Search results for: informed decision making
6910 Deepfake Detection System through Collective Intelligence in Public Blockchain Environment
Authors: Mustafa Zemin
Abstract:
The increasing popularity of deepfake technology poses a growing threat to information integrity and security. This paper presents a deepfake detection system designed to leverage public blockchain and collective intelligence as solutions to address this issue. Utilizing smart contracts on the Ethereum blockchain ensures secure, decentralized media content verification, creating an auditable and tamper-resistant framework. The approach integrates concepts from electronic voting, allowing a network of participants to assess content authenticity collectively through consensus mechanisms. This decentralized, community-driven model enhances detection accuracy while preventing single points of failure. Experimental analysis demonstrates the system’s robustness, reliability, and scalability in deepfake detection, offering a sustainable approach to combat digital misinformation. The proposed solution advances deepfake detection capabilities and provides a framework for applying blockchain-based collective intelligence to other domains facing similar verification challenges, thereby contributing to the fight against digital misinformation in a secure, trustless environment. The limitations and challenges identified in this work can be addressed by enhancing user participation, particularly through more informed and conscious engagement. One potential avenue is to involve users in developing deep learning models, which could contribute to the voting system. However, for such participation to be incentivized, a reward mechanism must be implemented. A viable approach to this is through a credibility-based reward system, where users who actively participate in voting are compensated with tokens. This system would serve not only as a motivational factor but also as a mechanism for ensuring higher-quality participation over time. Each participant is assigned a Credibility Score, which is dynamically adjusted based on the accuracy of their votes. The credibility score increases when their decisions align with the majority consensus and decreases when their votes are incorrect. This incentivizes accurate decision-making and ensures that more reliable participants gain influence in the system. The credibility scores are designed to increase progressively for users with more correct votes. In contrast, penalties for incorrect voting are more severe than the rewards for correct decisions, emphasizing the importance of voting accuracy. As users’ Credibility Scores increase over time, successful voters will be less reliant on lower-scoring participants, thereby fostering an environment where high-quality contributions are valued. Furthermore, tokenization plays a critical role in enhancing the decentralization of the system. Users can participate without uploading videos, by receiving tokens through an airdrop mechanism once they surpass a predefined credibility threshold. This process effectively decentralizes decision-making and incentivizes participation from a broader user base. The integration of tokenization would allow users to interact with the smart contract in a more seamless manner, replacing the use of test tokens with the system’s own tokens. Voters with high credibility scores would be rewarded with tokens. The distribution model is designed to reflect the gradual increase in token value over time, similar to the evolution of Bitcoin's reward system, where early participants earn higher rewards, but as the system matures, the token value appreciates, and rewards decrease.Keywords: deepfake detection, public blockchain, electronic voting, collective intelligence, Ethereum
Procedia PDF Downloads 76909 Investigate the Current Performance of Burger King Ho Chi Minh City in Terms of the Controllable Variables of the Overall Retail Strategy
Authors: Nhi Ngoc Thien
Abstract:
Franchising is a popular trend in Vietnam retail industry, especially in fast food industry. Several famous foreign fast food brands such as KFC, Lotteria, Jollibee or Pizza Hut invested on this potential market since the 1990s. Following this trend, in 2011, Burger King - the second largest fast food hamburger chain all over the world - entered Vietnam with its first store located in Tan Son Nhat International Airport, with the expectation to become the leading brand in the country. However, the business performance of Burger King was not going well in the first few years making it questioned about its strategy. The given assumption was that its business performance was affected negatively by its store location selection strategy. This research aims to investigate the current performance of Burger King Vietnam in terms of the controllable variables like store location as well as to explore the key factors influencing customer decision to choose Burger King. Therefore, a case study research method was conducted to approach deeply on the opinions and evaluations of 10 Burger King’s customers, Burger King's staffs and other fast food experts on Burger King’s performance through in-depth interview, direct observation and documentary analysis. Findings show that there are 8 determinants affecting the decision-making of Burger King’s customers, which are store location, quality of food, service quality, store atmosphere, price, promotion, menu and brand reputation. Moreover, findings present that Burger King’s staffs and fast food experts also mentioned the main problems of Burger King, which are about store location and food quality. As a result, there are some recommendations for Burger King Vietnam to improve its performance in the market and attract more Vietnamese target customers by giving suitable promotional activities among its customers and being differentiated itself from other fast food brands.Keywords: overall retail strategy, controllable variables, store location, quality of food
Procedia PDF Downloads 3456908 The Effect of Tacit Knowledge for Intelligence Cycle
Authors: Bahadir Aydin
Abstract:
It is difficult to access accurate knowledge because of mass data. This huge data make environment more and more caotic. Data are main piller of intelligence. The affiliation between intelligence and knowledge is quite significant to understand underlying truths. The data gathered from different sources can be modified, interpreted and classified by using intelligence cycle process. This process is applied in order to progress to wisdom as well as intelligence. Within this process the effect of tacit knowledge is crucial. Knowledge which is classified as explicit and tacit knowledge is the key element for any purpose. Tacit knowledge can be seen as "the tip of the iceberg”. This tacit knowledge accounts for much more than we guess in all intelligence cycle. If the concept of intelligence cycle is scrutinized, it can be seen that it contains risks, threats as well as success. The main purpose of all organizations is to be successful by eliminating risks and threats. Therefore, there is a need to connect or fuse existing information and the processes which can be used to develop it. Thanks to this process the decision-makers can be presented with a clear holistic understanding, as early as possible in the decision making process. Altering from the current traditional reactive approach to a proactive intelligence cycle approach would reduce extensive duplication of work in the organization. Applying new result-oriented cycle and tacit knowledge intelligence can be procured and utilized more effectively and timely.Keywords: information, intelligence cycle, knowledge, tacit Knowledge
Procedia PDF Downloads 5146907 Intelligent Decision Support for Wind Park Operation: Machine-Learning Based Detection and Diagnosis of Anomalous Operating States
Authors: Angela Meyer
Abstract:
The operation and maintenance cost for wind parks make up a major fraction of the park’s overall lifetime cost. To minimize the cost and risk involved, an optimal operation and maintenance strategy requires continuous monitoring and analysis. In order to facilitate this, we present a decision support system that automatically scans the stream of telemetry sensor data generated from the turbines. By learning decision boundaries and normal reference operating states using machine learning algorithms, the decision support system can detect anomalous operating behavior in individual wind turbines and diagnose the involved turbine sub-systems. Operating personal can be alerted if a normal operating state boundary is exceeded. The presented decision support system and method are applicable for any turbine type and manufacturer providing telemetry data of the turbine operating state. We demonstrate the successful detection and diagnosis of anomalous operating states in a case study at a German onshore wind park comprised of Vestas V112 turbines.Keywords: anomaly detection, decision support, machine learning, monitoring, performance optimization, wind turbines
Procedia PDF Downloads 1676906 IoT Based Information Processing and Computing
Authors: Mannan Ahmad Rasheed, Sawera Kanwal, Mansoor Ahmad Rasheed
Abstract:
The Internet of Things (IoT) has revolutionized the way we collect and process information, making it possible to gather data from a wide range of connected devices and sensors. This has led to the development of IoT-based information processing and computing systems that are capable of handling large amounts of data in real time. This paper provides a comprehensive overview of the current state of IoT-based information processing and computing, as well as the key challenges and gaps that need to be addressed. This paper discusses the potential benefits of IoT-based information processing and computing, such as improved efficiency, enhanced decision-making, and cost savings. Despite the numerous benefits of IoT-based information processing and computing, several challenges need to be addressed to realize the full potential of these systems. These challenges include security and privacy concerns, interoperability issues, scalability and reliability of IoT devices, and the need for standardization and regulation of IoT technologies. Moreover, this paper identifies several gaps in the current research related to IoT-based information processing and computing. One major gap is the lack of a comprehensive framework for designing and implementing IoT-based information processing and computing systems.Keywords: IoT, computing, information processing, Iot computing
Procedia PDF Downloads 1886905 Design and Development of Data Mining Application for Medical Centers in Remote Areas
Authors: Grace Omowunmi Soyebi
Abstract:
Data Mining is the extraction of information from a large database which helps in predicting a trend or behavior, thereby helping management make knowledge-driven decisions. One principal problem of most hospitals in rural areas is making use of the file management system for keeping records. A lot of time is wasted when a patient visits the hospital, probably in an emergency, and the nurse or attendant has to search through voluminous files before the patient's file can be retrieved; this may cause an unexpected to happen to the patient. This Data Mining application is to be designed using a Structured System Analysis and design method, which will help in a well-articulated analysis of the existing file management system, feasibility study, and proper documentation of the Design and Implementation of a Computerized medical record system. This Computerized system will replace the file management system and help to easily retrieve a patient's record with increased data security, access clinical records for decision-making, and reduce the time range at which a patient gets attended to.Keywords: data mining, medical record system, systems programming, computing
Procedia PDF Downloads 2106904 Confirming the Factors of Professional Readiness in Athletic Training
Authors: Philip A. Szlosek, M. Susan Guyer, Mary G. Barnum, Elizabeth M. Mullin
Abstract:
In the United States, athletic training is a healthcare profession that encompasses the prevention, examination, diagnosis, treatment, and rehabilitation of injuries and medical conditions. Athletic trainers work under the direction of or in collaboration with a physician and are recognized by the American Medical Association as allied healthcare professionals. Internationally, this profession is often known as athletic therapy. As healthcare professionals, athletic trainers must be prepared for autonomous practice immediately after graduation. However, new athletic trainers have been shown to have clinical areas of strength and weakness.To better assess professional readiness and improve the preparedness of new athletic trainers, the factors of athletic training professional readiness must be defined. Limited research exists defining the holistic aspects of professional readiness needed for athletic trainers. Confirming the factors of professional readiness in athletic training could enhance the professional preparation of athletic trainers and result in more highly prepared new professionals. The objective of this study was to further explore and confirm the factors of professional readiness in athletic training. Authors useda qualitative design based in grounded theory. Participants included athletic trainers with greater than 24 months of experience from a variety of work settings from each district of the National Athletic Trainer’s Association. Participants took the demographic questionnaire electronically using Qualtrics Survey Software (Provo UT). After completing the demographic questionnaire, 20 participants were selected to complete one-on-one interviews using GoToMeeting audiovisual web conferencing software. IBM Statistical Package for the Social Sciences (SPSS, v. 21.0) was used to calculate descriptive statistics for participant demographics. The first author transcribed all interviews verbatim and utilized a grounded theory approach during qualitative data analysis. Data were analyzed using a constant comparative analysis and open and axial coding. Trustworthiness was established using reflexivity, member checks, and peer reviews. Analysis revealed four overarching themes, including management, interpersonal relations, clinical decision-making, and confidence. Management was categorized as athletic training services not involving direct patient care and was divided into three subthemes, including administration skills, advocacy, and time management. Interpersonal Relations was categorized as the need and ability of the athletic trainer to properly interact with others. Interpersonal relations was divided into three subthemes, including personality traits, communication, and collaborative practice. Clinical decision-making was categorized as the skills and attributes required by the athletic trainer whenmaking clinical decisions related to patient care. Clinical decision-making was divided into three subthemes including clinical skills, continuing education, and reflective practice. The final theme was confidence. Participants discussed the importance of confidence regarding relationships building, clinical and administrative duties, and clinical decision-making. Overall, participants explained the value of a well-rounded athletic trainer and emphasized that athletic trainers need communication and organizational skills, the ability to collaborate, and must value self-reflection and continuing education in addition to having clinical expertise. Future research should finalize a comprehensive model of professional readiness for athletic training, develop a holistic assessment instrument for athletic training professional readiness, and explore the preparedness of new athletic trainers.Keywords: autonomous practice, newly certified athletic trainer, preparedness for professional practice, transition to practice skills
Procedia PDF Downloads 1516903 Effects of Self-Disclosure and Transparency on Conversational Agents in a Healthcare-Related Decision Support System
Authors: Luca Martignoni, Joseph Nserat, Eric Arand, Marvin Braun
Abstract:
The increasing application of conversational agents in healthcare and the demand for applications that enable patients to take informed decisions is changing the way patients access healthcare and take decisions. Promising results related to the acceptance of CAs in healthcare have been accomplished. In that regard, understanding how to design CAs in a way that patients trust their recommendations and decisions constitutes an important area of research. Our study examines self-disclosure and transparency as drivers of trust to enhance the medical assistance of CAs for patients. Accordingly, we examined the effects of self-disclosure and transparency on patients trust and service satisfaction by conducting an online experiment with 136 participants. Our results show that the expression of both self-disclosure and conversational agents transparency leads to an increased perception of trust but does not necessarily improve the service satisfaction. Therefore, developers should implement self-disclosure and transparency to create a trustworthy environment.Keywords: conversational agent, transparency, self-disclosure, healthcare
Procedia PDF Downloads 1406902 A New Model for Production Forecasting in ERP
Authors: S. F. Wong, W. I. Ho, B. Lin, Q. Huang
Abstract:
ERP has been used in many enterprises for management, the accuracy of the production forecasting module is vital to the decision making of the enterprise, and the profit is affected directly. Therefore, enhancing the accuracy of the production forecasting module can also increase the efficiency and profitability. To deal with a lot of data, a suitable, reliable and accurate statistics model is necessary. LSSVM and Grey System are two main models to be studied in this paper, and a case study is used to demonstrate how the combination model is effective to the result of forecasting.Keywords: ERP, grey system, LSSVM, production forecasting
Procedia PDF Downloads 4646901 Planning of Construction Material Flow Using Hybrid Simulation Modeling
Authors: A. M. Naraghi, V. Gonzalez, M. O'Sullivan, C. G. Walker, M. Poshdar, F. Ying, M. Abdelmegid
Abstract:
Discrete Event Simulation (DES) and Agent Based Simulation (ABS) are two simulation approaches that have been proposed to support decision-making in the construction industry. Despite the wide use of these simulation approaches in the construction field, their applications for production and material planning is still limited. This is largely due to the dynamic and complex nature of construction material supply chain systems. Moreover, managing the flow of construction material is not well integrated with site logistics in traditional construction planning methods. This paper presents a hybrid of DES and ABS to simulate on-site and off-site material supply processes. DES is applied to determine the best production scenarios with information of on-site production systems, while ABS is used to optimize the supply chain network. A case study of a construction piling project in New Zealand is presented illustrating the potential benefits of using the proposed hybrid simulation model in construction material flow planning. The hybrid model presented can be used to evaluate the impact of different decisions on construction supply chain management.Keywords: construction supply-chain management, simulation modeling, decision-support tools, hybrid simulation
Procedia PDF Downloads 2076900 Control HVAC Parameters by Brain Emotional Learning Based Intelligent Controller (BELBIC)
Authors: Javad Abdi, Azam Famil Khalili
Abstract:
Modeling emotions have attracted much attention in recent years, both in cognitive psychology and design of artificial systems. However, it is a negative factor in decision-making; emotions have shown to be a strong faculty for making fast satisfying decisions. In this paper, we have adapted a computational model based on the limbic system in the mammalian brain for control engineering applications. Learning in this model based on Temporal Difference (TD) Learning, we applied the proposed controller (termed BELBIC) for a simple model of a submarine. The model was supposed to reach the desired depth underwater. Our results demonstrate excellent control action, disturbance handling, and system parameter robustness for TDBELBIC. The proposal method, regarding the present conditions, the system action in the part and the controlling aims, can control the system in a way that these objectives are attained in the least amount of time and the best way.Keywords: artificial neural networks, temporal difference, brain emotional learning based intelligent controller, heating- ventilating and air conditioning
Procedia PDF Downloads 4346899 A Mathematical Model to Select Shipbrokers
Authors: Y. Smirlis, G. Koronakos, S. Plitsos
Abstract:
Shipbrokers assist the ship companies in chartering or selling and buying vessels, acting as intermediates between them and the market. They facilitate deals, providing their expertise, negotiating skills, and knowledge about ship market bargains. Their role is very important as it affects the profitability and market position of a shipping company. Due to their significant contribution, the shipping companies have to employ systematic procedures to evaluate the shipbrokers’ services in order to select the best and, consequently, to achieve the best deals. Towards this, in this paper, we consider shipbrokers as financial service providers, and we formulate the problem of evaluating and selecting shipbrokers’ services as a multi-criteria decision making (MCDM) procedure. The proposed methodology comprises a first normalization step to adjust different scales and orientations of the criteria and a second step that includes the mathematical model to evaluate the performance of the shipbrokers’ services involved in the assessment. The criteria along which the shipbrokers are assessed may refer to their size and reputation, the potential efficiency of the services, the terms and conditions imposed, the expenses (e.g., commission – brokerage), the expected time to accomplish a chartering or selling/buying task, etc. and according to our modelling approach these criteria may be assigned different importance. The mathematical programming model performs a comparative assessment and estimates for the shipbrokers involved in the evaluation, a relative score that ranks the shipbrokers in terms of their potential performance. To illustrate the proposed methodology, we present a case study in which a shipping company evaluates and selects the most suitable among a number of sale and purchase (S&P) brokers. Acknowledgment: This study is supported by the OptiShip project, implemented within the framework of the National Recovery Plan and Resilience “Greece 2.0” and funded by the European Union – NextGenerationEU programme.Keywords: shipbrokers, multi-criteria decision making, mathematical programming, service-provider selection
Procedia PDF Downloads 896898 Adopting New Knowledge and Approaches to Sustainable Urban Drainage in Saudi Arabia
Authors: Ali Alahmari
Abstract:
Urban drainage in Saudi Arabia is an increasingly challenging issue due to factors such as climate change and rapid urban expansion. The existing infrastructure, based on traditional drainage systems, is not always able to cope with the increased precipitation, sometimes leading to rainwater runoff and floods causing disturbances and damage to property. Therefore, there is a need to find new ways of managing drainage, such as Sustainable Urban Drainage Systems (SUDS). The research has highlighted the main driving forces behind the need for change, revealed by the participants, to the need to adopt new ideas and approaches for urban drainage. However, while moving towards this, certain factors that may hinder the aim of using the experiences of other countries and taking advantage of innovative solutions. The research illustrates an initial conceptual model for these factors emerging from the analysis. It identifies some of the fundamental issues affecting the resistance to change towards the adoption of the concept of sustainability in Saudi Arabia, with Riyadh city as a case study. This was by using a qualitative approach, whereby, through two phases of fieldwork during 2013 and 2014, twenty-six semi-structured interviews were conducted with a number of representative officials and professionals from key government departments and organisations related to urban drainage management. Grounded Theory approach was followed to analyse the qualitative data obtained. Resistance to change was classified to: firstly: individual inertia (e.g. familiarity with the conventional solutions and approaches, lack of awareness, and considering sustainability as a marginal matter in urban planning). This resulted in not paying the desired attention, and impact on planning and setting priorities for development. Secondly: institutionalised inertia (e.g. lack of technical and design specifications for other unconventional drainage solutions, lack of consideration by decision makers in other disciplines such as contributions from environmental and geographical studies, and routine work and bureaucracy). This contributes to the weakness of decision-making, weakness in the role of research, and a lack of human resources. It seems that attitudes towards change may have reduced the ability to move forward towards sustainable development, in addition to contributing towards difficulties in some aspects of the decision-making process. Thus, the chapter provides insights into the current situation in Saudi Arabia and contributes to understanding the decisions that are made regarding change.Keywords: climate change, new knowledge and approaches, resistance to change, Saudi Arabia, SUDS, urban drainage, urban expansion
Procedia PDF Downloads 1766897 Analysis of the Factors of Local Acceptance of Wind Power Generation Facilities
Authors: Hyunjoo Park, Taehyun Kim, Taehyun Kim
Abstract:
The government that declared 'de-nuclearization' pushes up renewable energy policies such as solar power and wind power as an alternative to nuclear power generation. However, local residents who are concerned about the development and natural disasters have been hit by opposition, and related businesses around the country are experiencing difficulties. There is also a voice saying that installing a large wind power generator will cause landslides, low frequencies and noise, which will have a bad influence. Renewal is only a harmful and disgusting facility for the residents. In this way, it is expected that extreme social conflicts will occur in the decision making process related to the locally unwanted land-use (LULU). The government's efforts to solve this problem have been steadily progressing, but the systematic methodology for bringing in active participation and opinion gathering of the residents has not yet been established except for the simple opinion poll or referendum. Therefore, it is time to identify the factors that concern the local residents about the wind power generation facilities, and to find ways to make policy decision-making possible. In this study, we analyze the perception of people about offshore and onshore wind power facilities through questionnaires or interviews, and examine quantitative and qualitative precedent studies to analyze them. In addition, the study evaluates what factors affect the local acceptance of wind power facilities. As a result of the factor analysis of the questionnaire items, factors affecting the residents' acceptance of the wind power facility were extracted from four factors such as environmental, economic, risk, social, and management factor. The study also found that the influence of the determinants of local acceptance on the regional acceptability differs according to the demographic characteristics such as gender and income level. This study will contribute to minimizing the conflict on the installation of wind power facilities through communication among the local residents.Keywords: factor analysis, local acceptance, locally unwanted land-use, LULU, wind power generation facilities
Procedia PDF Downloads 1566896 The Potential Factors Relating to the Decision of Return Migration of Myanmar Migrant Workers: A Case Study in Prachuap Khiri Khan Province
Authors: Musthaya Patchanee
Abstract:
The aim of this research is to study potential factors relating to the decision of return migration of Myanmar migrant workers in Prachuap Khiri Khan Province by conducting a random sampling of 400 people aged between 15-59 who migrated from Myanmar. The information collected through interviews was analyzed to find a percentage and mean using the Stepwise Multiple Regression Analysis. The results have shown that 33.25% of Myanmar migrant workers want to return to their home country within the next 1-5 years, 46.25%, in 6-10 years and the rest, in over 10 years. The factors relating to such decision can be concluded that the scale of the decision of return migration has a positive relationship with a statistical significance at 0.05 with a conformity with friends and relatives (r=0.886), a relationship with family and community (r=0.782), possession of land in hometown (r=0.756) and educational level (r=0.699). However, the factor of property possession in Prachuap Khiri Khan is the only factor with a high negative relationship (r=0.-537). From the Stepwise Multiple Regression Analysis, the results have shown that the conformity with friends and relatives and educational level factors are influential to the decision of return migration of Myanmar migrant workers in Prachuap Khiri Khan Province, which can predict the decision at 86.60% and the multiple regression equation from the analysis is Y= 6.744+1.198 conformity + 0.647 education.Keywords: decision of return migration, factors of return migration, Myanmar migrant workers, Prachuap Khiri Khan Province
Procedia PDF Downloads 5416895 AI for Efficient Geothermal Exploration and Utilization
Authors: Velimir Monty Vesselinov, Trais Kliplhuis, Hope Jasperson
Abstract:
Artificial intelligence (AI) is a powerful tool in the geothermal energy sector, aiding in both exploration and utilization. Identifying promising geothermal sites can be challenging due to limited surface indicators and the need for expensive drilling to confirm subsurface resources. Geothermal reservoirs can be located deep underground and exhibit complex geological structures, making traditional exploration methods time-consuming and imprecise. AI algorithms can analyze vast datasets of geological, geophysical, and remote sensing data, including satellite imagery, seismic surveys, geochemistry, geology, etc. Machine learning algorithms can identify subtle patterns and relationships within this data, potentially revealing hidden geothermal potential in areas previously overlooked. To address these challenges, a SIML (Science-Informed Machine Learning) technology has been developed. SIML methods are different from traditional ML techniques. In both cases, the ML models are trained to predict the spatial distribution of an output (e.g., pressure, temperature, heat flux) based on a series of inputs (e.g., permeability, porosity, etc.). The traditional ML (a) relies on deep and wide neural networks (NNs) based on simple algebraic mappings to represent complex processes. In contrast, the SIML neurons incorporate complex mappings (including constitutive relationships and physics/chemistry models). This results in ML models that have a physical meaning and satisfy physics laws and constraints. The prototype of the developed software, called GeoTGO, is accessible through the cloud. Our software prototype demonstrates how different data sources can be made available for processing, executed demonstrative SIML analyses, and presents the results in a table and graphic form.Keywords: science-informed machine learning, artificial inteligence, exploration, utilization, hidden geothermal
Procedia PDF Downloads 566894 Modeling of International Financial Integration: A Multicriteria Decision
Authors: Zouari Ezzeddine, Tarchoun Monaem
Abstract:
Despite the multiplicity of advanced approaches, the concept of financial integration couldn’t be an explicit analysis. Indeed, empirical studies appear that the measures of international financial integration are one-dimensional analyses. For the ambivalence of the concept and its multiple determinants, it must be analyzed in multidimensional level. The interest of this research is a proposal of a decision support by multicriteria approach for determining the positions of countries according to their international and financial dependencies links with the behavior of financial actors (trying to make governance decisions or diversification strategies of international portfolio ...Keywords: financial integration, decision support, behavior, multicriteria approach, governance and diversification
Procedia PDF Downloads 5286893 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction
Abstract:
Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.
Procedia PDF Downloads 906892 Dental Implant Survival in Patients with Osteoporosis
Authors: Mohammad ASadian, Samira RajiAsadabadi
Abstract:
Osteoporosis is very common, particularly in post-menopausal women and is characterized by a decrease in bone mass and strength. Osteoporosis also affects the jawbone and it is considered a potential contraindication to the placement of dental implants. The present paper reviews the literature regarding the effect of osteoporosis on the osseointegration of implants. Experimental models have shown that osteoporosis affects the process of osseointegration, which can be reversed by treatment. However, studies in subjects with osteoporosis have shown no differences in the survival of the implants compared to healthy individuals. Therefore, osteoporosis cannot be considered a contraindication for implant placement. Oral bisphosphonates are the most commonly used pharmacological agents in the treatment of osteoporosis. Although there have been cases of osteonecrosis of the jaw in patients treated with bisphosphonates, they are very rare and it is more usually associated with intravenous bisphosphonates in patients with neoplasms or other serious diseases. Nevertheless, patients treated with bisphosphonates must be informed in writing about the possibility of this complication and must give informed consent. Ceasing to use of bisphosphonates before implant placement does not seem to be necessary.Keywords: Osteoporosis, dental implant, bisphosphonates, survival
Procedia PDF Downloads 966891 ECE Teachers’ Evolving Pedagogical Documentation in MAFApp: ICT Integration for Collective Online Thinking in Early Childhood Education
Authors: Cynthia Adlerstein-Grimberg, Andrea Bralic-Echeverría
Abstract:
An extensive and controversial research debate discusses pedagogical documentation (PD) within early childhood education (ECE) as integral to ECE teachers' professional development. The literature converges in acknowledging that ICT integration in PD can be fundamental for children's and teachers' collaborative learning by making their processes visible and open to reflection. Controversial issues about PD emerge around ICT integration and the use of multimedia applications and platforms, displacing the physical experience involved in this pedagogical practice. Authors argue that online platforms make PD become a passive device to demonstrate accountability and performance. Furthermore, ICT integration would make educators inform children and families of pedagogical processes, positioning them more as consumers instead of involving them in collective thinking and pedagogical decision-making. This article analyses how pedagogical documentation mediated by a multimedia application (MAFApp) allows for the positive strengthening of an ECE pedagogical online community that thinks collectively about learning environments. In doing so, the paper shows how ICT integration supports ECE teachers' collective online thinking, enabling them to move from the controversial version of online PD, where they only act as informers of children's learning and assume a voyeuristic perspective, towards a collective online thinking that builds professional development and supports pedagogical decision-making about learning environments. This article answers How ECE teachers' pedagogical documentation evolves with ICT integration using the MAFApp multimedia application in a national ECE online community. From a posthumanist stance, this paper draws on an 18-month collaborative ethnographic immersion in Chile's unique public ECE online PD community. It develops a unique case study of an online ECE pedagogical community mediated by a multimedia application called MAFApp. This ECE online community includes 32 Chilean public kindergartens, 45 ECE teachers, and 72 assistants, who produced 534 pedagogical documentation. Fieldwork included 35 in-depth interviews, 13 discussion groups, and the constant comparison method for the PD coding. Findings show ICT integration in PD builds collective online thinking that evolves through four moments of growing complexity: 1) teachernalism of built environments, 2) onlookerism of children's anecdotes in learning environments; 3) storytelling of children's place-making, and 4) empowering pedagogies for co-creating learning environments. ICT integration through the MAFApp multimedia application enabled ECE teachers to build collective online thinking, making pedagogies of place visible and engaging children in co-constructing learning environments. This online PD is a continuous professional learning space for ECE teachers, empowering pedagogies of place. In conclusion, ICT integration into PD progressively empowers pedagogies of place in Chilean public ECE. Strengthening collective online thinking using the MAFApp multimedia application sharply contrasts with some recent PD research findings. ICT integration to PD enabled strong collective online thinking. Doing so makes PD operate as a place of professional development, pedagogical reflective encounters, and experimentation while inhabiting their own learning environments with children.Keywords: early childhood education, ICT integration, multimedia application, online collective thinking, pedagogical documentation, professional development
Procedia PDF Downloads 736890 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine
Authors: Djamila Benhaddouche, Abdelkader Benyettou
Abstract:
In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.Keywords: biomedical data, learning, classifier, algorithms decision tree, knowledge extraction
Procedia PDF Downloads 5606889 A Quantitative Model for Replacement of Medical Equipment Based on Technical and Environmental Factors
Authors: Ghadeer Mohammad Said El-Sheikh, Samer Mohamad Shalhoob
Abstract:
Medical equipment operation state is a valid reflection of health care organizations' performance, where such equipment highly contributes to the quality of healthcare services on several levels in which quality improvement has become an intrinsic part of the discourse and activities of health care services. In healthcare organizations, clinical and biomedical engineering departments play an essential role in maintaining the safety and efficiency of such equipment. One of the most challenging topics when it comes to such sophisticated equipment is the lifespan of medical equipment, where many factors will impact such characteristics of medical equipment through its life cycle. So far, many attempts have been made in order to address this issue where most of the approaches are kind of arbitrary approaches and one of the criticisms of existing approaches trying to estimate and understand the lifetime of a medical equipment lies under the inquiry of what are the environmental factors that can play into such a critical characteristic of a medical equipment. In an attempt to address this shortcoming, the purpose of our study rises where in addition to the standard technical factors taken into consideration through the decision-making process by a clinical engineer in case of medical equipment failure, the dimension of environmental factors shall be added. The investigations, researches and studies applied for the purpose of supporting the decision making process by a clinical engineers and assessing the lifespan of healthcare equipment’s in the Lebanese society was highly dependent on the identification of technical criteria’s that impacts the lifespan of a medical equipment where the affecting environmental factors didn’t receive the proper attention. The objective of our study is based on the need for introducing a new well-designed plan for evaluating medical equipment depending on two dimensions. According to this approach, the equipment that should be replaced or repaired will be classified based on a systematic method taking into account two essential criteria; the standard identified technical criteria and the added environmental criteria.Keywords: technical, environmental, healthcare, characteristic of medical equipment
Procedia PDF Downloads 1566888 Site Suitability of Offshore Wind Energy: A Combination of Geographic Referenced Information and Analytic Hierarchy Process
Authors: Ayat-Allah Bouramdane
Abstract:
Power generation from offshore wind energy does not emit carbon dioxide or other air pollutants and therefore play a role in reducing greenhouse gas emissions from the energy sector. In addition, these systems are considered more efficient than onshore wind farms, as they generate electricity from the wind blowing across the sea, thanks to the higher wind speed and greater consistency in direction due to the lack of physical interference that the land or human-made objects can present. This means offshore installations require fewer turbines to produce the same amount of energy as onshore wind farms. However, offshore wind farms require more complex infrastructure to support them and, as a result, are more expensive to construct. In addition, higher wind speeds, strong seas, and accessibility issues makes offshore wind farms more challenging to maintain. This study uses a combination of Geographic Referenced Information (GRI) and Analytic Hierarchy Process (AHP) to identify the most suitable sites for offshore wind farm development in Morocco, with a particular focus on the Dakhla city. A range of environmental, socio-economic, and technical criteria are taken into account to solve this complex Multi-Criteria Decision-Making (MCDM) problem. Based on experts' knowledge, a pairwise comparison matrix at each level of the hierarchy is performed, and fourteen sub-criteria belong to the main criteria have been weighted to generate the site suitability of offshore wind plants and obtain an in-depth knowledge on unsuitable areas, and areas with low-, moderate-, high- and very high suitability. We find that wind speed is the most decisive criteria in offshore wind farm development, followed by bathymetry, while proximity to facilities, the sediment thickness, and the remaining parameters show much lower weightings rendering technical parameters most decisive in offshore wind farm development projects. We also discuss the potential of other marine renewable energy potential, in Morocco, such as wave and tidal energy. The proposed approach and analysis can help decision-makers and can be applied to other countries in order to support the site selection process of offshore wind farms.Keywords: analytic hierarchy process, dakhla, geographic referenced information, morocco, multi-criteria decision-making, offshore wind, site suitability
Procedia PDF Downloads 1586887 Evaluation of Academic Research Projects Using the AHP and TOPSIS Methods
Authors: Murat Arıbaş, Uğur Özcan
Abstract:
Due to the increasing number of universities and academics, the fund of the universities for research activities and grants/supports given by government institutions have increased number and quality of academic research projects. Although every academic research project has a specific purpose and importance, limited resources (money, time, manpower etc.) require choosing the best ones from all (Amiri, 2010). It is a pretty hard process to compare and determine which project is better such that the projects serve different purposes. In addition, the evaluation process has become complicated since there are more than one evaluator and multiple criteria for the evaluation (Dodangeh, Mojahed and Yusuff, 2009). Mehrez and Sinuany-Stern (1983) determined project selection problem as a Multi Criteria Decision Making (MCDM) problem. If a decision problem involves multiple criteria and objectives, it is called as a Multi Attribute Decision Making problem (Ömürbek & Kınay, 2013). There are many MCDM methods in the literature for the solution of such problems. These methods are AHP (Analytic Hierarchy Process), ANP (Analytic Network Process), TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation), UTADIS (Utilities Additives Discriminantes), ELECTRE (Elimination et Choix Traduisant la Realite), MAUT (Multiattribute Utility Theory), GRA (Grey Relational Analysis) etc. Teach method has some advantages compared with others (Ömürbek, Blacksmith & Akalın, 2013). Hence, to decide which MCDM method will be used for solution of the problem, factors like the nature of the problem, types of choices, measurement scales, type of uncertainty, dependency among the attributes, expectations of decision maker, and quantity and quality of the data should be considered (Tavana & Hatami-Marbini, 2011). By this study, it is aimed to develop a systematic decision process for the grant support applications that are expected to be evaluated according to their scientific adequacy by multiple evaluators under certain criteria. In this context, project evaluation process applied by The Scientific and Technological Research Council of Turkey (TÜBİTAK) the leading institutions in our country, was investigated. Firstly in the study, criteria that will be used on the project evaluation were decided. The main criteria were selected among TÜBİTAK evaluation criteria. These criteria were originality of project, methodology, project management/team and research opportunities and extensive impact of project. Moreover, for each main criteria, 2-4 sub criteria were defined, hence it was decided to evaluate projects over 13 sub-criterion in total. Due to superiority of determination criteria weights AHP method and provided opportunity ranking great number of alternatives TOPSIS method, they are used together. AHP method, developed by Saaty (1977), is based on selection by pairwise comparisons. Because of its simple structure and being easy to understand, AHP is the very popular method in the literature for determining criteria weights in MCDM problems. Besides, the TOPSIS method developed by Hwang and Yoon (1981) as a MCDM technique is an alternative to ELECTRE method and it is used in many areas. In the method, distance from each decision point to ideal and to negative ideal solution point was calculated by using Euclidian Distance Approach. In the study, main criteria and sub-criteria were compared on their own merits by using questionnaires that were developed based on an importance scale by four relative groups of people (i.e. TUBITAK specialists, TUBITAK managers, academics and individuals from business world ) After these pairwise comparisons, weight of the each main criteria and sub-criteria were calculated by using AHP method. Then these calculated criteria’ weights used as an input in TOPSİS method, a sample consisting 200 projects were ranked on their own merits. This new system supported to opportunity to get views of the people that take part of project process including preparation, evaluation and implementation on the evaluation of academic research projects. Moreover, instead of using four main criteria in equal weight to evaluate projects, by using weighted 13 sub-criteria and decision point’s distance from the ideal solution, systematic decision making process was developed. By this evaluation process, new approach was created to determine importance of academic research projects.Keywords: Academic projects, Ahp method, Research projects evaluation, Topsis method.
Procedia PDF Downloads 5916886 Decision Support Tool for Water Re-used Systems
Authors: Katarzyna Pawęska, Aleksandra Bawiec, Ewa Burszta-Adamiak, Wiesław Fiałkiewicz
Abstract:
The water shortage becomes a serious problem not only in African and Middle Eastern countries, but also recently in the European Union. Scarcity of water means that not all agricultural, industrial and municipal needs will be met. When the annual availability of renewable freshwater per capita is less than 1,700 cubic meters, countries begin to experience periodic or regular water shortages. The phenomenon of water stress is the result of an imbalance between the constantly growing demand for water and its availability. The constant development of industry, population growth, and climate changes make the situation even worse. The search for alternative water sources and independent supplies is becoming a priority for many countries. Data enabling the assessment of country’s condition regarding water resources, water consumption, water price, wastewater volume, forecasted climate changes e.g. temperature, precipitation, are scattered and their interpretation by common entrepreneurs may be difficult. For this purpose, a digital tool has been developed to support decisions related to the implementation of water and wastewater re-use systems, as a result of an international research project “Framework for organizational decision-making process in water reuse for smart cities” (SMART-WaterDomain) funded under the EIG-CONCERT Japan call on Smart Water Management for Sustainable Society. The developed geo-visualization tool graphically presents, among others, data about the capacity of wastewater treatment plants and the volume of water demand in the private and public sectors for Poland, Germany, and the Czech Republic. It is expected that such a platform, extended with economical water management data and climate forecasts (temperature, precipitation), will allow in the future independent investigation and assessment of water use rate and wastewater production on the local and regional scale. The tool is a great opportunity for small business owners, entrepreneurs, farmers, local authorities, and common users to analyze the impact of climate change on the availability of water in the regions of their business activities. Acknowledgments: The authors acknowledge the support of the Project Organisational Decision Making in Water Reuse for Smart Cities (SMART- WaterDomain), funded by The National Centre for Research and Development and supported by the EIG-Concert Japan.Keywords: circular economy, digital tool, geo-visualization, wastewater re-use
Procedia PDF Downloads 586885 Comparative Analysis of Change in Vegetation in Four Districts of Punjab through Satellite Imagery, Land Use Statistics and Machine Learning
Authors: Mirza Waseem Abbas, Syed Danish Raza
Abstract:
For many countries agriculture is still the major force driving the economy and a critically important socioeconomic sector, despite exceptional industrial development across the globe. In countries like Pakistan, this sector is considered the backbone of the economy, and most of the economic decision making revolves around agricultural outputs and data. Timely and accurate facts and figures about this vital sector hold immense significance and have serious implications for the long-term development of the economy. Therefore, any significant improvements in the statistics and other forms of data regarding agriculture sector are considered important by all policymakers. This is especially true for decision making for the betterment of crops and the agriculture sector in general. Provincial and federal agricultural departments collect data for all cash and non-cash crops and the sector, in general, every year. Traditional data collection for such a large sector i.e. agriculture, being time-consuming, prone to human error and labor-intensive, is slowly but gradually being replaced by remote sensing techniques. For this study, remotely sensed data were used for change detection (machine learning, supervised & unsupervised classification) to assess the increase or decrease in area under agriculture over the last fifteen years due to urbanization. Detailed Landsat Images for the selected agricultural districts were acquired for the year 2000 and compared to images of the same area acquired for the year 2016. Observed differences validated through detailed analysis of the areas show that there was a considerable decrease in vegetation during the last fifteen years in four major agricultural districts of the Punjab province due to urbanization (housing societies).Keywords: change detection, area estimation, machine learning, urbanization, remote sensing
Procedia PDF Downloads 2516884 Virtualization of Biomass Colonization: Potential of Application in Precision Medicine
Authors: Maria Valeria De Bonis, Gianpaolo Ruocco
Abstract:
Nowadays, computational modeling is paving new design and verification ways in a number of industrial sectors. The technology is ripe to challenge some case in the Bioengineering and Medicine frameworks: for example, looking at the strategical and ethical importance of oncology research, efforts should be made to yield new and powerful resources to tumor knowledge and understanding. With these driving motivations, we approach this gigantic problem by using some standard engineering tools such as the mathematics behind the biomass transfer. We present here some bacterial colonization studies in complex structures. As strong analogies hold with some tumor proliferation, we extend our study to a benchmark case of solid tumor. By means of a commercial software, we model biomass and energy evolution in arbitrary media. The approach will be useful to cast virtualization cases of cancer growth in human organs, while augmented reality tools will be used to yield for a realistic aid to informed decision in treatment and surgery.Keywords: bacteria, simulation, tumor, precision medicine
Procedia PDF Downloads 3356883 Towards a Framework for Evaluating Scientific Efficiency of World-Class Universities
Authors: Veljko Jeremic, Milica Kostic Stankovic, Aleksandar Markovic, Milan Martic
Abstract:
Evaluating the efficiency of decision making units has been frequently elaborated on in numerous publications. In this paper, the theoretical framework for a novel method of Distance Based Analysis (DBA) is presented. In addition, the method is performed on a sample of the ARWU’s top 54 Universities of the United States, the findings of which clearly demonstrate that the best ranked Universities are far from also being the most efficient.Keywords: evaluating efficiency, distance based analysis, ranking of universities, ARWU
Procedia PDF Downloads 2966882 Personnel Selection Based on Step-Wise Weight Assessment Ratio Analysis and Multi-Objective Optimization on the Basis of Ratio Analysis Methods
Authors: Emre Ipekci Cetin, Ebru Tarcan Icigen
Abstract:
Personnel selection process is considered as one of the most important and most difficult issues in human resources management. At the stage of personnel selection, the applicants are handled according to certain criteria, the candidates are dealt with, and efforts are made to select the most appropriate candidate. However, this process can be more complicated in terms of the managers who will carry out the staff selection process. Candidates should be evaluated according to different criteria such as work experience, education, foreign language level etc. It is crucial that a rational selection process is carried out by considering all the criteria in an integrated structure. In this study, the problem of choosing the front office manager of a 5 star accommodation enterprise operating in Antalya is addressed by using multi-criteria decision-making methods. In this context, SWARA (Step-wise weight assessment ratio analysis) and MOORA (Multi-Objective Optimization on the basis of ratio analysis) methods, which have relatively few applications when compared with other methods, have been used together. Firstly SWARA method was used to calculate the weights of the criteria and subcriteria that were determined by the business. After the weights of the criteria were obtained, the MOORA method was used to rank the candidates using the ratio system and the reference point approach. Recruitment processes differ from sector to sector, from operation to operation. There are a number of criteria that must be taken into consideration by businesses in accordance with the structure of each sector. It is of utmost importance that all candidates are evaluated objectively in the framework of these criteria, after these criteria have been carefully selected in the selection of suitable candidates for employment. In the study, staff selection process was handled by using SWARA and MOORA methods together.Keywords: accommodation establishments, human resource management, multi-objective optimization on the basis of ratio analysis, multi-criteria decision making, step-wise weight assessment ratio analysis
Procedia PDF Downloads 3446881 Geovisualisation for Defense Based on a Deep Learning Monocular Depth Reconstruction Approach
Authors: Daniel R. dos Santos, Mateus S. Maldonado, Estevão J. R. Batista
Abstract:
The military commanders increasingly dependent on spatial awareness, as knowing where enemy are, understanding how war battle scenarios change over time, and visualizing these trends in ways that offer insights for decision-making. Thanks to advancements in geospatial technologies and artificial intelligence algorithms, the commanders are now able to modernize military operations on a universal scale. Thus, geovisualisation has become an essential asset in the defense sector. It has become indispensable for better decisionmaking in dynamic/temporal scenarios, operation planning and management for the war field, situational awareness, effective planning, monitoring, and others. For example, a 3D visualization of war field data contributes to intelligence analysis, evaluation of postmission outcomes, and creation of predictive models to enhance decision-making and strategic planning capabilities. However, old-school visualization methods are slow, expensive, and unscalable. Despite modern technologies in generating 3D point clouds, such as LIDAR and stereo sensors, monocular depth values based on deep learning can offer a faster and more detailed view of the environment, transforming single images into visual information for valuable insights. We propose a dedicated monocular depth reconstruction approach via deep learning techniques for 3D geovisualisation of satellite images. It introduces scalability in terrain reconstruction and data visualization. First, a dataset with more than 7,000 satellite images and associated digital elevation model (DEM) is created. It is based on high resolution optical and radar imageries collected from Planet and Copernicus, on which we fuse highresolution topographic data obtained using technologies such as LiDAR and the associated geographic coordinates. Second, we developed an imagery-DEM fusion strategy that combine feature maps from two encoder-decoder networks. One network is trained with radar and optical bands, while the other is trained with DEM features to compute dense 3D depth. Finally, we constructed a benchmark with sparse depth annotations to facilitate future research. To demonstrate the proposed method's versatility, we evaluated its performance on no annotated satellite images and implemented an enclosed environment useful for Geovisualisation applications. The algorithms were developed in Python 3.0, employing open-source computing libraries, i.e., Open3D, TensorFlow, and Pythorch3D. The proposed method provides fast and accurate decision-making with GIS for localization of troops, position of the enemy, terrain and climate conditions. This analysis enhances situational consciousness, enabling commanders to fine-tune the strategies and distribute the resources proficiently.Keywords: depth, deep learning, geovisualisation, satellite images
Procedia PDF Downloads 12