Search results for: cold pretreatment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1092

Search results for: cold pretreatment

252 X-Ray Diffraction, Microstructure, and Mössbauer Studies of Nanostructured Materials Obtained by High-Energy Ball Milling

Authors: N. Boudinar, A. Djekoun, A. Otmani, B. Bouzabata, J. M. Greneche

Abstract:

High-energy ball milling is a solid-state powder processing technique that allows synthesizing a variety of equilibrium and non-equilibrium alloy phases starting from elemental powders. The advantage of this process technology is that the powder can be produced in large quantities and the processing parameters can be easily controlled, thus it is a suitable method for commercial applications. It can also be used to produce amorphous and nanocrystalline materials in commercially relevant amounts and is also amenable to the production of a variety of alloy compositions. Mechanical alloying (high-energy ball milling) provides an inter-dispersion of elements through a repeated cold welding and fracture of free powder particles; the grain size decreases to nano metric scale and the element mix together. Progressively, the concentration gradients disappear and eventually the elements are mixed at the atomic scale. The end products depend on many parameters such as the milling conditions and the thermodynamic properties of the milled system. Here, the mechanical alloying technique has been used to prepare nano crystalline Fe_50 and Fe_64 wt.% Ni alloys from powder mixtures. Scanning electron microscopy (SEM) with energy-dispersive, X-ray analyses and Mössbauer spectroscopy were used to study the mixing at nanometric scale. The Mössbauer Spectroscopy confirmed the ferromagnetic ordering and was use to calculate the distribution of hyperfin field. The Mössbauer spectrum for both alloys shows the existence of a ferromagnetic phase attributed to γ-Fe-Ni solid solution.

Keywords: nanocrystalline, mechanical alloying, X-ray diffraction, Mössbauer spectroscopy, phase transformations

Procedia PDF Downloads 436
251 Defining the Limits of No Load Test Parameters at Over Excitation to Ensure No Over-Fluxing of Core Based on a Case Study: A Perspective From Utilities

Authors: Pranjal Johri, Misbah Ul-Islam

Abstract:

Power Transformers are one of the most critical and failure prone entities in an electrical power system. It is an established practice that each design of a power transformer has to undergo numerous type tests for design validation and routine tests are performed on each and every power transformer before dispatch from manufacturer’s works. Different countries follow different standards for testing the transformers. Most common and widely followed standard for Power Transformers is IEC 60076 series. Though these standards put up a strict testing requirements for power transformers, however, few aspects of transformer characteristics and guaranteed parameters can be ensured by some additional tests. Based on certain observations during routine test of a transformer and analyzing the data of a large fleet of transformers, three propositions have been discussed and put forward to be included in test schedules and standards. The observations in the routine test raised questions on design flux density of transformer. In order to ensure that flux density in any part of the core & yoke does not exceed 1.9 tesla at 1.1 pu as well, following propositions need to be followed during testing:  From the data studied, it was evident that generally NLC at 1.1 pu is apporx. 3 times of No Load Current at 1 pu voltage.  During testing the power factor at 1.1 pu excitation, it must be comparable to calculated values from the Cold Rolled Grain Oriented steel material curves, including building factor.  A limit of 3 % to be extended for higher than rated voltages on difference in Vavg and Vrms, during no load testing.  Extended over excitation test to be done in case above propositions are observed to be violated during testing.

Keywords: power transfoemrs, no load current, DGA, power factor

Procedia PDF Downloads 102
250 Development of Drying System for Dew Collection to Supplement Minimum Water Required for Grazing Plants in Arid Regions

Authors: Mohamed I. Alzarah

Abstract:

Passive dew harvesting and rainwater collection requires a very small financial investment meanwhile they can exploit a free and clean source of water in rural or remote areas. Dew condensation on greenhouse dryer cladding and assorted other surfaces was frequently noticed. Accordingly, this study was performed in order to measure the quantity of condensation in the arid regions. Dew was measured by using three different kinds of collectors which were glass of flat plate solar collector, tempered glass of photovoltaic (PV) and double sloped (25°) acrylic plexiglas of greenhouse dryer. The total amount of dew collection for three different types of collectors was measured during December 2013 to March 2014 in Alahsa, Saudi Arabia. Meteorological data were collected for one year. The condensate dew drops were collected naturally (before scraping) and by scraping once and twice. Dew began to condense most likely between 12:00 am and 6:30 am and its intensity reached the peak at about 45 min before sunrise. The cumulative dew yield on double-sloped test roof was varying with wind speed and direction. Results indicated that, wiping twice gave more dew yield compared to wiping once or collection by gravity. Dew and rain pH were neutral (close to 7) and the total mineralization was considerable. The ions concentration agrees with the World Health Organization recommendations for potable water. Using existing drying system for dew and rain harvesting cold provide a potable water source for arid region.

Keywords: PV module, flat plate solar collector, greenhouse, drying system, dew collection, water vapor, rainwater harvesting

Procedia PDF Downloads 334
249 Understanding Retail Benefits Trade-offs of Dynamic Expiration Dates (DED) Associated with Food Waste

Authors: Junzhang Wu, Yifeng Zou, Alessandro Manzardo, Antonio Scipioni

Abstract:

Dynamic expiration dates (DEDs) play an essential role in reducing food waste in the context of the sustainable cold chain and food system. However, it is unknown for the trades-off in retail benefits when setting an expiration date on fresh food products. This study aims to develop a multi-dimensional decision-making model that integrates DEDs with food waste based on wireless sensor network technology. The model considers the initial quality of fresh food and the change rate of food quality with the storage temperature as cross-independent variables to identify the potential impacts of food waste in retail by applying s DEDs system. The results show that retail benefits from the DEDs system depend on each scenario despite its advanced technology. In the DEDs, the storage temperature of the retail shelf leads to the food waste rate, followed by the change rate of food quality and the initial quality of food products. We found that the DEDs system could reduce food waste when food products are stored at lower temperature areas. Besides, the potential of food savings in an extended replenishment cycle is significantly more advantageous than the fixed expiration dates (FEDs). On the other hand, the information-sharing approach of the DEDs system is relatively limited in improving sustainable assessment performance of food waste in retail and even misleads consumers’ choices. The research provides a comprehensive understanding to support the techno-economic choice of the DEDs associated with food waste in retail.

Keywords: dynamic expiry dates (DEDs), food waste, retail benefits, fixed expiration dates (FEDs)

Procedia PDF Downloads 112
248 Research on Level Adjusting Mechanism System of Large Space Environment Simulator

Authors: Han Xiao, Zhang Lei, Huang Hai, Lv Shizeng

Abstract:

Space environment simulator is a device for spacecraft test. KM8 large space environment simulator built in Tianjing Space City is the largest as well as the most advanced space environment simulator in China. Large deviation of spacecraft level will lead to abnormally work of the thermal control device in spacecraft during the thermal vacuum test. In order to avoid thermal vacuum test failure, level adjusting mechanism system is developed in the KM8 large space environment simulator as one of the most important subsystems. According to the level adjusting requirements of spacecraft’s thermal vacuum tests, the four fulcrums adjusting model is established. By means of collecting level instruments and displacement sensors data, stepping motors controlled by PLC drive four supporting legs simultaneous movement. In addition, a PID algorithm is used to control the temperature of supporting legs and level instruments which long time work under the vacuum cold and black environment in KM8 large space environment simulator during thermal vacuum tests. Based on the above methods, the data acquisition and processing, the analysis and calculation, real time adjustment and fault alarming of the level adjusting mechanism system are implemented. The level adjusting accuracy reaches 1mm/m, and carrying capacity is 20 tons. Debugging showed that the level adjusting mechanism system of KM8 large space environment simulator can meet the thermal vacuum test requirement of the new generation spacecraft. The performance and technical indicators of the level adjusting mechanism system which provides important support for the development of spacecraft in China have been ahead of similar equipment in the world.

Keywords: space environment simulator, thermal vacuum test, level adjusting, spacecraft, parallel mechanism

Procedia PDF Downloads 245
247 Ultrasound Assisted Alkaline Potassium Permanganate Pre-Treatment of Spent Coffee Waste

Authors: Rajeev Ravindran, Amit K. Jaiswal

Abstract:

Lignocellulose is the largest reservoir of inexpensive, renewable source of carbon. It is composed of lignin, cellulose and hemicellulose. Cellulose and hemicellulose is composed of reducing sugars glucose, xylose and several other monosaccharides which can be metabolised by microorganisms to produce several value added products such as biofuels, enzymes, aminoacids etc. Enzymatic treatment of lignocellulose leads to the release of monosaccharides such as glucose and xylose. However, factors such as the presence of lignin, crystalline cellulose, acetyl groups, pectin etc. contributes to recalcitrance restricting the effective enzymatic hydrolysis of cellulose and hemicellulose. In order to overcome these problems, pre-treatment of lignocellulose is generally carried out which essentially facilitate better degradation of lignocellulose. A range of pre-treatment strategy is commonly employed based on its mode of action viz. physical, chemical, biological and physico-chemical. However, existing pretreatment strategies result in lower sugar yield and formation of inhibitory compounds. In order to overcome these problems, we proposes a novel pre-treatment, which utilises the superior oxidising capacity of alkaline potassium permanganate assisted by ultra-sonication to break the covalent bonds in spent coffee waste to remove recalcitrant compounds such as lignin. The pre-treatment was conducted for 30 minutes using 2% (w/v) potassium permanganate at room temperature with solid to liquid ratio of 1:10. The pre-treated spent coffee waste (SCW) was subjected to enzymatic hydrolysis using enzymes cellulase and hemicellulase. Shake flask experiments were conducted with a working volume of 50mL buffer containing 1% substrate. The results showed that the novel pre-treatment strategy yielded 7 g/L of reducing sugar as compared to 3.71 g/L obtained from biomass that had undergone dilute acid hydrolysis after 24 hours. From the results obtained it is fairly certain that ultrasonication assists the oxidation of recalcitrant components in lignocellulose by potassium permanganate. Enzyme hydrolysis studies suggest that ultrasound assisted alkaline potassium permanganate pre-treatment is far superior over treatment by dilute acid. Furthermore, SEM, XRD and FTIR were carried out to analyse the effect of the new pre-treatment strategy on structure and crystallinity of pre-treated spent coffee wastes. This novel one-step pre-treatment strategy was implemented under mild conditions and exhibited high efficiency in the enzymatic hydrolysis of spent coffee waste. Further study and scale up is in progress in order to realise future industrial applications.

Keywords: spent coffee waste, alkaline potassium permanganate, ultra-sonication, physical characterisation

Procedia PDF Downloads 355
246 Application of Hydrological Model in Support of Streamflow Allocation in Arid Watersheds in Northwestern China

Authors: Chansheng He, Lanhui Zhang, Baoqing Zhang

Abstract:

Spatial heterogeneity of landscape significantly affects watershed hydrological processes, particularly in high elevation and cold mountainous watersheds such as the inland river (terminal lake) basins in Northwest China, where the upper reach mountainous areas are the main source of streamflow for the downstream agricultural oases and desert ecosystems. Thus, it is essential to take into account spatial variations of hydrological processes in streamflow allocation at the watershed scale. This paper adapts the Distributed Large Basin Runoff Model (DLBRM) to the Heihe River Watershed, the second largest inland river with a drainage area of about 128,000 km2 in Northwest China, for understanding the transfer and partitioning mechanism among the glacier and snowmelt, surface runoff, evapotranspiration, and groundwater recharge among the upper, middle, and lower reaches in the study area. Results indicate that the upper reach Qilian Mountain area is the main source of streamflow for the middle reach agricultural oasis and downstream desert areas. Large withdrawals for agricultural irrigation in the middle reach had significantly depleted river flow for the lower reach desert ecosystems. Innovative conservation and enforcement programs need to be undertaken to ensure the successful implementation of water allocation plan of delivering 0.95 x 109 m3 of water downstream annually by the State Council in the Heihe River Watershed.

Keywords: DLBRM, Northwestern China, spatial variation, water allocation

Procedia PDF Downloads 300
245 Application of Nanoparticles on Surface of Commercial Carbon-Based Adsorbent for Removal of Contaminants from Water

Authors: Ahmad Kayvani Fard, Gordon Mckay, Muataz Hussien

Abstract:

Adsorption/sorption is believed to be one of the optimal processes for the removal of heavy metals from water due to its low operational and capital cost as well as its high removal efficiency. Different materials have been reported in literature as adsorbent for heavy metal removal in waste water such as natural sorbents, organic polymers (synthetic) and mineral materials (inorganic). The selection of adsorbents and development of new functional materials that can achieve good removal of heavy metals from water is an important practice and depends on many factors, such as the availability of the material, cost of material, and material safety and etc. In this study we reported the synthesis of doped Activated carbon and Carbon nanotube (CNT) with different loading of metal oxide nanoparticles such as Fe2O3, Fe3O4, Al2O3, TiO2, SiO2 and Ag nanoparticles and their application in removal of heavy metals, hydrocarbon, and organics from waste water. Commercial AC and CNT with different loadings of mentioned nanoparticle were prepared and effect of pH, adsorbent dosage, sorption kinetic, and concentration effects are studied and optimum condition for removal of heavy metals from water is reported. The prepared composite sorbent is characterized using field emission scanning electron microscopy (FE-SEM), high transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), X-ray diffractometer (XRD), the Brunauer, Emmett and Teller (BET) nitrogen adsorption technique, and Zeta potential. The composite materials showed higher removal efficiency and superior adsorption capacity compared to commercially available carbon based adsorbent. The specific surface area of AC increased by 50% reaching up to 2000 m2/g while the CNT specific surface area of CNT increased by more than 8 times reaching value of 890 m2/g. The increased surface area is one of the key parameters along with surface charge of the material determining the removal efficiency and removal efficiency. Moreover, the surface charge density of the impregnated CNT and AC have enhanced significantly where can benefit the adsorption process. The nanoparticles also enhance the catalytic activity of material and reduce the agglomeration and aggregation of material which provides more active site for adsorbing the contaminant from water. Some of the results for treating wastewater includes 100% removal of BTEX, arsenic, strontium, barium, phenolic compounds, and oil from water. The results obtained are promising for the use of AC and CNT loaded with metal oxide nanoparticle in treatment and pretreatment of waste water and produced water before desalination process. Adsorption can be very efficient with low energy consumption and economic feasibility.

Keywords: carbon nanotube, activated carbon, adsorption, heavy metal, water treatment

Procedia PDF Downloads 233
244 Investigating the Characteristics of Multi-Plastic Composites Prepared from a Mixture of Silk Fibers and Recycled Polycarbonate

Authors: Razieh Shamsi, Mehdi Faezipour, Ali Abdolkhani

Abstract:

In this research, the characteristics of composites prepared from waste silk fibers and recycled polycarbonate polymer (used compacted boards) at four levels of 0, 10, 20, and 30% (silk fibers) and using 2% N- 2-Aminoethyl-3-Aminopropyltrimethoxysilane was investigated as a coupling agent and melt process method. Silk fibers (carpet weaving waste) with dimensions of 8-18 mm were prepared, and recycled polymer with 9 mesh grading was ground. Production boards in 3 thicknesses, 3 mm (tensile test samples), 5 mm (bending test samples, water absorption, and thickness shrinkage), 7 mm (impact resistance test samples) ) with a specific weight of 1 gram per cubic centimeter, hot pressing time and temperature of 12 minutes and 190 degrees Celsius with a pressure of 130 bar, cold pressing time of 6 minutes with a pressure of 50 bar and using the coupling agent N- (2- Aminoethyl)-3-aminopropyltrimethoxysilane was prepared in a constant amount of 2% of the dry weight of the filler. The results showed that, in general, by adding silk fibers to the base polymer, compared to the control samples (pure recycled polycarbonate polymer) and also by increasing the amount of silk fibers, almost all the resistances increased. The amount of water absorption of the constructed composite increased with the increase in the amount of silk fibers, and the thickness absorption was equal to 0% even after 72 hours of immersion in water. The thermal resistance of the pure recycled polymer was higher than the prepared composites, and by adding silk fibers to the base polymer and also by increasing the amount of silk fibers from 10 to 30%, the thermal resistance of the composites decreased.

Keywords: wood composite, recycled polycarbonate, silk fibers, polymer

Procedia PDF Downloads 90
243 A Visualization Classification Method for Identifying the Decayed Citrus Fruit Infected by Fungi Based on Hyperspectral Imaging

Authors: Jiangbo Li, Wenqian Huang

Abstract:

Early detection of fungal infection in citrus fruit is one of the major problems in the postharvest commercialization process. The automatic and nondestructive detection of infected fruits is still a challenge for the citrus industry. At present, the visual inspection of rotten citrus fruits is commonly performed by workers through the ultraviolet induction fluorescence technology or manual sorting in citrus packinghouses to remove fruit subject with fungal infection. However, the former entails a number of problems because exposing people to this kind of lighting is potentially hazardous to human health, and the latter is very inefficient. Orange is used as a research object. This study would focus on this problem and proposed an effective method based on Vis-NIR hyperspectral imaging in the wavelength range of 400-1000 nm with a spectroscopic resolution of 2.8 nm. In this work, three normalization approaches are applied prior to analysis to reduce the effect of sample curvature on spectral profiles, and it is found that mean normalization was the most effective pretreatment for decreasing spectral variability due to curvature. Then, principal component analysis (PCA) was applied to a dataset composing of average spectra from decayed and normal tissue to reduce the dimensionality of data and observe the ability of Vis-NIR hyper-spectra to discriminate data from two classes. In this case, it was observed that normal and decayed spectra were separable along the resultant first principal component (PC1) axis. Subsequently, five wavelengths (band) centered at 577, 702, 751, 808, and 923 nm were selected as the characteristic wavelengths by analyzing the loadings of PC1. A multispectral combination image was generated based on five selected characteristic wavelength images. Based on the obtained multispectral combination image, the intensity slicing pseudocolor image processing method is used to generate a 2-D visual classification image that would enhance the contrast between normal and decayed tissue. Finally, an image segmentation algorithm for detection of decayed fruit was developed based on the pseudocolor image coupled with a simple thresholding method. For the investigated 238 independent set samples including infected fruits infected by Penicillium digitatum and normal fruits, the total success rate is 100% and 97.5%, respectively, and, the proposed algorithm also used to identify the orange infected by penicillium italicum with a 100% identification accuracy, indicating that the proposed multispectral algorithm here is an effective method and it is potential to be applied in citrus industry.

Keywords: citrus fruit, early rotten, fungal infection, hyperspectral imaging

Procedia PDF Downloads 298
242 Device-integrated Micro-thermocouples for Reliable Temperature Measurement of GaN HEMTs

Authors: Hassan Irshad Bhatti, Saravanan Yuvaraja, Xiaohang Li

Abstract:

GaN-based devices, such as high electron mobility transistors (HEMTs), offer superior characteristics for high-power, high-frequency, and high-temperature applications [1]. However, this exceptional electrical performance is compromised by undesirable self-heating effects under high-power applications [2, 3]. Some of the issues caused by self-heating are current collapse, thermal runway and performance degradation [4, 5]. Therefore, accurate and reliable methods for measuring the temperature of individual devices on a chip are needed to monitor and control the thermal behavior of GaN-based devices [6]. Temperature measurement at the micro/nanoscale is a challenging task that requires specialized techniques such as Infrared microscopy, Raman thermometry, and thermoreflectance. Recently, micro-thermocouples (MTCs) have attracted considerable attention due to their advantages of simplicity, low cost, high sensitivity, and compatibility with standard fabrication processes [7, 8]. A micro-thermocouple is a junction of two different metal thin films, which generates a Seebeck voltage related to the temperature difference between a hot and cold zone. Integrating MTC in a device allows local temperature to be measured with high sensitivity and accuracy [9]. This work involves the fabrication and integration of micro-thermocouples (MTCs) to measure the channel temperature of GaN HEMT. Our fabricated MTC (Platinum-Chromium junction) has shown a sensitivity of 16.98 µV/K and can measure device channel temperature with high precision and accuracy. The temperature information obtained using this sensor can help improve GaN-based devices and provide thermal engineers with useful insights for optimizing their designs.

Keywords: Electrical Engineering, Thermal engineering, Power Devices, Semiconuctors

Procedia PDF Downloads 16
241 The Role of Parents on Fear Acquisition of Children in COVID-19 Pandemic

Authors: Begum Serim-Yildiz

Abstract:

The aim of this study is to examine the role of parents' emotional and behavioral reactions on fears of children in the COVID-19 pandemic considering Rachman’s Three Pathways Theory. For this purpose, a phenomenological qualitative study was conducted. Thirteen participants living with their children were utilized through criterion and snowball sampling. In semi-structured interviews parents were asked about their own and their children’s beahavioral and emotional reactions in the COVID-19 pandemic, and they were expected to give detailed information about fears of their children before and in pandemic. Firstly, parents were asked about their behavioral and emotional reactions in the COVID-19 pandemic. As behavioral reactions, precautions taken by parents to protect the rest of the family from negative physical and emotional impact of the pandemic were mentioned, while emotional reactions were defined as acquisition of negative emotions like fear, anxiety, and worry. Secondly, parents were asked about their children’s behavioral and emotional reactions. Some of the parents talked about positive behavioral changes such as gaining self-control, while some others explained negative behavioral changes like increased time spent with technological tools. In the emotional changes section, all of the parents explained at least one negative emotion. All of the parents stated that their children had COVID-19 related fears. According to parents’ expressions, fears of children in pandemic were examined in two dimensions. Fears directly related to COVID-19 were fear of virus/microbes, illness or death of someone in family and death and fears. Fears indirectly related to COVID-19 were fear of going out, sleep alone at night, separation, touching stuff outside the home, and cold. Considering existing literature and based on the findings of this study, it can be concluded that children’s modelling experiences have impact on acquisition of negative emotions, especially fear, therefore, preventive interventions involving caregivers should be provided by mental health professionals working with children.

Keywords: children’s fears, COVID-19 pandemic, modelling experiences, parents’ reactions

Procedia PDF Downloads 166
240 Application of Response Surface Methodology to Optimize the Factor Influencing the Wax Deposition of Malaysian Crude Oil

Authors: Basem Elarbe, Ibrahim Elganidi, Norida Ridzuan, Norhyati Abdullah

Abstract:

Wax deposition in production pipelines and transportation tubing from offshore to onshore is critical in the oil and gas industry due to low-temperature conditions. It may lead to a reduction in production, shut-in, plugging of pipelines and increased fluid viscosity. The most significant popular approach to solve this issue is by injection of a wax inhibitor into the channel. This research aims to determine the amount of wax deposition of Malaysian crude oil by estimating the effective parameters using (Design-Expert version 7.1.6) by response surface methodology (RSM) method. Important parameters affecting wax deposition such as cold finger temperature, inhibitor concentration and experimental duration were investigated. It can be concluded that SA-co-BA copolymer had a higher capability of reducing wax in different conditions where the minimum point of wax reduction was found at 300 rpm, 14℃, 1h, 1200 ppmThe amount of waxes collected for each parameter were 0.12g. RSM approach was applied using rotatable central composite design (CCD) to minimize the wax deposit amount. The regression model’s variance (ANOVA) results revealed that the R2 value of 0.9906, indicating that the model can be clarified 99.06% of the data variation, and just 0.94% of the total variation were not clarified by the model. Therefore, it indicated that the model is extremely significant, confirming a close agreement between the experimental and the predicted values. In addition, the result has shown that the amount of wax deposit decreased significantly with the increase of temperature and the concentration of poly (stearyl acrylate-co-behenyl acrylate) (SABA), which were set at 14°C and 1200 ppm, respectively. The amount of wax deposit was successfully reduced to the minimum value of 0.01 g after the optimization.

Keywords: wax deposition, SABA inhibitor, RSM, operation factors

Procedia PDF Downloads 282
239 Statistical Modelling of Maximum Temperature in Rwanda Using Extreme Value Analysis

Authors: Emmanuel Iyamuremye, Edouard Singirankabo, Alexis Habineza, Yunvirusaba Nelson

Abstract:

Temperature is one of the most important climatic factors for crop production. However, severe temperatures cause drought, feverish and cold spells that have various consequences for human life, agriculture, and the environment in general. It is necessary to provide reliable information related to the incidents and the probability of such extreme events occurring. In the 21st century, the world faces a huge number of threats, especially from climate change, due to global warming and environmental degradation. The rise in temperature has a direct effect on the decrease in rainfall. This has an impact on crop growth and development, which in turn decreases crop yield and quality. Countries that are heavily dependent on agriculture use to suffer a lot and need to take preventive steps to overcome these challenges. The main objective of this study is to model the statistical behaviour of extreme maximum temperature values in Rwanda. To achieve such an objective, the daily temperature data spanned the period from January 2000 to December 2017 recorded at nine weather stations collected from the Rwanda Meteorological Agency were used. The two methods, namely the block maxima (BM) method and the Peaks Over Threshold (POT), were applied to model and analyse extreme temperature. Model parameters were estimated, while the extreme temperature return periods and confidence intervals were predicted. The model fit suggests Gumbel and Beta distributions to be the most appropriate models for the annual maximum of daily temperature. The results show that the temperature will continue to increase, as shown by estimated return levels.

Keywords: climate change, global warming, extreme value theory, rwanda, temperature, generalised extreme value distribution, generalised pareto distribution

Procedia PDF Downloads 179
238 Polymerization of Epsilon-Caprolactone Using Lipase Enzyme for Medical Applications

Authors: Sukanya Devi Ramachandran, Vaishnavi Muralidharan, Kavya Chandrasekaran

Abstract:

Polycaprolactone is polymer belonging to the polyester family that has noticeable characteristics of biodegradability and biocompatibility which is essential for medical applications. Polycaprolactone is produced by the ring opening polymerization of the monomer epsilon-Caprolactone (ε-CL) which is a closed ester, comprising of seven-membered ring. This process is normally catalysed by metallic components such as stannous octoate. It is difficult to remove the catalysts after the reaction, and they are also toxic to the human body. An alternate route of using enzymes as catalysts is being employed to reduce the toxicity. Lipase enzyme is a subclass of esterase that can easily attack the ester bonds of ε-CL. This research paper throws light on the extraction of lipase from germinating sunflower seeds and the activity of the biocatalyst in the polymerization of ε-CL. Germinating Sunflower seeds were crushed with fine sand in phosphate buffer of pH 6.5 into a fine paste which was centrifuged at 5000rpm for 10 minutes. The clear solution of the enzyme was tested for activity at various pH ranging from 5 to 7 and temperature ranging from 40oC to 70oC. The enzyme was active at pH6.0 and at 600C temperature. Polymerization of ε-CL was done using toluene as solvent with the catalysis of lipase enzyme, after which chloroform was added to terminate the reaction and was washed in cold methanol to obtain the polymer. The polymerization was done by varying the time from 72 hours to 6 days and tested for the molecular weight and the conversion of the monomer. The molecular weight obtained at 6 days is comparably higher. This method will be very effective, economical and eco-friendly to produce as the enzyme used can be regenerated as such at the end of the reaction and can be reused. The obtained polymers can be used for drug delivery and other medical applications.

Keywords: lipase, monomer, polycaprolactone, polymerization

Procedia PDF Downloads 295
237 Inter-Annual Variations of Sea Surface Temperature in the Arabian Sea

Authors: K. S. Sreejith, C. Shaji

Abstract:

Though both Arabian Sea and its counterpart Bay of Bengal is forced primarily by the semi-annually reversing monsoons, the spatio-temporal variations of surface waters is very strong in the Arabian Sea as compared to the Bay of Bengal. This study focuses on the inter-annual variability of Sea Surface Temperature (SST) in the Arabian Sea by analysing ERSST dataset which covers 152 years of SST (January 1854 to December 2002) based on the ICOADS in situ observations. To capture the dominant SST oscillations and to understand the inter-annual SST variations at various local regions of the Arabian Sea, wavelet analysis was performed on this long time-series SST dataset. This tool is advantageous over other signal analysing tools like Fourier analysis, based on the fact that it unfolds a time-series data (signal) both in frequency and time domain. This technique makes it easier to determine dominant modes of variability and explain how those modes vary in time. The analysis revealed that pentadal SST oscillations predominate at most of the analysed local regions in the Arabian Sea. From the time information of wavelet analysis, it was interpreted that these cold and warm events of large amplitude occurred during the periods 1870-1890, 1890-1910, 1930-1950, 1980-1990 and 1990-2005. SST oscillations with peaks having period of ~ 2-4 years was found to be significant in the central and eastern regions of Arabian Sea. This indicates that the inter-annual SST variation in the Indian Ocean is affected by the El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events.

Keywords: Arabian Sea, ICOADS, inter-annual variation, pentadal oscillation, SST, wavelet analysis

Procedia PDF Downloads 274
236 Numerical Modeling of a Molten Salt Power Tower Configuration Adaptable for Harsh Winter Climate

Authors: Huiqiang Yang, Domingo Santana

Abstract:

This paper proposes a novel configuration which introduces a natural draft dry cooling tower system in a molten salt power tower. A three-dimensional numerical modeling was developed based on the novel configuration. A plan of building 20 new concentrating solar power plants has been announced by Chinese government in September 2016, and among these 20 new plants, most of them are located in regions with long winter and harsh winter climate. The innovative configuration proposed includes an external receiver concrete tower at the center, a natural draft dry cooling tower which is surrounding the external receiver concrete tower and whose shell is fixed on the external receiver concrete tower, and a power block (including a steam generation system, a steam turbine system and hot/cold molten salt tanks, and water treatment systems) is covered by the roof of the natural draft dry cooling tower. Heat exchanger bundles are vertically installed at the furthest edge of the power block. In such a way, all power block equipment operates under suitable environmental conditions through whole year operation. The monthly performance of the novel configuration is simulated as compared to a standard one. The results show that the novel configuration is much more efficient in each separate month in a typical meteorological year. Moreover, all systems inside the power block have less thermal losses at low ambient temperatures, especially in harsh winter climate. It is also worthwhile mentioning that a photovoltaic power plant can be installed on the roof of the cooling tower to reduce the parasites of the molten salt power tower.

Keywords: molten salt power tower, natural draft dry cooling, commercial scale, power block, harsh winter climate

Procedia PDF Downloads 340
235 Some Extreme Halophilic Microorganisms Produce Extracellular Proteases with Long Lasting Tolerance to Ethanol Exposition

Authors: Cynthia G. Esquerre, Amparo Iris Zavaleta

Abstract:

Extremophiles constitute a potentially valuable source of proteases for the development of biotechnological processes; however, the number of available studies in the literature is limited compared to mesophilic counterparts. Therefore, in this study, Peruvian halophilic microorganisms were characterized to select suitable proteolytic strains that produce active proteases under exigent conditions. Proteolysis was screened using the streak plate method with gelatin or skim milk as substrates. After that, proteolytic microorganisms were selected for phenotypic characterization and screened by a semi-quantitative proteolytic test using a modified method of diffusion agar. Finally, proteolysis was evaluated using partially purified extracts by ice-cold ethanol precipitation and dialysis. All analyses were carried out over a wide range of NaCl concentrations, pH, temperature and substrates. Of a total of 60 strains, 21 proteolytic strains were selected, of these 19 were extreme halophiles and 2 were moderates. Most proteolytic strains demonstrated differences in their biochemical patterns, particularly in sugar fermentation. A total of 14 microorganisms produced extracellular proteases, 13 were neutral, and one was alkaline showing activity up to pH 9.0. Proteases hydrolyzed gelatin as the most specific substrate. In general, catalytic activity was efficient under a wide range of NaCl (1 to 4 M NaCl), temperature (37 to 55 °C) and after an ethanol exposition performed at -20 °C for 24 hours. In conclusion, this study reported 14 candidates extremely halophiles producing extracellular proteases capable of being stable and active on a wide range of NaCl, temperature and even long lasting ethanol exposition.

Keywords: biotechnological processes, ethanol exposition, extracellular proteases, extremophiles

Procedia PDF Downloads 282
234 Comparison of Adsorbents for Ammonia Removal from Mining Wastewater

Authors: F. Al-Sheikh, C. Moralejo, M. Pritzker, W. A. Anderson, A. Elkamel

Abstract:

Ammonia in mining wastewater is a significant problem, and treatment can be especially difficult in cold climates where biological treatment is not feasible. An adsorption process is one of the alternative processes that can be used to reduce ammonia concentrations to acceptable limits, and therefore a LEWATIT resin strongly acidic H+ form ion exchange resin and a Bowie Chabazite Na form AZLB-Na zeolite were tested to assess their effectiveness. For these adsorption tests, two packed bed columns (a mini-column constructed from a 32-cm long x 1-cm diameter piece of glass tubing, and a 60-cm long x 2.5-cm diameter Ace Glass chromatography column) were used containing varying quantities of the adsorbents. A mining wastewater with ammonia concentrations of 22.7 mg/L was fed through the columns at controlled flowrates. In the experimental work, maximum capacities of the LEWATIT ion exchange resin were 0.438, 0.448, and 1.472 mg/g for 3, 6, and 9 g respectively in a mini column and 1.739 mg/g for 141.5 g in a larger Ace column while the capacities for the AZLB-Na zeolite were 0.424, and 0.784 mg/g for 3, and 6 g respectively in the mini column and 1.1636 mg/g for 38.5 g in the Ace column. In the theoretical work, Thomas, Adams-Bohart, and Yoon-Nelson models were constructed to describe a breakthrough curve of the adsorption process and find the constants of the above-mentioned models. In the regeneration tests, 5% hydrochloric acid, HCl (v/v) and 10% sodium hydroxide, NaOH (w/v) were used to regenerate the LEWATIT resin and AZLB-Na zeolite with 44 and 63.8% recovery, respectively. In conclusion, continuous flow adsorption using a LEWATIT ion exchange resin and an AZLB-Na zeolite is efficient when using a co-flow technique for removal of the ammonia from wastewater. Thomas, Adams-Bohart, and Yoon-Nelson models satisfactorily fit the data with R2 closer to 1 in all cases.

Keywords: AZLB-Na zeolite, continuous adsorption, Lewatit resin, models, regeneration

Procedia PDF Downloads 387
233 Unlocking Justice: Exploring the Power and Challenges of DNA Analysis in the Criminal Justice System

Authors: Sandhra M. Pillai

Abstract:

This article examines the relevance, difficulties, and potential applications of DNA analysis in the criminal justice system. A potent tool for connecting suspects to crime sites, clearing the innocent of wrongdoing, and resolving cold cases, DNA analysis has transformed forensic investigations. The scientific foundations of DNA analysis, including DNA extraction, sequencing, and statistical analysis, are covered in the article. To guarantee accurate and trustworthy findings, it also discusses the significance of quality assurance procedures, chain of custody, and DNA sample storage. DNA analysis has significantly advanced science, but it also brings up substantial moral and legal issues. To safeguard individual rights and uphold public confidence, privacy concerns, possible discrimination, and abuse of DNA information must be properly addressed. The paper also emphasises the effects of the criminal justice system on people and communities while highlighting the necessity of equity, openness, and fair access to DNA testing. The essay describes the obstacles and future directions for DNA analysis. It looks at cutting-edge technology like next-generation sequencing, which promises to make DNA analysis quicker and more affordable. To secure the appropriate and informed use of DNA evidence, it also emphasises the significance of multidisciplinary collaboration among scientists, law enforcement organisations, legal experts, and policymakers. In conclusion, DNA analysis has enormous potential for improving the course of criminal justice. We can exploit the potential of DNA technology while respecting the ideals of justice, fairness, and individual rights by navigating the ethical, legal, and societal issues and encouraging discussion and collaboration.

Keywords: DNA analysis, DNA evidence, reliability, validity, legal frame, admissibility, ethical considerations, impact, future direction, challenges

Procedia PDF Downloads 64
232 The Effect of Positional Release Technique versus Kinesio Tape on Iliocostalis lumborum in Back Myofascial Pain Syndrome

Authors: Shams Khaled Abdelrahman Abdallah Elbaz, Alaa Aldeen Abd Al Hakeem Balbaa

Abstract:

Purpose: The purpose of this study was to compare the effects of Positional Release Technique versus Kinesio Tape on pain level, pressure pain threshold level and functional disability in patients with back myofascial pain syndrome at iliocostalis lumborum. Backgrounds/significance: Myofascial Pain Syndrome is a common muscular pain syndrome that arises from trigger points which are hyperirritable, painful and tender points within a taut band of skeletal muscle. In more recent literature, about 75% of patients with musculoskeletal pain presenting to a community medical centres suffer from myofascial pain syndrome.Iliocostalis lumborum are most likely to develop active trigger points. Subjects: Thirty patients diagnosed as back myofascial pain syndrome with active trigger points in iliocostalis lumborum muscle bilaterally had participated in this study. Methods and materials: Patients were randomly distributed into two groups. The first group consisted of 15 patients (8 males and 7 females) with mean age 30.6 (±3.08) years, they received positional release technique which was applied 3 times per session, 3/week every other day for 2 weeks. The second group consisted of 15 patients(5 males, 10 females) with a mean age 30.4 (±3.35) years, they received kinesio tape which was applied and changed every 3 days with one day off for a total 3 times in 2 weeks. Both techniques were applied over trigger points of the iliocostalis lumborum bilaterally. Patients were evaluated pretreatment and posttreatment program for Pain intensity (Visual analogue scale), pressure pain threshold (digital pressure algometry), and functional disability (The Oswestry Disability Index). Analyses: Repeated measures MANOVA was used to detect differences within and between groups pre and post treatment. Then the univariate ANOVA test was conducted for the analysis of each dependant variable within and between groups. All statistical analyses were done using SPSS. with significance level set at p<0.05 throughout all analyses. Results: The results revealed that there was no significant difference between positional release technique and kinesio tape technique on pain level, pressure pain threshold and functional activities (p > 0.05). Both groups of patients showed significant improvement in all the measured variables (p < 0.05) evident by significant reduction of both pain intensity and functional disability as well as significant increase of pressure pain threshold Conclusions : Both positional release technique and kinesio taping technique are effective in reducing pain level, improving pressure pain threshold and improving function in treating patients who suffering from back myofascial pain syndrome at iliocostalis lumborum. As there was no statistically significant difference was proven between both of them.

Keywords: positional release technique, kinesio tape, myofascial pain syndrome, Iliocostalis lumborum

Procedia PDF Downloads 230
231 E-Learning Recommender System Based on Collaborative Filtering and Ontology

Authors: John Tarus, Zhendong Niu, Bakhti Khadidja

Abstract:

In recent years, e-learning recommender systems has attracted great attention as a solution towards addressing the problem of information overload in e-learning environments and providing relevant recommendations to online learners. E-learning recommenders continue to play an increasing educational role in aiding learners to find appropriate learning materials to support the achievement of their learning goals. Although general recommender systems have recorded significant success in solving the problem of information overload in e-commerce domains and providing accurate recommendations, e-learning recommender systems on the other hand still face some issues arising from differences in learner characteristics such as learning style, skill level and study level. Conventional recommendation techniques such as collaborative filtering and content-based deal with only two types of entities namely users and items with their ratings. These conventional recommender systems do not take into account the learner characteristics in their recommendation process. Therefore, conventional recommendation techniques cannot make accurate and personalized recommendations in e-learning environment. In this paper, we propose a recommendation technique combining collaborative filtering and ontology to recommend personalized learning materials to online learners. Ontology is used to incorporate the learner characteristics into the recommendation process alongside the ratings while collaborate filtering predicts ratings and generate recommendations. Furthermore, ontological knowledge is used by the recommender system at the initial stages in the absence of ratings to alleviate the cold-start problem. Evaluation results show that our proposed recommendation technique outperforms collaborative filtering on its own in terms of personalization and recommendation accuracy.

Keywords: collaborative filtering, e-learning, ontology, recommender system

Procedia PDF Downloads 376
230 Surface Modification of Pineapple Leaf Fibre Reinforced Polylactic Acid Composites

Authors: Januar Parlaungan Siregar, Davindra Brabu Mathivanan, Dandi Bachtiar, Mohd Ruzaimi Mat Rejab, Tezara Cionita

Abstract:

Natural fibres play a significant role in mass industries such as automotive, construction and sports. Many researchers have found that the natural fibres are the best replacement for the synthetic fibres in terms of cost, safety, and degradability due to the shortage of landfill and ingestion of non biodegradable plastic by animals. This study mainly revolved around pineapple leaf fibre (PALF) which is available abundantly in tropical countries and with excellent mechanical properties. The composite formed in this study is highly biodegradable as both fibre and matrix are both derived from natural based products. The matrix which is polylactic acid (PLA) is made from corn starch which gives the upper hand as both material are renewable resources are easier to degrade by bacteria or enzyme. The PALF is treated with different alkaline solution to remove excessive moisture in the fibre to provide better interfacial bonding with PLA. Thereafter the PALF is washed with distilled water several times before placing in vacuum oven at 80°C for 48 hours. The dried PALF later were mixed with PLA using extrusion method using fibre in percentage of 30 by weight. The temperature for all zone were maintained at 160°C with the screw speed of 50 rpm for better bonding and afterwards the products of the mixture were pelletized using pelletizer. The pellets were placed in the specimen-sized mould for hot compression under the temperature of 170°C at 5 MPa for 5 min and subsequently were cold pressed under room temperature at 5 MPa for 5 min. The specimen were tested for tensile and flexure strength according to American Society for Testing and Materials (ASTM) D638 and D790 respectively. The effect of surface modification on PALF with different alkali solution will be investigated and compared.

Keywords: natural fibre, PALF, PLA, composite

Procedia PDF Downloads 298
229 Thermal Image Segmentation Method for Stratification of Freezing Temperatures

Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

The study uses an image analysis technique employing thermal imaging to measure the percentage of areas with various temperatures on a freezing surface. An image segmentation method using threshold values is applied to a sequence of image recording the freezing process. The phenomenon is transient and temperatures vary fast to reach the freezing point and complete the freezing process. Freezing salt water is subjected to the salt rejection that makes the freezing point dynamic and dependent on the salinity at the phase interface. For a specific area of freezing, nucleation starts from one side and end to another side, which causes a dynamic and transient temperature in that area. Thermal cameras are able to reveal a difference in temperature due to their sensitivity to infrared radiance. Using Experimental setup, a video is recorded by a thermal camera to monitor radiance and temperatures during the freezing process. Image processing techniques are applied to all frames to detect and classify temperatures on the surface. Image processing segmentation method is used to find contours with same temperatures on the icing surface. Each segment is obtained using the temperature range appeared in the image and correspond pixel values in the image. Using the contours extracted from image and camera parameters, stratified areas with different temperatures are calculated. To observe temperature contours on the icing surface using the thermal camera, the salt water sample is dropped on a cold surface with the temperature of -20°C. A thermal video is recorded for 2 minutes to observe the temperature field. Examining the results obtained by the method and the experimental observations verifies the accuracy and applicability of the method.

Keywords: ice contour boundary, image processing, image segmentation, salt ice, thermal image

Procedia PDF Downloads 319
228 Preparation and Properties of Gelatin-Bamboo Fibres Foams for Packaging Applications

Authors: Luo Guidong, Song Hang, Jim Song, Virginia Martin Torrejon

Abstract:

Due to their excellent properties, polymer packaging foams have become increasingly essential in our current lifestyles. They are cost-effective and lightweight, with excellent mechanical and thermal insulation properties. However, they constitute a major environmental and health concern due to litter generation, ocean pollution, and microplastic contamination of the food chain. In recent years, considerable efforts have been made to develop more sustainable alternatives to conventional polymer packaging foams. As a result, biobased and compostable foams are increasingly becoming commercially available, such as starch-based loose-fill or PLA trays. However, there is still a need for bulk manufacturing of bio-foams planks for packaging applications as a viable alternative to their fossil fuel counterparts (i.e., polystyrene, polyethylene, and polyurethane). Gelatin is a promising biopolymer for packaging applications due to its biodegradability, availability, and biocompatibility, but its mechanical properties are poor compared to conventional plastics. However, as widely reported for other biopolymers, such as starch, the mechanical properties of gelatin-based bioplastics can be enhanced by formulation optimization, such as the incorporation of fibres from different crops, such as bamboo. This research aimed to produce gelatin-bamboo fibre foams by mechanical foaming and to study the effect of fibre content on the foams' properties and structure. As a result, foams with virtually no shrinkage, low density (<40 kg/m³), low thermal conductivity (<0.044 W/m•K), and mechanical properties comparable to conventional plastics were produced. Further work should focus on developing formulations suitable for the packaging of water-sensitive products and processing optimization, especially the reduction of the drying time.

Keywords: biobased and compostable foam, sustainable packaging, natural polymer hydrogel, cold chain packaging

Procedia PDF Downloads 104
227 An In-Depth Experimental Study of Wax Deposition in Pipelines

Authors: Arias M. L., D’Adamo J., Novosad M. N., Raffo P. A., Burbridge H. P., Artana G.

Abstract:

Shale oils are highly paraffinic and, consequently, can create wax deposits that foul pipelines during transportation. Several factors must be considered when designing pipelines or treatment programs that prevents wax deposition: including chemical species in crude oils, flowrates, pipes diameters and temperature. This paper describes the wax deposition study carried out within the framework of Y-TEC's flow assurance projects, as part of the process to achieve a better understanding on wax deposition issues. Laboratory experiments were performed on a medium size, 1 inch diameter, wax deposition loop of 15 mts long equipped with a solid detector system, online microscope to visualize crystals, temperature and pressure sensors along the loop pipe. A baseline test was performed with diesel with no paraffin or additive content. Tests were undertaken with different temperatures of circulating and cooling fluid at different flow conditions. Then, a solution formed with a paraffin added to the diesel was considered. Tests varying flowrate and cooling rate were again run. Viscosity, density, WAT (Wax Appearance Temperature) with DSC (Differential Scanning Calorimetry), pour point and cold finger measurements were carried out to determine physical properties of the working fluids. The results obtained in the loop were analyzed through momentum balance and heat transfer models. To determine possible paraffin deposition scenarios temperature and pressure loop output signals were studied. They were compared with WAT static laboratory methods. Finally, we scrutinized the effect of adding a chemical inhibitor to the working fluid on the dynamics of the process of wax deposition in the loop.

Keywords: paraffin desposition, flow assurance, chemical inhibitors, flow loop

Procedia PDF Downloads 103
226 Environmentally Friendly KOH and NH4OH-KOH Pulping of Rice Straw

Authors: Omid Ghaffarzadeh Mollabashi, Sara Khorshidi, Hossein Kermanian Seyed, Majid Zabihzadeh

Abstract:

The main problem that hinders the intensive use of non-wood raw materials in papermaking industry is the environmental pollution caused by black liquor. As a matter of fact, black liquor of nonwood pulping is discharged to the environment due to the lack of recovery. Traditionally, NaOH pulping produces Na-based black liquor that may increase soil erosion and reduce soil permeability. With substitution of KOH/NH4OH with NaOH as the cooking liquor, K and N can act as a soil fertilizer while offering an environmentally acceptable disposal alternative. For this purpose, rice straw samples were pulped under the following conditions; Constant factors were: straw weight: 100 gram (based on oven dry), liquor to straw ratio 7:1 and maximum temperature, 170 and 180 ºC. Variable factors for KOH cooks were: KOH dosage of 14, 17 and %20 on oven dry of straw and times at maximum temperature of 60 and 90 minutes. For KOH-NH4OH cooks, KOH dosage of 5 and %10 and NH4OH dosage of 25 and %35, both based as oven dry of straw were applied. Besides, time at maximum temperature was 90 minutes. Yield ranges of KOH and KOH-NH4OH pulp samples were obtained from 37.28 to 48.62 and 45.63 to 48.08 percent, respectively. In addition, Kappa number ranged from 21.91 to 29.85 and 55.15 to 56.25, respectively. In comparison with soda, soda-AQ, cold soda, kraft, EDA (dissolving), De-Ethylene Glycol (dissolving), burst and tensile index for KOH pulp was more in similar cooking condition. With an exception of soda pulps, tear index of the mentioned pulp is more than all compared treatments. Therefore, it can be resulted that KOH pulping method is an appropriate choice for making paper of the rice straw. Also, compared to KOH-NH4OH, KOH pulping method is more appropriate choice because of better pulping results.

Keywords: environmentally friendly process, rice straw, NH4OH-KOH pulping, pulp properties

Procedia PDF Downloads 270
225 Topology Optimization of Heat and Mass Transfer for Two Fluids under Steady State Laminar Regime: Application on Heat Exchangers

Authors: Rony Tawk, Boutros Ghannam, Maroun Nemer

Abstract:

Topology optimization technique presents a potential tool for the design and optimization of structures involved in mass and heat transfer. The method starts with an initial intermediate domain and should be able to progressively distribute the solid and the two fluids exchanging heat. The multi-objective function of the problem takes into account minimization of total pressure loss and maximization of heat transfer between solid and fluid subdomains. Existing methods account for the presence of only one fluid, while the actual work extends optimization distribution of solid and two different fluids. This requires to separate the channels of both fluids and to ensure a minimum solid thickness between them. This is done by adding a third objective function to the multi-objective optimization problem. This article uses density approach where each cell holds two local design parameters ranging from 0 to 1, where the combination of their extremums defines the presence of solid, cold fluid or hot fluid in this cell. Finite volume method is used for direct solver coupled with a discrete adjoint approach for sensitivity analysis and method of moving asymptotes for numerical optimization. Several examples are presented to show the ability of the method to find a trade-off between minimization of power dissipation and maximization of heat transfer while ensuring the separation and continuity of the channel of each fluid without crossing or mixing the fluids. The main conclusion is the possibility to find an optimal bi-fluid domain using topology optimization, defining a fluid to fluid heat exchanger device.

Keywords: topology optimization, density approach, bi-fluid domain, laminar steady state regime, fluid-to-fluid heat exchanger

Procedia PDF Downloads 397
224 A Trail of Decoding a Classical Riddle: An Analysis of Russian Military Strategy

Authors: Karin Megheșan, Alexandra Popescu, Teodora Dobre

Abstract:

In the past few years, the Russian Federation has become a central point on the security agenda of the most important international actors, due to its reloaded aggressiveness of foreign policy. Vladimir Putin, the actual president of the Russian Federation, has proven that Russia can and has the willingness to become the powerful actor that used to be during the Cold War. Russia’s new behavior on the international scene showed that Russia has not only expansionist (where expansionist is not only in terms of territory but also of ideology) intentions, but also the necessary resources, to build an empire that may have the power to counterbalance the influence of the United States and stop the expansion of the North-Atlantic Treaty Organization in an equation understood of multipolar Russian view. But in order to do this, there is necessary to follow a well-established plan or policy. Thus, the aim of the paper is to discuss how has the foreign policy of the Russian Federation evolved under the influence of the military and security strategies of the Russian nation, to briefly examine some of the factors that sculpture Russian foreign policy and behavior, in order to reshape a Russian (Soviet) profile so far considered antiquated. Our approach is an argument in favor of the analyses of the recent evolutions embedded in the course of history. In this context, the paper will include analytical thoughts about the Russian foreign policy and the latest strategic documents (security strategy and military doctrine) adopted by the Putin administration, with the purpose to highlight the main direction of action followed by all these documents together. The paper concludes that the military component is to be found in all these strategic documents, as well as at the core of Russian national interest, aspect that proves that Russia is still the adept of the traditional realist paradigm, reshaped in a Russian theory of the multipolar world.

Keywords: hybrid warfare, military component, military doctrine, Russian foreign policy, security strategy

Procedia PDF Downloads 303
223 CsPbBr₃@MOF-5-Based Single Drop Microextraction for in-situ Fluorescence Colorimetric Detection of Dechlorination Reaction

Authors: Yanxue Shang, Jingbin Zeng

Abstract:

Chlorobenzene homologues (CBHs) are a category of environmental pollutants that can not be ignored. They can stay in the environment for a long period and are potentially carcinogenic. The traditional degradation method of CBHs is dechlorination followed by sample preparation and analysis. This is not only time-consuming and laborious, but the detection and analysis processes are used in conjunction with large-scale instruments. Therefore, this can not achieve rapid and low-cost detection. Compared with traditional sensing methods, colorimetric sensing is simpler and more convenient. In recent years, chromaticity sensors based on fluorescence have attracted more and more attention. Compared with sensing methods based on changes in fluorescence intensity, changes in color gradients are easier to recognize by the naked eye. Accordingly, this work proposes to use single drop microextraction (SDME) technology to solve the above problems. After the dechlorination reaction was completed, the organic droplet extracts Cl⁻ and realizes fluorescence colorimetric sensing at the same time. This method was integrated sample processing and visual in-situ detection, simplifying the detection process. As a fluorescence colorimetric sensor material, CsPbBr₃ was encapsulated in MOF-5 to construct CsPbBr₃@MOF-5 fluorescence colorimetric composite. Then the fluorescence colorimetric sensor was constructed by dispersing the composite in SDME organic droplets. When the Br⁻ in CsPbBr₃ exchanges with Cl⁻ produced by the dechlorination reactions, it is converted into CsPbCl₃. The fluorescence color of the single droplet of SDME will change from green to blue emission, thereby realizing visual observation. Therein, SDME can enhance the concentration and enrichment of Cl⁻ and instead of sample pretreatment. The fluorescence color change of CsPbBr₃@MOF-5 can replace the detection process of large-scale instruments to achieve real-time rapid detection. Due to the absorption ability of MOF-5, it can not only improve the stability of CsPbBr₃, but induce the adsorption of Cl⁻. Simultaneously, accelerate the exchange of Br- and Cl⁻ in CsPbBr₃ and the detection process of Cl⁻. The absorption process was verified by density functional theory (DFT) calculations. This method exhibits exceptional linearity for Cl⁻ in the range of 10⁻² - 10⁻⁶ M (10000 μM - 1 μM) with a limit of detection of 10⁻⁷ M. Whereafter, the dechlorination reactions of different kinds of CBHs were also carried out with this method, and all had satisfactory detection ability. Also verified the accuracy by gas chromatography (GC), and it was found that the SDME we developed in this work had high credibility. In summary, the in-situ visualization method of dechlorination reaction detection was a combination of sample processing and fluorescence colorimetric sensing. Thus, the strategy researched herein represents a promising method for the visual detection of dechlorination reactions and can be extended for applications in environments, chemical industries, and foods.

Keywords: chlorobenzene homologues, colorimetric sensor, metal halide perovskite, metal-organic frameworks, single drop microextraction

Procedia PDF Downloads 142