Search results for: Bone mineral density
4011 Preparation and Characterization of Nano-Metronidazole by Planetary Ball-Milling
Authors: Shahriar Ghammamy, Maryam Gholipoor
Abstract:
Metronidazole nano -powders with the average mean particle size around 90 nm were synthesized by high-energy milling using a planetary ball mill is provided. The Scattering factors, milling of time,the ball size and ball to powder ratio on the material properties powder by the Ray diffraction (XRD) study, scanning electron microscopy (SEM), IR. It has been observed that the density of nano-sized grinding balls as ball to powder ratio depends. Using the dispersion factor, the density Can be reduced below the initial particle size was achieved.Keywords: metronidazole, ball-milling, nanoparticles, characterization, XRD diffraction
Procedia PDF Downloads 4014010 Physical Characteristics of Locally Composts Produced in Saudi Arabia and the Need for Regulations
Authors: Ahmad Al-Turki
Abstract:
Composting is the suitable way of recycling organic waste for agricultural application and environment protection. In Saudi Arabia, several composting facilities are available and producing high quantity of composts. The aim of this study is to evaluate the physical characteristics of composts manufactured in Saudi Arabia and acquire a comprehensive image of its quality through the comparative with international standards of compost quality such as CCQC and PAS-100. In the present study different locally produced compost were identified and most of the producing factories were visited during the manufacturing of composts. Representative samples of different compost production stage were collected and Physical characteristics were determined, which included moisture content, bulk density, percentage of sand and the size of distribution of the compost particles. Results showed wide variations in all parameters investigated. Results of the study indicated generally that there is a wide variation in the physical characteristics of the types of compost under study. The initial moister contents in composts were generally low, it was less than 60% in most samples and not sufficient for microbial activities for biodegradation in 96% of the 96% of the types of compost and this will impede the decomposition of organic materials. The initial bulk density values ranged from 117 gL-1 to 1110.0 gL-1, while the final apparent bulk density ranged from 340.0 gL-1 to 1000gL-1 and about 45.4 % did not meet the ideal bulk density value. Sand percents in composts were between 3.3 % and 12.5%. This study has confirmed the need for a standard specification for compost manufactured in Saudi Arabia for agricultural use based on international standards for compost and soil characteristics and climatic conditions in Saudi Arabia.Keywords: compost, maturity, Saudi Arabia, organic material
Procedia PDF Downloads 3494009 New Technique of Estimation of Charge Carrier Density of Nanomaterials from Thermionic Emission Data
Authors: Dilip K. De, Olukunle C. Olawole, Emmanuel S. Joel, Moses Emetere
Abstract:
A good number of electronic properties such as electrical and thermal conductivities depend on charge carrier densities of nanomaterials. By controlling the charge carrier densities during the fabrication (or growth) processes, the physical properties can be tuned. In this paper, we discuss a new technique of estimating the charge carrier densities of nanomaterials from the thermionic emission data using the newly modified Richardson-Dushman equation. We find that the technique yields excellent results for graphene and carbon nanotube.Keywords: charge carrier density, nano materials, new technique, thermionic emission
Procedia PDF Downloads 3204008 An Unusual Case of Wrist Pain: Idiopathic Avascular Necrosis of the Scaphoid, Preiser’s Disease
Authors: Adae Amoako, Daniel Montero, Peter Murray, George Pujalte
Abstract:
We present a case of a 42-year-old, right-handed Caucasian male who presented to a medical orthopedics clinic with left wrist pain. The patient indicated that the pain started two months prior to the visit. He could only remember helping a friend move furniture prior to the onset of pain. Examination of the left wrist showed limited extension compared to the right. There was clicking with flexion and extension of the wrist on the dorsal aspect. Mild tenderness was noticed over the distal radioulnar joint. There was ulnar and radial deviation on provocation. Initial 4-view x-rays of the left wrist showed mild radiocarpal and scapho-trapezium-trapezoid (ST-T) osteoarthritis, with subchondral cysts seen in the lunate and scaphoid, with no obvious fractures. The patient was initially put in a wrist brace and diclofenac topical gel was prescribed for pain control, as a patient could not take non-steroidal anti-inflammatory drugs (NSAIDs) due to gastritis. Despite diclofenac topical gel use and bracing, symptoms remained, and a steroid injection with 1 mL of lidocaine with 10 mg of triamcinolone acetonide was performed under fluoroscopy. He obtained some relief but after 3 months, the injection had to be repeated. On 2-month follow up after the initial evaluation, symptoms persisted. Magnetic resonance imaging (MRI) was obtained which showed an abnormal T1 hypodense signal involving the proximal pole of the scaphoid and articular collapse proximally of the scaphoid, with marked irregularity of the overlying cartilage, suggesting a remote injury, findings consistent with avascular necrosis of the proximal pole of the scaphoid. A month after that, the patient had the left proximal pole of the scaphoid debrided and an intercompartmental supraretinacular artery vascularized. Pedicle bone graft reconstruction of the proximal pole of the left scaphoid was done. A non-vascularized autograft from the left radius was also applied. He was put in a thumb spica cast with the interphalangeal joint free for 6 weeks. On 6-week follow-up after surgery, the patient was healing well and could make a composite fist with his left hand. The diagnosis of Preiser’s disease is primarily based on radiological findings. Due to the fact that necrosis happens over a period of time, most AVNs are diagnosed at the late stages of the disease. There appear to be no specific guidelines on the management AVN of the scaphoid. In the past, immobilization and arthroscopic debridement had been used. Radial osteotomy has also been tried. Vascularized bone grafts have also been used to treat Preiser’s disease. In our patient, we used three of these treatment modalities, starting with conservative management with topical NSAIDS and immobilization, then debridement with vascularized bone grafts.Keywords: wrist pain, avascular necrosis of the scaphoid, Preiser’s disease, vascularized bone grafts
Procedia PDF Downloads 2954007 Numerical Study on Response of Polymer Electrolyte Fuel Cell (PEFCs) with Defects under Different Load Conditions
Authors: Muhammad Faizan Chinannai, Jaeseung Lee, Mohamed Hassan Gundu, Hyunchul Ju
Abstract:
Fuel cell is known to be an effective renewable energy resource which is commercializing in the present era. It is really important to know about the improvement in performance even when the system faces some defects. This study was carried out to analyze the performance of the Polymer electrolyte fuel cell (PEFCs) under different operating conditions such as current density, relative humidity and Pt loadings considering defects with load changes. The purpose of this study is to analyze the response of the fuel cell system with defects in Balance of Plants (BOPs) and catalyst layer (CL) degradation by maintaining the coolant flow rate as such to preserve the cell temperature at the required level. Multi-Scale Simulation of 3D two-phase PEFC model with coolant was carried out under different load conditions. For detailed analysis and performance comparison, extensive contours of temperature, current density, water content, and relative humidity are provided. The simulation results of the different cases are compared with the reference data. Hence the response of the fuel cell stack with defects in BOP and CL degradations can be analyzed by the temperature difference between the coolant outlet and membrane electrode assembly. The results showed that the Failure of the humidifier increases High-Frequency Resistance (HFR), air flow defects and CL degradation results in the non-uniformity of current density distribution and high cathode activation overpotential, respectively.Keywords: PEM fuel cell, fuel cell modeling, performance analysis, BOP components, current density distribution, degradation
Procedia PDF Downloads 2144006 Thermodynamic and Magnetic Properties of Heavy Fermion UTE₂ Superconductor
Authors: Habtamu Anagaw Muluneh, Gebregziabher Kahsay, Tamiru Negussie
Abstract:
Theoretical study of the density of state, condensation energy, specific heat, and magnetization in a spin-triplet superconductor are the main goals of this work. Utilizing the retarded double-time temperature-dependent Green's function formalism and building a model Hamiltonian for the system at hand, we were able to derive the expressions for the parameters mentioned above. The phase diagrams are plotted using MATLAB scripts. From the phase diagrams, the density of electrons increases as the excitation energy increases, and the maximum excitation energy is equal to the superconducting gap, but it decreases when the value exceeds the gap and finally becomes the same as the density of the normal state. On the other hand, the condensation energy decreases with the increase in temperature and attains its minimum value at the superconducting transition temperature but increases with the increase in superconducting transition temperature (TC) and finally becomes zero, implying the superconducting energy is equal to the normal state energy. The specific heat increases with the increase in temperature, attaining its maximum value at the TC and then undergoing a jump, showing the presence of a second-order phase transition from the superconducting state to the normal state. Finally, the magnetization of both the itinerant and localized electrons decreases with the increase in temperature and finally becomes zero at TC = 1.6 K and magnetic phase transition temperature T = 2 K, respectively, which results in a magnetic phase transition from a ferromagnetic to a paramagnetic state. Our finding is in good agreement with the previous findings.Keywords: spin triplet superconductivity, Green’s function, condensation energy, density of state, specific heat, magnetization
Procedia PDF Downloads 214005 Enhancement of Critical Current Density of Liquid Infiltration Processed Y-Ba-Cu-O Bulk Superconductors Used for Flywheel Energy Storage System
Authors: Asif Mahmood, Yousef Alzeghayer
Abstract:
The size effects of a precursor Y2BaCuO5 (Y211) powder on the microstructure and critical current density (Jc) of liquid infiltration growth (LIG)-processed YBa2Cu3O7-y (Y123) bulk superconductors were investigated in terms of milling time (t). YBCO bulk samples having high Jc values have been selected for the flywheel energy storage system. Y211 powders were attrition-milled for 0-10 h in 2 h increments at a fixed rotation speed of 400 RPM. Y211 pre-forms were made by pelletizing the milled Y211 powders followed by subsequent sintering, after which an LIG process with top seeding was applied to the Y211/Ba3Cu5O8 (Y035) pre-forms. Spherical pores were observed in all LIG-processed Y123 samples, and the pore density gradually decreased as t increased from 0 h to 8 h. In addition to the reduced pore density, the Y211 particle size in the final Y123 products also decreased with increasing t. As t increased further to 10 h, unexpected Y211 coarsening and large pore evolutions were observed. The magnetic susceptibility-temperature curves showed that the onset superconducting transition temperature (Tc, onset) of all samples was the same (91.5 K), but the transition width became greater as t increased. The Jc of the Y123 bulk superconductors fabricated in this study was observed to correlate well with t of the Y211 precursor powder. The maximum Jc of 1.0×105 A cm-2 (at 77 K, 0 T) was achieved at t = 8 h, which is attributed to the reduction in pore density and Y211 particle size. The prolonged milling time of t = 10 h decreased the Jc of the LIG-processed Y123 superconductor owing to the evolution of large pores and exaggerated Y211 growth. YBCO bulk samples having high Jc (samples prepared using 8 h milled powders) have been used for the energy storage system in flywheel energy storage system.Keywords: critical current, bulk superconductor, liquid infiltration, bioinformatics
Procedia PDF Downloads 2124004 Dynamic-cognition of Strategic Mineral Commodities; An Empirical Assessment
Authors: Carlos Tapia Cortez, Serkan Saydam, Jeff Coulton, Claude Sammut
Abstract:
Strategic mineral commodities (SMC) both energetic and metals have long been fundamental for human beings. There is a strong and long-run relation between the mineral resources industry and society's evolution, with the provision of primary raw materials, becoming one of the most significant drivers of economic growth. Due to mineral resources’ relevance for the entire economy and society, an understanding of the SMC market behaviour to simulate price fluctuations has become crucial for governments and firms. For any human activity, SMC price fluctuations are affected by economic, geopolitical, environmental, technological and psychological issues, where cognition has a major role. Cognition is defined as the capacity to store information in memory, processing and decision making for problem-solving or human adaptation. Thus, it has a significant role in those systems that exhibit dynamic equilibrium through time, such as economic growth. Cognition allows not only understanding past behaviours and trends in SCM markets but also supports future expectations of demand/supply levels and prices, although speculations are unavoidable. Technological developments may also be defined as a cognitive system. Since the Industrial Revolution, technological developments have had a significant influence on SMC production costs and prices, likewise allowing co-integration between commodities and market locations. It suggests a close relation between structural breaks, technology and prices evolution. SCM prices forecasting have been commonly addressed by econometrics and Gaussian-probabilistic models. Econometrics models may incorporate the relationship between variables; however, they are statics that leads to an incomplete approach of prices evolution through time. Gaussian-probabilistic models may evolve through time; however, price fluctuations are addressed by the assumption of random behaviour and normal distribution which seems to be far from the real behaviour of both market and prices. Random fluctuation ignores the evolution of market events and the technical and temporal relation between variables, giving the illusion of controlled future events. Normal distribution underestimates price fluctuations by using restricted ranges, curtailing decisions making into a pre-established space. A proper understanding of SMC's price dynamics taking into account the historical-cognitive relation between economic, technological and psychological factors over time is fundamental in attempting to simulate prices. The aim of this paper is to discuss the SMC market cognition hypothesis and empirically demonstrate its dynamic-cognitive capacity. Three of the largest and traded SMC's: oil, copper and gold, will be assessed to examine the economic, technological and psychological cognition respectively.Keywords: commodity price simulation, commodity price uncertainties, dynamic-cognition, dynamic systems
Procedia PDF Downloads 4604003 Systematic Study of Structure Property Relationship in Highly Crosslinked Elastomers
Authors: Natarajan Ramasamy, Gurulingamurthy Haralur, Ramesh Nivarthu, Nikhil Kumar Singha
Abstract:
Elastomers are polymeric materials with varied backbone architectures ranging from linear to dendrimeric structures and wide varieties of monomeric repeat units. These elastomers show strongly viscous and weakly elastic when it is not cross-linked. But when crosslinked, based on the extent the properties of these elastomers can range from highly flexible to highly stiff nature. Lightly cross-linked systems are well studied and reported. Understanding the nature of highly cross-linked rubber based upon chemical structure and architecture is critical for varieties of applications. One of the critical parameters is cross-link density. In the current work, we have studied the highly cross-linked state of linear, lightly branched to star-shaped branched elastomers and determined the cross-linked density by using different models. Change in hardness, shift in Tg, change in modulus and swelling behavior were measured experimentally as a function of the extent of curing. These properties were analyzed using varied models to determine cross-link density. We used hardness measurements to examine cure time. Hardness to the extent of curing relationship is determined. It is well known that micromechanical transitions like Tg and storage modulus are related to the extent of crosslinking. The Tg of the elastomer in different crosslinked state was determined by DMA, and based on plateau modulus the crosslink density is estimated by using Nielsen’s model. Usually for lightly crosslinked systems, based on equilibrium swelling ratio in solvent the cross link density is estimated by using Flory–Rhener model. When it comes to highly crosslinked system, Flory-Rhener model is not valid because of smaller chain length. So models based on the assumption of polymer as a Non-Gaussian chain like 1) Helmis–Heinrich–Straube (HHS) model, 2) Gloria M.gusler and Yoram Cohen Model, 3) Barbara D. Barr-Howell and Nikolaos A. Peppas model is used for estimating crosslink density. In this work, correction factors are determined to the existing models and based upon it structure-property relationship of highly crosslinked elastomers was studied.Keywords: dynamic mechanical analysis, glass transition temperature, parts per hundred grams of rubber, crosslink density, number of networks per unit volume of elastomer
Procedia PDF Downloads 1654002 Changing Trends of Population in Nashik District, Maharashtra, India
Authors: Pager Mansaram Pandit
Abstract:
The present paper aims to changing trends of population in Nashik district. The spatial variation of changing trends of population from 1901 to 2011. Nasik, lying between 19° 33’ and 20° 53’ north latitude and 73° 16’ and 75° 16’, with an area of 15530 Sq. K.M.North South length is 120 km. East West length is 200 km. Nashik has a population of 6,109,052 of which 3,164,261 are males and 2,944,791 and females. Average literacy rate of Nashik district in 2011 was 82.91 compared to 80.96 in 2001. In 1901 the density was 52 and in 2011 the density was 393 per sq. km. The progressive growth rate from 1901 to 2012 was 11.25 to 642.22 percent, respectively. The population trend is calculated with the help of time series. In 1901 population was 45.44% more and less in 1941 i.e. -13.86. From 1921 to 1981 the population was below the population trend but after 1991 population it gradually increased. The average rainfall it receives is 1034 mm. In the present times, because of advances in good climate, industrialization, development of road, University level educational facilities, religious importance, cargo services, good quality of grapes, pomegranates and onions, more and more people are being attracted towards Nashik districts. Another cause for the increase in the population is the main attraction of Ramkund, Muktidham Temple, Kalaram Temple, Coin Museum, and Trimbakeshwar.Keywords: density, growth, population, population trend
Procedia PDF Downloads 4434001 Response of Vibration and Damping System of UV Irradiated Renewable Biopolymer
Authors: Anika Zafiah M. Rus, Nik Normunira Mat Hassan
Abstract:
Biopolymer made from renewable material are one of the most important group of polymer because of their versatility and they can be manufactured in a wide range of densities and stiffness. In this project, biopolymer based on waste vegetable oil were synthesized and crosslink with commercial polymethane polyphenyl isocyanate (known as BF).The BF was compressed by using hot compression moulding technique at 90 oC based on the evaporation of volatile matter and known as compress biopolymer (CB). The density, vibration and damping characteristic of CB were determined after UV irradiation. Treatment with titanium dioxide (TiO2) was found to affect the physical property of compress biopolymer composite (CBC). The density of CBC samples was steadily increased with an increase of UV irradiation time and TiO2 loading. The highest density of CBC samples is at 10 % of TiO2 loading of 1.1088 g/cm3 due to the amount of filler loading. The vibration and damping characteristic of CBC samples was generated at displacements of 1 mm and 1.5 mm and acceleration of 0.1 G and 0.15 G base excitation according to ASTM D3580-9. It was revealed that, the vibration and damping characteristic of CBC samples is significantly increased with the increasing of UV irradiation time, lowest thickness and percentages of TiO2 loading at the frequency range of 15 - 25 Hz. Therefore, this study indicated that the damping property of CBC could be improved upon prolonged exposure to UV irradiation.Keywords: biopolymer flexible foam, TGA, UV irradiation, vibration and damping
Procedia PDF Downloads 4664000 Potentiostatic Growth of Hazenite Mineral Coating on AZ31 Magnesium Alloy in 0.1 M K₂HPO₄/0.1 M Na₂HPO₄ Solution
Authors: Liping Wu, Durga Bhakta Pokharel, Junhua Dong, Changgang Wang, Lin Zhao, Wei Ke, Nan Chen
Abstract:
Hazenite conversion coating was deposited on AZ31 Mg alloy in a deaerated phosphate solution containing 0.1 M K₂HPO₄ and 0.1 M Na₂HPO₄ (Na₀.₁K0₀.₁) with pH 9 at −0.8 V. The coating mechanism of hazenite was elucidated by in situ potentiostatic current decay, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), electron probe micro-analyzer (EPMA) and differential scanning calorimetry (DSC). The volume of H₂ evolved during potentiostatic polarization was measured by a gas collection apparatus. The degradation resistance of the hazenite coating was evaluated in simulated body fluid (SBF) at 37℃ by using potentiodynamic polarization (PDP). The results showed that amorphous Mg(OH)₂ was deposited first, followed by the transformation of Mg(OH)₂ to amorphous MgHPO₄, subsequently the conversion of MgHPO₄ to crystallized K-struvite (KMgPO₄·6H₂O), finally the crystallization of crystallized hazenite (NaKMg₂(PO₄)₂·14H₂O). The deposited coating was composed of four layers where the inner layer is comprised of Mg(OH)₂, the middle layer of Mg(OH)₂ and MgHPO₄, the top layer of Mg(OH)₂, MgHPO₄ and K-struvite, the topmost layer of Mg(OH)₂, MgHPO₄, K-struvite and hazenite (NaKMg₂(PO₄)₂·14H₂O). The PD results showed that the hazenite coating decreased the corrosion rate by two orders of magnitude.Keywords: magnesium alloy, potentiostatic technique, hazenite, mineral conversion coating
Procedia PDF Downloads 1863999 Treatment of Healthcare Wastewater Using The Peroxi-Photoelectrocoagulation Process: Predictive Models for Chemical Oxygen Demand, Color Removal, and Electrical Energy Consumption
Authors: Samuel Fekadu A., Esayas Alemayehu B., Bultum Oljira D., Seid Tiku D., Dessalegn Dadi D., Bart Van Der Bruggen A.
Abstract:
The peroxi-photoelectrocoagulation process was evaluated for the removal of chemical oxygen demand (COD) and color from healthcare wastewater. A 2-level full factorial design with center points was created to investigate the effect of the process parameters, i.e., initial COD, H₂O₂, pH, reaction time and current density. Furthermore, the total energy consumption and average current efficiency in the system were evaluated. Predictive models for % COD, % color removal and energy consumption were obtained. The initial COD and pH were found to be the most significant variables in the reduction of COD and color in peroxi-photoelectrocoagulation process. Hydrogen peroxide only has a significant effect on the treated wastewater when combined with other input variables in the process like pH, reaction time and current density. In the peroxi-photoelectrocoagulation process, current density appears not as a single effect but rather as an interaction effect with H₂O₂ in reducing COD and color. Lower energy expenditure was observed at higher initial COD, shorter reaction time and lower current density. The average current efficiency was found as low as 13 % and as high as 777 %. Overall, the study showed that hybrid electrochemical oxidation can be applied effectively and efficiently for the removal of pollutants from healthcare wastewater.Keywords: electrochemical oxidation, UV, healthcare pollutants removals, factorial design
Procedia PDF Downloads 793998 Effect of Acid and Alkali Treatment on Physical and Surface Charge Properties of Clayey Soils
Authors: Nikhil John Kollannur, Dali Naidu Arnepalli
Abstract:
Most of the surface related phenomena in the case of fine-grained soil are attributed to their unique surface charge properties and specific surface area. The temporal variations in soil behavior, to some extent, can be credited to the changes in these properties. Among the multitude of factors that affect the charge and surface area of clay minerals, the inherent system chemistry occupies the cardinal position. The impact is more profound when the chemistry change is manifested in terms of the system pH. pH plays a significant role by modifying the edge charges of clay minerals and facilitating mineral dissolution. Hence there is a need to address the variations in physical and charge properties of fine-grained soils treated over a range of acidic as well as alkaline conditions. In the present study, three soils (two soils commercially procured and one natural soil) exhibiting distinct mineralogical compositions are subjected to different pH environment over a range of 2 to 13. The soil-solutions prepared at a definite liquid to solid ratio are adjusted to the required pH value by adding measured quantities of 0.1M HCl/0.1M NaOH. The studies are conducted over a range of interaction time, varying from 1 to 96 hours. The treated soils are then analyzed for their physical properties in terms of specific surface area and particle size characteristics. Further, modifications in surface morphology are evaluated from scanning electron microscope (SEM) imaging. Changes in the surface charge properties are assessed in terms of zeta potential measurements. Studies show significant variations in total surface area, probably because of the dissolution of clay minerals. This observation is further substantiated by the morphological analysis with SEM imaging. The zeta potential measurements on soils indicate noticeable variation upon pH treatment, which is partially ascribed to the modifications in the pH-dependant edge charges and partially due to the clay mineral dissolution. The results provide valuable insight into the role of pH in a clay-electrolyte system upon surface related phenomena such as species adsorption, fabric modification etc.Keywords: acid and alkali treatment, mineral dissolution , specific surface area, zeta potential
Procedia PDF Downloads 1843997 A Molecular-Level Study of Combining the Waste Polymer and High-Concentration Waste Cooking Oil as an Additive on Reclamation of Aged Asphalt Pavement
Authors: Qiuhao Chang, Liangliang Huang, Xingru Wu
Abstract:
In the United States, over 90% of the roads are paved with asphalt. The aging of asphalt is the most serious problem that causes the deterioration of asphalt pavement. Waste cooking oils (WCOs) have been found they can restore the properties of aged asphalt and promote the reuse of aged asphalt pavement. In our previous study, it was found the optimal WCO concentration to restore the aged asphalt sample should be in the range of 10~15 wt% of the aged asphalt sample. After the WCO concentration exceeds 15 wt%, as the WCO concentration increases, some important properties of the asphalt sample can be weakened by the addition of WCO, such as cohesion energy density, surface free energy density, bulk modulus, shear modulus, etc. However, maximizing the utilization of WCO can create environmental and economic benefits. Therefore, in this study, a new idea about using the waste polymer is another additive to restore the WCO modified asphalt that contains a high concentration of WCO (15-25 wt%) is proposed, which has never been reported before. In this way, both waste polymer and WCO can be utilized. The molecular dynamics simulation is used to study the effect of waste polymer on properties of WCO modified asphalt and understand the corresponding mechanism at the molecular level. The radial distribution function, self-diffusion, cohesion energy density, surface free energy density, bulk modulus, shear modulus, adhesion energy between asphalt and aggregate are analyzed to validate the feasibility of combining the waste polymer and WCO to restore the aged asphalt. Finally, the optimal concentration of waste polymer and WCO are determined.Keywords: reclaim aged asphalt pavement, waste cooking oil, waste polymer, molecular dynamics simulation
Procedia PDF Downloads 2203996 The Fabrication and Characterization of Hierarchical Carbon Nanotube/Carbon Fiber/High-Density Polyethylene Composites via Twin-Screw Extrusion
Authors: Chao Hu, Xinwen Liao, Qing-Hua Qin, Gang Wang
Abstract:
The hierarchical carbon nanotube (CNT)/carbon fiber (CF)/high density polyethylene (HDPE) was fabricated via compound extrusion and injection molding, in which to author’s best knowledge CNT was employed as a nano-coatings on the surface of CF for the first time by spray coating technique. The CNT coatings relative to CF was set at 1 wt% and the CF content relative to the composites varied from 0 to 25 wt% to study the influence of CNT coatings and CF contents on the mechanical, thermal and morphological performance of this hierarchical composites. The results showed that with the rise of CF contents, the mechanical properties, including the tensile properties, flexural properties, and hardness of CNT/CF/HDPE composites, were effectively improved. Furthermore, the CNT-coated composites showed overall higher mechanical performance than the uncoated counterparts. It can be ascribed to the enhancement of interfacial bonding between the CF and HDPE via the incorporation of CNT, which was demonstrated by the scanning electron microscopy observation. Meanwhile, the differential scanning calorimetry data indicated that by the introduction of CNT and CF, the crystallization temperature and crystallinity of HDPE were affected while the melting temperature did not have an obvious alteration.Keywords: carbon fibers, carbon nanotubes, extrusion, high density polyethylene
Procedia PDF Downloads 1383995 Manufacturing and Characterization of Bioresorbable Self-Reinforced PLA Composites for Bone Applications
Authors: Carolina Pereira Lobato Costa, Cristina Pascual-González, Monica Echeverry, Javier LLorca, Carlos Gonzáléz, Juan Pedro Fernández-Bláquez
Abstract:
Although the potential of PLA self-reinforced composites for bone applications, not much literature addresses optimal manufacturing conditions. In this regard, this paper describes the woven self-reinforced PLA composites manufacturing processes: the commingling of yarns, weaving, and hot pressing and characterizes the manufactured laminates. Different structures and properties can be achieved by varying the hot compaction process parameters (pressure, holding time, and temperature). The specimens manufactured were characterized in terms of thermal properties (DSC), microstructure (C-scan optical microscope and SEM), strength (tensile test), and biocompatibility (MTT assays). Considering the final device, 155 ℃ for 10 min at 2 MPa act as the more appropriate hot pressing parameters. The laminate produced with these conditions has few voids/porosity, a tensile strength of 30.39 ± 1.21 MPa, and a modulus of 4.09 ± 0.24 GPa. Subsequently to the tensile testing was possible to observe fiber pullout from the fracture surfaces, confirming that this material behaves as a composite. From the results, no single laminate can fulfill all the requirements, being necessary to compromise in function of the priority property. Further investigation is required to improve materials' mechanical performance. Subsequently, process parameters and materials configuration can be adjusted depending on the place and type of implant to suit its function.Keywords: woven fabric, self-reinforced polymer composite, poly(lactic acid), biodegradable
Procedia PDF Downloads 1953994 Impact Assessment of Information Communication, Network Providers, Teledensity, and Consumer Complaints on Gross Domestic Products
Authors: Essang Anwana Onuntuei, Chinyere Blessing Azunwoke
Abstract:
The study used secondary data from foreign and local organizations to explore major challenges and opportunities abound in Information Communication. The study aimed at exploring the tie between tele density (network coverage area) and the number of network subscriptions, probing if the degree of consumer complaints varies significantly among network providers, and assessing if network subscriptions do significantly influence the sector’s GDP contribution. Methods used for data analysis include Pearson product-moment correlation and regression analysis, and the Analysis of Variance (ANOVA) as well. At a two-tailed test of 0.05 confidence level, the results of findings established about 85.6% of network subscriptions were explained by tele density (network coverage area), and the number of network subscriptions; Consumer Complaints’ degree varied significantly among network providers as 80.158291 (F calculated) > 3.490295 (F critical) with very high confidence associated p-value = 0.000000 which is < 0.05; and finally, 65% of the nation’s GDP was explained by network subscription to show a high association.Keywords: tele density, subscription, network coverage, information communication, consumer
Procedia PDF Downloads 443993 Effects of Position and Shape of Atomic Defects on the Band Gap of Graphene Nano-Ribbon Superlattices
Authors: Zeinab Jokar, Mohammad Reza Moslemi
Abstract:
In this work, we study the behavior of introducing atomic size vacancy in a graphene nanoribbon superlattice. Our investigations are based on the density functional theory (DFT) with the Local Density Approximation in Atomistix Toolkit (ATK). We show that, in addition to its shape, the position of vacancy has a major impact on the electrical properties of a graphene nanoribbon superlattice. We show that the band gap of an armchair graphene nanoribbon may be tuned by introducing an appropriate periodic pattern of vacancies. The band gap changes in a zig-zag manner similar to the variation of the band gap of a graphene nanoribbon by changing its width.Keywords: AGNR, antidot, atomistic toolKit, vacancy
Procedia PDF Downloads 10063992 Safety of Mesenchymal Stem Cells Therapy: Potential Risk of Spontaneous Transformations
Authors: Katarzyna Drela, Miroslaw Wielgos, Mikolaj Wrobel, Barbara Lukomska
Abstract:
Mesenchymal stem cells (MSCs) have a great potential in regenerative medicine. Since the initial number of isolated MSCs is limited, in vitro propagation is often required to reach sufficient numbers of cells for therapeutic applications. During long-term culture MSCs may undergo genetic or epigenetic alterations that subsequently increase the probability of spontaneous malignant transformation. Thus, factors that influence genomic stability of MSCs following long-term expansions need to be clarified before cultured MSCs are employed for clinical application. The aim of our study was to investigate the potential for spontaneous transformation of human neonatal cord blood (HUCB-MSCs) and adult bone marrow (BM-MSCs) derived MSCs. Materials and Methods: HUCB-MSCs and BM-MSCs were isolated by standard Ficoll gradient centrifugations method. Isolated cells were initially plated in high density 106 cells per cm2. After 48 h medium were changed and non-adherent cells were removed. The malignant transformation of MSCs in vitro was evaluated by morphological changes, proliferation rate, ability to enter cell senescence, the telomerase expression and chromosomal abnormality. Proliferation of MSCs was analyzed with WST-1 reduction method and population doubling time (PDT) was calculated at different culture stages. Then the expression pattern of genes characteristic for mesenchymal or epithelial cells, as well as transcriptions factors were examined by RT-PCR. Concomitantly, immunocytochemical analysis of gene-related proteins was employed. Results: Our studies showed that MSCs from all bone marrow isolations ultimately entered senescence and did not undergo spontaneous malignant transformation. However, HUCB-MSCs from one of the 15 donors displayed an increased proliferation rate, failed to enter senescence, and exhibited an altered cell morphology. In this sample we observed two different cell phenotypes: one mesenchymal-like exhibited spindle shaped morphology and express specific mesenchymal surface markers (CD73, CD90, CD105, CD166) with low proliferation rate, and the second one with round, densely package epithelial-like cells with significantly increased proliferation rate. The PDT of epithelial-like populations was around 1day and 100% of cells were positive for proliferation marker Ki-67. Moreover, HUCB-MSCs showed a positive expression of human telomerase reverse transcriptase (hTERT), cMYC and exhibit increased number of CFU during the long-term culture in vitro. Furthermore, karyotype analysis revealed chromosomal abnormalities including duplications. Conclusions: Our studies demonstrate that HUCB-MSCs are susceptible to spontaneous malignant transformation during long-term culture. Spontaneous malignant transformation process following in vitro culture has enormous effect on the biosafety issues of future cell-based therapies and regenerative medicine regimens.Keywords: mesenchymal stem cells, spontaneous, transformation, long-term culture
Procedia PDF Downloads 2673991 Investigation of the Dielectric Response of Ppy/V₂c Mxene-Zns from First Principle Calculation
Authors: Anthony Chidi Ezika, Gbolahan Joseph Adekoya, Emmanuel Rotimi Sadiku, Yskandar Hamam, Suprakas Sinha Ray
Abstract:
High-energy-density polymer/ceramic composites require a high breakdown strength and dielectric constant. Interface polarization and electric percolation are responsible for the high dielectric constant. In order to create composite dielectrics, high conductivity ceramic particles are combined with polymers to increase the dielectric constant. In this study, bonding and the non-uniform distribution of charges in the ceramic/ceramic interface zone are investigated using density functional theory (DFT) modeling. This non-uniform distribution of charges is intended to improve the ceramic/ceramic interface's dipole polarization (dielectric response). The interfacial chemical bond formation can also improve the structural stability of the hybrid filler and, consequently, of the composite films. To comprehend the electron-transfer process, the density of state and electron localization function of the PPy with hybrid fillers are also studied. The polymer nanocomposite is anticipated to provide a suitable dielectric response for energy storage applications.Keywords: energy storage, V₂C/ ZnS hybrid, polypyrrole, MXene, nanocomposite, dielectric
Procedia PDF Downloads 1173990 Density Based Traffic System Using Pic Microcontroller
Authors: Tatipamula Samiksha Goud, .A.Naveena, M.sresta
Abstract:
Traffic congestion is a major issue in many cities throughout the world, particularly in urban areas, and it is past time to switch from a fixed timer mode to an automated system. The current traffic signalling system is a fixed-time system that is inefficient if one lane is more functional than the others. A structure for an intelligent traffic control system is being designed to address this issue. When traffic density is higher on one side of a junction, the signal's green time is extended in comparison to the regular time. This study suggests a technique in which the signal's time duration is assigned based on the amount of traffic present at the time. Infrared sensors can be used to do this.Keywords: infrared sensors, micro-controllers, LEDs, oscillators
Procedia PDF Downloads 1423989 Extracting the Atmospheric Carbon Dioxide and Convert It into Useful Minerals at the Room Conditions
Authors: Muthana A. M. Jamel Al-Gburi
Abstract:
Elimination of carbon dioxide (CO2) gas from our atmosphere is very important but complicated, and since there is always an increase in the gas amounts of the other greenhouse ones in our atmosphere, causes by both some of the human activities and the burning of the fossil fuels, which leads to the Global Warming phenomena i.e., increasing the earth temperature to a higher level, creates desertification, tornadoes and storms. In our present research project, we constructed our own system to extract carbon dioxide directly from the atmospheric air at the room conditions and investigated how to convert the gas into a useful mineral or Nano scale fibers made of carbon by using several chemical processes and chemical reactions leading to a valuable building material and also to mitigate the environmental negative change. In the present water pool system (Carbone Dioxide Domestic Extractor), the ocean-sea water was used to dissolve the CO2 gas from the room and converted into carbonate minerals by using a number of additives like shampoo, clay and MgO. Note that the atmospheric air includes CO2 gas has circulated within the sea water by air pump connected to a perforated tubes fixed deep on the pool base. Those chemical agents were mixed with the ocean-sea water to convert the formed acid from the water-CO2 reaction into a useful mineral. After we successfully constructed the system, we did intense experiments and investigations on the CO2 gas reduction level and found which is the optimum active chemical agent to work in the atmospheric conditions.Keywords: global warming, CO₂ gas, ocean-sea water, additives, solubility level
Procedia PDF Downloads 803988 Traffic Density Measurement by Automatic Detection of the Vehicles Using Gradient Vectors from Aerial Images
Authors: Saman Ghaffarian, Ilgin Gökaşar
Abstract:
This paper presents a new automatic vehicle detection method from very high resolution aerial images to measure traffic density. The proposed method starts by extracting road regions from image using road vector data. Then, the road image is divided into equal sections considering resolution of the images. Gradient vectors of the road image are computed from edge map of the corresponding image. Gradient vectors on the each boundary of the sections are divided where the gradient vectors significantly change their directions. Finally, number of vehicles in each section is carried out by calculating the standard deviation of the gradient vectors in each group and accepting the group as vehicle that has standard deviation above predefined threshold value. The proposed method was tested in four very high resolution aerial images acquired from Istanbul, Turkey which illustrate roads and vehicles with diverse characteristics. The results show the reliability of the proposed method in detecting vehicles by producing 86% overall F1 accuracy value.Keywords: aerial images, intelligent transportation systems, traffic density measurement, vehicle detection
Procedia PDF Downloads 3793987 A Novel Combination Method for Computing the Importance Map of Image
Authors: Ahmad Absetan, Mahdi Nooshyar
Abstract:
The importance map is an image-based measure and is a core part of the resizing algorithm. Importance measures include image gradients, saliency and entropy, as well as high level cues such as face detectors, motion detectors and more. In this work we proposed a new method to calculate the importance map, the importance map is generated automatically using a novel combination of image edge density and Harel saliency measurement. Experiments of different type images demonstrate that our method effectively detects prominent areas can be used in image resizing applications to aware important areas while preserving image quality.Keywords: content-aware image resizing, visual saliency, edge density, image warping
Procedia PDF Downloads 5823986 Micro-Nutrient Bio-Fortification in Sprouts Grown on Fortified Fiber Mats
Authors: J. Nyenhuis, J. Drelich
Abstract:
This research study was designed to determine if food crops could be bio-fortified with micro-nutrients by growing sprouts on mineral fortified fiber mats. Diets high in processed foods have been found to lack essential micro-nutrients for optimum human development and overall health. Some micro-nutrients such as copper (Cu) have been found to enhance the inflammatory response through its oxidative functions, thereby having a role in cardiovascular disease (CVD), metabolic syndrome (MetS), diabetes and related complications. Recycled cellulose fibers and clay saturated with micro-nutrient ions can be converted to a novel mineral-metal hybrid material in which the fiber mat becomes a carrier of essential micro-nutrients. The reduction of ionic to metallic copper was accomplished using hydrogen at temperatures ranging from 400o to 600oC. Copper particles with diameters ranging from ~1 to 400-500 nm reside on the recycled fibers that make up the mats. Seeds purchased from a commercial, organic supplier were germinated on the specially engineered cellulose fiber mats that incorporated w10 wt% clay fillers saturated with either copper particles or ionic copper. After the appearance of the first leaves, the sprouts were dehydrated and analyzed for Cu content. Nutrient analysis showed 1.5 to 1.6 increase in Cu of the sprouts grown on the fiber mats with copper particles, and 2.3 to 2.5 increase on mats with ionic copper as compared to the control samples. The antibacterial properties of materials saturated with copper ions at room temperature and at temperatures up to 400°C have been verified with halo method tests against Escherichia Coli in previous studies. E. coli is a known pathogenic risk in sprout production. Copper exhibits excellent antibacterial properties when tested on S. aureus, a pathogenic gram-positive bacterium. This has also been confirmed for the fiber-copper hybrid material in this study. This study illustrates the potential for the use of engineered mats as a viable way to increase the micro-nutrient composition of locally-grown food crops and the need for additional research to determine the uptake, nutritional implications and risks of micro-nutrient bio-fortification.Keywords: bio-fortification, copper nutrient analysis, micro-nutrient uptake, sprouts and mineral-fortified mats
Procedia PDF Downloads 3543985 Effect of Coffee Grounds on Physical and Heating Value Properties of Sugarcane Bagasse Pellets
Authors: K. Rattawan, W. Intagun, W. Kanoksilapatham
Abstract:
Objective of this research is to study effect of coffee grounds on physical and heating value properties of sugarcane bagasse pellets. The coffee grounds were tested as an additive for pelletizing process of bagasse pellets. Pelletizing was performed using a Flat–die pellet mill machine. Moisture content of raw materials was controlled at 10-13%. Die temperature range during the process was 75-80 oC. Physical characteristics (bulk density and durability) of the bagasse pellet and pellets with 1-5% coffee ground were determined following the standard assigned by the Pellet Fuel Institute (PFI). The results revealed increasing values of 648±3.4, 659 ± 3.1, 679 ± 3.3 and 685 ± 3.1 kg/m3 (for pellet bulk density); and 98.7 ± 0.11, 99.2 ± 0.26, 99.3 ± 0.19 and 99.4 ± 0.07% (for pellet durability), respectively. In addition, the heating values of the coffee ground supplemented pellets (15.9 ± 1.16, 17.0 ± 1.23 and 18.8 ± 1.34 MJ/kg) were improved comparing to the non-supplemented control (14.9 ± 1.14 MJ/kg), respectively. The results indicated that both the bulk density and durability values of the bagasse pellets were increased with the increasing proportion of the coffee ground additive.Keywords: bagasse, coffee grounds, pelletizing, heating value, sugar cane bagasse
Procedia PDF Downloads 1673984 Electrochemical Synthesis of Copper Nanoparticles
Authors: Juan Patricio Ibáñez, Exequiel López
Abstract:
A method for synthesizing copper nanoparticles through an electrochemical approach is proposed, employing surfactants to stabilize the size of the newly formed nanoparticles. The electrolyte was made up of a matrix of H₂SO₄ (190 g/L) having Cu²⁺ (from 3.2 to 9.5 g/L), sodium dodecyl sulfate -SDS- (from 0.5 to 1.0 g/L) and Tween 80 (from 0 to 7.5 mL/L). Tween 80 was used in a molar relation of 1 to 1 with SDS. A glass cell was used, which was in a thermostatic water bath to keep the system temperature, and the electrodes were cathodic copper as an anode and stainless steel 316-L as a cathode. This process was influenced by the control exerted through the initial copper concentration in the electrolyte and the applied current density. Copper nanoparticles of electrolytic purity, exhibiting a spherical morphology of varying sizes with low dispersion, were successfully produced, contingent upon the chemical composition of the electrolyte and current density. The minimum size achieved was 3.0 nm ± 0.9 nm, with an average standard deviation of 2.2 nm throughout the entire process. The deposited copper mass ranged from 0.394 g to 1.848 g per hour (over an area of 25 cm²), accompanied by an average Faradaic efficiency of 30.8% and an average specific energy consumption of 4.4 kWh/kg. The chemical analysis of the product employed X-ray powder diffraction (XRD), while physical characteristics such as size and morphology were assessed using atomic force microscopy (AFM). It was identified that the initial concentration of copper and the current density are the variables defining the size and dispersion of the nanoparticles, as they serve as reactants in the cathodic half-reaction. The presence of surfactants stabilizes the nanoparticle size as their molecules adsorb onto the nanoparticle surface, forming a thick barrier that prevents mass transfer with the exterior and halts further growth.Keywords: copper nanopowder, electrochemical synthesis, current density, surfactant stabilizer
Procedia PDF Downloads 633983 Dynamic of an Invasive Insect Gut Microbiome When Facing to Abiotic Stress
Authors: Judith Mogouong, Philippe Constant, Robert Lavallee, Claude Guertin
Abstract:
The emerald ash borer (EAB) is an exotic wood borer insect native from China, which is associated with important environmental and economic damages in North America. Beetles are known to be vectors of microbial communities related to their adaptive capacities. It is now established that environmental stress factors may induce physiological events on the host trees, such as phytochemical changes. Consequently, that may affect the establishment comportment of herbivorous insect. Considering the number of insects collected on ash trees (insects’ density) as an abiotic factor related to stress damage, the aim of our study was to explore the dynamic of EAB gut microbial community genome (microbiome) when facing that factor and to monitor its diversity. Insects were trapped using specific green Lindgren© traps. A gradient of the captured insect population along the St. Lawrence River was used to create three levels of insects’ density (low, intermediate, and high). After dissection, total DNA extracted from insect guts of each level has been sent for amplicon sequencing of bacterial 16S rRNA gene and fungal ITS2 region. The composition of microbial communities among sample appeared largely diversified with the Simpson index significantly different across the three levels of density for bacteria. Add to that; bacteria were represented by seven phyla and twelve classes, whereas fungi were represented by two phyla and seven known classes. Using principal coordinate analysis (PCoA) based on Bray Curtis distances of 16S rRNA sequences, we observed a significant variation between the structure of the bacterial communities depending on insects’ density. Moreover, the analysis showed significant correlations between some bacterial taxa and the three classes of insects’ density. This study is the first to present a complete overview of the bacterial and fungal communities associated with the gut of EAB base on culture-independent methods, and to correlate those communities with a potential stress factor of the host trees.Keywords: gut microbiome, DNA, 16S rRNA sequences, emerald ash borer
Procedia PDF Downloads 4033982 Effect of Al Particles on Corrosion Resistance of Electrodeposited Ni-Al Composite Coatings
Abstract:
Electrodeposition is known as a relatively economical and simple technique commonly used for preparation of metallic and composite coatings. Electrodeposited composite coatings produced by dispersion of particles into the metal matrix show better properties than pure metallic coatings. In recent years, many researches were carried out on Ni matrix coatings reinforced by ceramic particles such as Ni-SiC, Ni-Al2O3, Ni-WC, Ni-CeO2, Ni-ZrO2, Ni-TiO2 to improve their corrosion and wear resistance. However, little effort has been made on incorporation of metal particles into Ni matrix. Therefore, the aim of this work was to produce Ni–Al composite coating on 6061 aluminum alloy by pulse plating and to investigate the effects of electrodeposition parameters, e.g. concentration Al particles in the electrolyte and current density, on composition and corrosion resistance of the composite coatings. The morphology and corrosion behavior of the coated 6061 Al alloys were studied by means of scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer (EDS) and potentiodynamic polarization method, respectively. The results indicated that the addition of Al particles up to 50 g L-1 increased the amount of co-deposited Al particles in nickel matrix. It is also observed that the incorporation of Al particles decreased with increasing current density. Meanwhile, the corrosion resistance of the coatings shows an increment by increasing the content of Al particles into nickel matrix.Keywords: Ni-Al composite coating, current density, corrosion resistance
Procedia PDF Downloads 487