientist, an osteopath, and a nutritionist. Within 4 and 5 months, both non-athlete and athlete movement quality analysis tests were performed. The plan agreed to establish a return to play goal of 7 months and the highest level return to competition goal of 9 months from the start of rehabilitation. This included three days/week of training and repeated testing of movement quality before return to competition with detectable improvements from 77% to 93%. Beginning goals of the rehabilitation plan included the importance of a team approach. The patient’s father and trainer were important to collaborate with to assure a safe and timely return to competition. The possibility of achieving the goals was strongly related to orthopaedic decision-making and progress during the first weeks of rehabilitation. Without complications or setbacks, the patient can successfully return to her highest level of competition. The patient returned to participation after five months of rehabilitation and training, and then she returned to competition at the national level in nine months. The successful return was the result of a team approach and a compliant patient with clear goals.

Keywords: karate, knee, performance, rehabilitation

Procedia PDF Downloads 95
3734 The Effect of Velocity Increment by Blockage Factor on Savonius Hydrokinetic Turbine Performance

Authors: Thochi Seb Rengma, Mahendra Kumar Gupta, P. M. V. Subbarao

Abstract:

Hydrokinetic turbines can be used to produce power in inaccessible villages located near rivers. The hydrokinetic turbine uses the kinetic energy of the water and maybe put it directly into the natural flow of water without dams. For off-grid power production, the Savonius-type vertical axis turbine is the easiest to design and manufacture. This proposal uses three-dimensional computational fluid dynamics (CFD) simulations to measure the considerable interaction and complexity of turbine blades. Savonius hydrokinetic turbine (SHKT) performance is affected by a blockage in the river, canals, and waterways. Putting a large object in a water channel causes water obstruction and raises local free stream velocity. The blockage correction factor or velocity increment measures the impact of velocity on the performance. SHKT performance is evaluated by comparing power coefficient (Cp) with tip-speed ratio (TSR) at various blockage ratios. The maximum Cp was obtained at a TSR of 1.1 with a blockage ratio of 45%, whereas TSR of 0.8 yielded the highest Cp without blockage. The greatest Cp of 0.29 was obtained with a 45% blockage ratio compared to a Cp max of 0.18 without a blockage.

Keywords: savonius hydrokinetic turbine, blockage ratio, vertical axis turbine, power coefficient

Procedia PDF Downloads 115
3733 Degradation of Diclofenac in Water Using FeO-Based Catalytic Ozonation in a Modified Flotation Cell

Authors: Miguel A. Figueroa, José A. Lara-Ramos, Miguel A. Mueses

Abstract:

Pharmaceutical residues are a section of emerging contaminants of anthropogenic origin that are present in a myriad of waters with which human beings interact daily and are starting to affect the ecosystem directly. Conventional waste-water treatment systems are not capable of degrading these pharmaceutical effluents because their designs cannot handle the intermediate products and biological effects occurring during its treatment. That is why it is necessary to hybridize conventional waste-water systems with non-conventional processes. In the specific case of an ozonation process, its efficiency highly depends on a perfect dispersion of ozone, long times of interaction of the gas-liquid phases and the size of the ozone bubbles formed through-out the reaction system. In order to increase the efficiency of these parameters, the use of a modified flotation cell has been proposed recently as a reactive system, which is used at an industrial level to facilitate the suspension of particles and spreading gas bubbles through the reactor volume at a high rate. The objective of the present work is the development of a mathematical model that can closely predict the kinetic rates of reactions taking place in the flotation cell at an experimental scale by means of identifying proper reaction mechanisms that take into account the modified chemical and hydrodynamic factors in the FeO-catalyzed Ozonation of Diclofenac aqueous solutions in a flotation cell. The methodology is comprised of three steps: an experimental phase where a modified flotation cell reactor is used to analyze the effects of ozone concentration and loading catalyst over the degradation of Diclofenac aqueous solutions. The performance is evaluated through an index of utilized ozone, which relates the amount of ozone supplied to the system per milligram of degraded pollutant. Next, a theoretical phase where the reaction mechanisms taking place during the experiments must be identified and proposed that details the multiple direct and indirect reactions the system goes through. Finally, a kinetic model is obtained that can mathematically represent the reaction mechanisms with adjustable parameters that can be fitted to the experimental results and give the model a proper physical meaning. The expected results are a robust reaction rate law that can simulate the improved results of Diclofenac mineralization on water using the modified flotation cell reactor. By means of this methodology, the following results were obtained: A robust reaction pathways mechanism showcasing the intermediates, free-radicals and products of the reaction, Optimal values of reaction rate constants that simulated Hatta numbers lower than 3 for the system modeled, degradation percentages of 100%, TOC (Total organic carbon) removal percentage of 69.9 only requiring an optimal value of FeO catalyst of 0.3 g/L. These results showed that a flotation cell could be used as a reactor in ozonation, catalytic ozonation and photocatalytic ozonation processes, since it produces high reaction rate constants and reduces mass transfer limitations (Ha > 3) by producing microbubbles and maintaining a good catalyst distribution.

Keywords: advanced oxidation technologies, iron oxide, emergent contaminants, AOTS intensification

Procedia PDF Downloads 103
3732 Cadmium Adsorption by Modified Magnetic Biochar

Authors: Chompoonut Chaiyaraksa, Chanida Singbubpha, Kliaothong Angkabkingkaew, Thitikorn Boonyasawin

Abstract:

Heavy metal contamination in an environment is an important problem in Thailand that needs to be addressed urgently, particularly contaminated with water. It can spread to other environments faster. This research aims to study the adsorption of cadmium ion by unmodified biochar and sodium dodecyl sulfate modified magnetic biochar derived from Eichhornia Crassipes. The determination of the adsorbent characteristics was by Scanning Electron Microscope, Fourier Transform Infrared Spectrometer, X-ray Diffractometer, and the pH drift method. This study also included the comparison of adsorption efficiency of both types of biochar, adsorption isotherms, and kinetics. The pH value at the point of zero charges of the unmodified biochar and modified magnetic biochar was 7.40 and 3.00, respectively. The maximum value of adsorption reached when using pH 8. The equilibrium adsorption time was 5 hours and 1 hour for unmodified biochar and modified magnetic biochar, respectively. The cadmium adsorption by both adsorbents followed Freundlich, Temkin, and Dubinin – Radushkevich isotherm model and the pseudo-second-order kinetic. The adsorption process was spontaneous at high temperatures and non-spontaneous at low temperatures. It was an endothermic process, physisorption in nature, and can occur naturally.

Keywords: Eichhornia crassipes, magnetic biochar, sodium dodecyl sulfate, water treatment

Procedia PDF Downloads 160
3731 Stemming the Decline of Cultural Festivals as a Way of Preserving the Nigerian Cultural Heritage: A Case Study of Kuteb and Idoma Cultural Festivals

Authors: Inalegwu Stephany Akipu

Abstract:

A cultural festival is characterized by feasting and celebration, with a day or period that has been set aside solely for this reason. Often expressed by an organized series of acts and performances, it forms a very important part of man’s cultural heritage. Nigeria is a country with many ethnic groups and diverse languages. Each of these ethnic groups has a plethora of festivals that depict their culture which is exhibited in many forms ranging from dancing to feasting and celebration. Being a very important aspect of man’s life, it is pertinent to document and optimally harness it. However, there is a significant decline of these practices in some areas in Nigeria while some areas have registered a total loss of same. It is the aim of this paper therefore, to appraise the factors responsible for this and also, to project ways of resuscitating these festivals which by the way are viable tools for revenue generation through tourism. Not only do festivals serve as a source of revenue, they also aid in national integration which in turn further enhances sustainable development. The interest of this paper will focus on the Kuteb people of Taraba State and the Idoma people of Benue State. The methodologies applied include primary (oral interviews) and secondary (consultation of written records on the subject matter) sources of data. It finally concludes by comparing the approaches that are in use by the ethnic groups in Nigeria who have successfully preserved this aspect their culture and suggestions are made as to how to apply same approaches to these two communities that form the subject of this paper.

Keywords: festival, cultural heritage, Nigeria, national integration, sustainable development

Procedia PDF Downloads 277
3730 Sustainable Production of Tin Oxide Nanoparticles: Exploring Synthesis Techniques, Formation Mechanisms, and Versatile Applications

Authors: Yemane Tadesse Gebreslassie, Henok Gidey Gebretnsae

Abstract:

Nanotechnology has emerged as a highly promising field of research with wide-ranging applications across various scientific disciplines. In recent years, tin oxide has garnered significant attention due to its intriguing properties, particularly when synthesized in the nanoscale range. While numerous physical and chemical methods exist for producing tin oxide nanoparticles, these approaches tend to be costly, energy-intensive, and involve the use of toxic chemicals. Given the growing concerns regarding human health and environmental impact, there has been a shift towards developing cost-effective and environmentally friendly processes for tin oxide nanoparticle synthesis. Green synthesis methods utilizing biological entities such as plant extracts, bacteria, and natural biomolecules have shown promise in successfully producing tin oxide nanoparticles. However, scaling up the production to an industrial level using green synthesis approaches remains challenging due to the complexity of biological substrates, which hinders the elucidation of reaction mechanisms and formation processes. Thus, this review aims to provide an overview of the various sources of biological entities and methodologies employed in the green synthesis of tin oxide nanoparticles, as well as their impact on nanoparticle properties. Furthermore, this research delves into the strides made in comprehending the mechanisms behind the formation of nanoparticles as documented in existing literature. It also sheds light on the array of analytical techniques employed to investigate and elucidate the characteristics of these minuscule particles.

Keywords: nanotechnology, tin oxide, green synthesis, formation mechanisms

Procedia PDF Downloads 39
3729 Quantum Chemical Calculations Synthesis and Corrosion Inhibition Efficiency of Nonionic Surfactants on API X65 Steel Surface under H2s Environment

Authors: E. G. Zaki, M. A. Migahed, A. M. Al-Sabagh, E. A. Khamis

Abstract:

Inhibition effect of four novel nonionic surfactants based on sulphonamide, of linear alkyl benzene sulphonic acid (LABS), was reacted with 1 mole triethylenetetramine, tetraethylenepentamine then Ethoxylation of amide X 65 type carbon steel in oil wells formation water under H2S environment was investigated by electrochemical measurements. Scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) were used to characterize the steel surface. The results showed that these surfactants act as a corrosion inhibitor in and their inhibition efficiencies depend on the ethylene oxide content in the system. The obtained results showed that the percentage inhibition efficiency (η%) was increased by increasing the inhibitor concentration until the critical micelle concentration (CMC) reached The quantum chemistry calculations were carried out to study the molecular geometry and electronic structure of obtained derivatives. The energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital has been calculated using the theoretical computations to reflect the chemical reactivity and kinetic stability of compounds.

Keywords: corrosion, surfactants, steel surface, quantum

Procedia PDF Downloads 353
3728 Effect of the Cross-Sectional Geometry on Heat Transfer and Particle Motion of Circulating Fluidized Bed Riser for CO2 Capture

Authors: Seungyeong Choi, Namkyu Lee, Dong Il Shim, Young Mun Lee, Yong-Ki Park, Hyung Hee Cho

Abstract:

Effect of the cross-sectional geometry on heat transfer and particle motion of circulating fluidized bed riser for CO2 capture was investigated. Numerical simulation using Eulerian-eulerian method with kinetic theory of granular flow was adopted to analyze gas-solid flow consisting in circulating fluidized bed riser. Circular, square, and rectangular cross-sectional geometry cases of the same area were carried out. Rectangular cross-sectional geometries were analyzed having aspect ratios of 1: 2, 1: 4, 1: 8, and 1:16. The cross-sectional geometry significantly influenced the particle motion and heat transfer. The downward flow pattern of solid particles near the wall was changed. The gas-solid mixing degree of the riser with the rectangular cross section of the high aspect ratio was the lowest. There were differences in bed-to-wall heat transfer coefficient according to rectangular geometry with different aspect ratios.

Keywords: bed geometry, computational fluid dynamics, circulating fluidized bed riser, heat transfer

Procedia PDF Downloads 245
3727 A Comparative Study of Various Control Methods for Rendezvous of a Satellite Couple

Authors: Hasan Basaran, Emre Unal

Abstract:

Formation flying of satellites is a mission that involves a relative position keeping of different satellites in the constellation. In this study, different control algorithms are compared with one another in terms of ΔV, velocity increment, and tracking error. Various control methods, covering continuous and impulsive approaches are implemented and tested for satellites flying in low Earth orbit. Feedback linearization, sliding mode control, and model predictive control are designed and compared with an impulsive feedback law, which is based on mean orbital elements. Feedback linearization and sliding mode control approaches have identical mathematical models that include second order Earth oblateness effects. The model predictive control, on the other hand, does not include any perturbations and assumes circular chief orbit. The comparison is done with 4 different initial errors and achieved with velocity increment, root mean square error, maximum steady state error, and settling time. It was observed that impulsive law consumed the least ΔV, while produced the highest maximum error in the steady state. The continuous control laws, however, consumed higher velocity increments and produced lower amounts of tracking errors. Finally, the inversely proportional relationship between tracking error and velocity increment was established.

Keywords: chief-deputy satellites, feedback linearization, follower-leader satellites, formation flight, fuel consumption, model predictive control, rendezvous, sliding mode

Procedia PDF Downloads 88