Search results for: micro hydro power
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8094

Search results for: micro hydro power

7284 A Descriptive Study of ‎Translated Texts from Socio-Cultural Aspects ‎through Polysystem Theory and Patronage Framework

Authors: Reza Nozadheravi, Masoud Hasanzade Novin

Abstract:

Those techniques of translation which are engaged with short textual segments and mostly are prescriptive can be considered as micro level elements. Macro levels, however, refer to those translation strategies and those external factors that affect the translator’s decisions and have descriptive nature. What was scrutinized in details in the paper reveals the ‎macro-elements which are crucial in canonized translated texts, moreover, different aspects ‎of the patronage, which can be considered as the important factors from having the texts ‎chosen to the final translation products, have been observed in translated texts of Najaf ‎Darya-Bandarie, the well-known Iranian Translator. What is probed in this paper ‎reveals that marco-elements along with the linguistic aspects of the texts, micro-elements, ‎are considered as the significant aspects in translation process and even final translated ‎texts.

Keywords: canolized translated texts‎, culture‎, macro-elements‎, patronage

Procedia PDF Downloads 610
7283 High-Tech Based Simulation and Analysis of Maximum Power Point in Energy System: A Case Study Using IT Based Software Involving Regression Analysis

Authors: Enemeri George Uweiyohowo

Abstract:

Improved achievement with respect to output control of photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers, in general, does not promote development to public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0∘N, with a corresponding tilt angle of 36∘, 26∘ and 16∘. Preliminary results include regression analysis (normal probability plot) showing the maximum power point in the system as well the best tilt angle for maximum power point tracking.

Keywords: poly-crystalline PV panels, information technology (IT), maximum power point tracking (MPPT), pulse width modulation (PWM)

Procedia PDF Downloads 213
7282 Optimal Location of Unified Power Flow Controller (UPFC) for Transient Stability: Improvement Using Genetic Algorithm (GA)

Authors: Basheer Idrees Balarabe, Aminu Hamisu Kura, Nabila Shehu

Abstract:

As the power demand rapidly increases, the generation and transmission systems are affected because of inadequate resources, environmental restrictions and other losses. The role of transient stability control in maintaining the steady-state operation in the occurrence of large disturbance and fault is to describe the ability of the power system to survive serious contingency in time. The application of a Unified power flow controller (UPFC) plays a vital role in controlling the active and reactive power flows in a transmission line. In this research, a genetic algorithm (GA) method is applied to determine the optimal location of the UPFC device in a power system network for the enhancement of the power-system Transient Stability. Optimal location of UPFC has Significantly Improved the transient stability, the damping oscillation and reduced the peak over shoot. The GA optimization Technique proposed was iteratively searches the optimal location of UPFC and maintains the unusual bus voltages within the satisfy limits. The result indicated that transient stability is improved and achieved the faster steady state. Simulations were performed on the IEEE 14 Bus test systems using the MATLAB/Simulink platform.

Keywords: UPFC, transient stability, GA, IEEE, MATLAB and SIMULINK

Procedia PDF Downloads 14
7281 Smart Unmanned Parking System Based on Radio Frequency Identification Technology

Authors: Yu Qin

Abstract:

In order to tackle the ever-growing problem of the lack of parking space, this paper presents the design and implementation of a smart unmanned parking system that is based on RFID (radio frequency identification) technology and Wireless communication technology. This system uses RFID technology to achieve the identification function (transmitted by 2.4 G wireless module) and is equipped with an STM32L053 micro controller as the main control chip of the smart vehicle. This chip can accomplish automatic parking (in/out), charging and other functions. On this basis, it can also help users easily query the information that is stored in the database through the Internet. Experimental tests have shown that the system has the features of low power consumption and stable operation, among others. It can effectively improve the level of automation control of the parking lot management system and has enormous application prospects.

Keywords: RFID, embedded system, unmanned, parking management

Procedia PDF Downloads 333
7280 The Foucaultian Relationship between Power and Knowledge: Genealogy as a Method for Epistemic Resistance

Authors: Jana Soler Libran

Abstract:

The primary aim of this paper is to analyze the relationship between power and knowledge suggested in Michel Foucault's theory. Taking into consideration the role of power in knowledge production, the goal is to evaluate to what extent genealogy can be presented as a practical method for epistemic resistance. To do so, the methodology used consists of a revision of Foucault’s literature concerning the topic discussed. In this sense, conceptual analysis is applied in order to understand the effect of the double dimension of power on knowledge production. In its negative dimension, power is conceived as an organ of repression, vetoing certain instances of knowledge considered deceitful. In opposition, in its positive dimension, power works as an organ of the production of truth by means of institutionalized discourses. This double declination of power leads to the first main findings of the present analysis: no truth or knowledge can lie outside power’s action, and power is constituted through accepted forms of knowledge. To second these statements, Foucaultian discourse formations are evaluated, presenting external exclusion procedures as paradigmatic practices to demonstrate how power creates and shapes the validity of certain epistemes. Thus, taking into consideration power’s mechanisms to produce and reproduce institutionalized truths, this paper accounts for the Foucaultian praxis of genealogy as a method to reveal power’s intention, instruments, and effects in the production of knowledge. In this sense, it is suggested to consider genealogy as a practice which, firstly, reveals what instances of knowledge are subjugated to power and, secondly, promotes aforementioned peripherical discourses as a form of epistemic resistance. In order to counterbalance these main theses, objections to Foucault’s work from Nancy Fraser, Linda Nicholson, Charles Taylor, Richard Rorty, Alvin Goldman, or Karen Barad are discussed. In essence, the understanding of the Foucaultian relationship between power and knowledge is essential to analyze how contemporary discourses are produced by both traditional institutions and new forms of institutionalized power, such as mass media or social networks. Therefore, Michel Foucault's practice of genealogy is relevant, not only for its philosophical contribution as a method to uncover the effects of power in knowledge production but also because it constitutes a valuable theoretical framework for political theory and sociological studies concerning the formation of societies and individuals in the contemporary world.

Keywords: epistemic resistance, Foucault’s genealogy, knowledge, power, truth

Procedia PDF Downloads 124
7279 Micro/Nano-Sized Emulsions Exhibit Antifungal Activity against Cucumber Downy Mildew

Authors: Kai-Fen Tu, Jenn-Wen Huang, Yao-Tung Lin

Abstract:

Cucumber is a major economic crop in the world. The global production of cucumber in 2017 was more than 71 million tonnes. Nonetheless, downy mildew, caused by Pseudoperonospora cubensis, is a devastating and common disease on cucumber in around 80 countries and causes severe economic losses. The long-term usage of fungicide also leads to the occurrence of fungicide resistance and decreases host resistance. In this study, six types of oil (neem oil, moringa oil, soybean oil, cinnamon oil, clove oil, and camellia oil) were selected to synthesize micro/nano-sized emulsions, and the disease control efficacy of micro/nano-sized emulsions were evaluated. Moreover, oil concentrations (0.125% - 1%) and droplet size of emulsion were studied. Results showed cinnamon-type emulsion had the best efficacy among these oils. The disease control efficacy of these emulsions increased as the oil concentration increased. Both disease incidence and disease severity were measured by detached leaf and pot experiment, respectively. For the droplet size effect, results showed that the 114 nm of droplet size synthesized by 0.25% cinnamon oil emulsion had the lowest disease incidence (6.67%) and lowest disease severity (33.33%). The release of zoospore was inhibited (5.33%), and the sporangia germination was damaged. These results suggest that cinnamon oil emulsion will be a valuable and environmentally friendly alternative to control cucumber downy mildew. The economic loss caused by plant disease could also be reduced.

Keywords: downy mildew, emulsion, oil droplet size, plant protectant

Procedia PDF Downloads 128
7278 Optimal Planning of Dispatchable Distributed Generators for Power Loss Reduction in Unbalanced Distribution Networks

Authors: Mahmoud M. Othman, Y. G. Hegazy, A. Y. Abdelaziz

Abstract:

This paper proposes a novel heuristic algorithm that aims to determine the best size and location of distributed generators in unbalanced distribution networks. The proposed heuristic algorithm can deal with the planning cases where power loss is to be optimized without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power factor node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37 -node feeder. The results obtained show the effectiveness of the proposed algorithm.

Keywords: distributed generation, heuristic approach, optimization, planning

Procedia PDF Downloads 525
7277 Worst-Case Load Shedding in Electric Power Networks

Authors: Fu Lin

Abstract:

We consider the worst-case load-shedding problem in electric power networks where a number of transmission lines are to be taken out of service. The objective is to identify a prespecified number of line outages that lead to the maximum interruption of power generation and load at the transmission level, subject to the active power-flow model, the load and generation capacity of the buses, and the phase-angle limit across the transmission lines. For this nonlinear model with binary constraints, we show that all decision variables are separable except for the nonlinear power-flow equations. We develop an iterative decomposition algorithm, which converts the worst-case load shedding problem into a sequence of small subproblems. We show that the subproblems are either convex problems that can be solved efficiently or nonconvex problems that have closed-form solutions. Consequently, our approach is scalable for large networks. Furthermore, we prove the convergence of our algorithm to a critical point, and the objective value is guaranteed to decrease throughout the iterations. Numerical experiments with IEEE test cases demonstrate the effectiveness of the developed approach.

Keywords: load shedding, power system, proximal alternating linearization method, vulnerability analysis

Procedia PDF Downloads 140
7276 Unified Assessment of Power System Reserve-based Reliability Levels

Authors: B. M. Alshammari, M. A. El-Kady

Abstract:

This paper presents a unified framework for assessment of reserve-based reliability levels in electric power systems. The unified approach is based on reserve-based analysis and assessment of the relationship between available generation capacities and required demand levels. The developed approach takes into account the load variations as well as contingencies which occur randomly causing some generation and/or transmission capacities to be lost (become unavailable). The calculated reserve based indices, which are important to assess the reserve capabilities of the power system for various operating scenarios are therefore probabilistic in nature. They reflect the fact that neither the load levels nor the generation or transmission capacities are known with absolute certainty. They are rather subjects to random variations and consequently. The calculated reserve-based reliability indices are all subjects to random variations where only expected values of these indices can be evaluated. This paper presents a unified approach to reserve-based reliability assessment of power systems using various reserve assessment criteria. Practical applications are also presented for demonstration purposes to the Saudi electricity power grid.

Keywords: assessment, power system, reserve, reliability

Procedia PDF Downloads 617
7275 Transfer Function Model-Based Predictive Control for Nuclear Core Power Control in PUSPATI TRIGA Reactor

Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha

Abstract:

The 1MWth PUSPATI TRIGA Reactor (RTP) in Malaysia Nuclear Agency has been operating more than 35 years. The existing core power control is using conventional controller known as Feedback Control Algorithm (FCA). It is technically challenging to keep the core power output always stable and operating within acceptable error bands for the safety demand of the RTP. Currently, the system could be considered unsatisfactory with power tracking performance, yet there is still significant room for improvement. Hence, a new design core power control is very important to improve the current performance in tracking and regulating reactor power by controlling the movement of control rods that suit the demand of highly sensitive of nuclear reactor power control. In this paper, the proposed Model Predictive Control (MPC) law was applied to control the core power. The model for core power control was based on mathematical models of the reactor core, MPC, and control rods selection algorithm. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The proposed MPC was presented in a transfer function model of the reactor core according to perturbations theory. The transfer function model-based predictive control (TFMPC) was developed to design the core power control with predictions based on a T-filter towards the real-time implementation of MPC on hardware. This paper introduces the sensitivity functions for TFMPC feedback loop to reduce the impact on the input actuation signal and demonstrates the behaviour of TFMPC in term of disturbance and noise rejections. The comparisons of both tracking and regulating performance between the conventional controller and TFMPC were made using MATLAB and analysed. In conclusion, the proposed TFMPC has satisfactory performance in tracking and regulating core power for controlling nuclear reactor with high reliability and safety.

Keywords: core power control, model predictive control, PUSPATI TRIGA reactor, TFMPC

Procedia PDF Downloads 241
7274 Effects of the Amount of Static Stretching on the Knee Isokinetic Muscle Strength

Authors: Chungyu Chen, Hui-Ju Chang, Pei-Shan Guo, Huei-Ling Jhan, Yi-Ping Lin

Abstract:

The purpose of this study was to investigate the effect of the amount of acutely static stretching on muscular strength and power. There were 15 males, and 7 females recruited voluntarily as the participants in the study. The mean age, body height, and weight of participants were 23.4 ± 2.8 years old, 171.0 ± 7.2 cm, and 65.7 ± 8.7 kg, respectively. Participants were repeated to stretch hamstring muscles 2 or 6 30-s bouts randomly on a separate day spaced 5-7 days apart in a passive, static, sit-and-reach stretching exercise. Before and after acutely static stretching, the Biodex System 4 Pro was used to acquire the peak torque, power, total work, and range of motion for right knee under the loading of 180 deg/s. The 2 (test-retest) × 2 (number of stretches) repeated measures two-way analysis of variance were used to compare the parameters of muscular strength/power (α = .05). The results showed that the peak torque, power, and total work increased significantly after acutely passive static stretching (ps < .05) in flexor and extensor of knee. But there were no significant differences found between the 2 and 6 30-s bouts hamstring muscles stretching (ps > .05). It indicated that the performance of muscular strength and power in knee flexion and extension do not inhibit following the increase of amount of stretching.

Keywords: knee, power, flexibility, strength

Procedia PDF Downloads 279
7273 Unbalanced Distribution Optimal Power Flow to Minimize Losses with Distributed Photovoltaic Plants

Authors: Malinwo Estone Ayikpa

Abstract:

Electric power systems are likely to operate with minimum losses and voltage meeting international standards. This is made possible generally by control actions provide by automatic voltage regulators, capacitors and transformers with on-load tap changer (OLTC). With the development of photovoltaic (PV) systems technology, their integration on distribution networks has increased over the last years to the extent of replacing the above mentioned techniques. The conventional analysis and simulation tools used for electrical networks are no longer able to take into account control actions necessary for studying distributed PV generation impact. This paper presents an unbalanced optimal power flow (OPF) model that minimizes losses with association of active power generation and reactive power control of single-phase and three-phase PV systems. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The unbalance OPF is formulated by current balance equations and solved by primal-dual interior point method. Several simulation cases have been carried out varying the size and location of PV systems and the results show a detailed view of the impact of PV distributed generation on distribution systems.

Keywords: distribution system, loss, photovoltaic generation, primal-dual interior point method

Procedia PDF Downloads 332
7272 Community Communications and Micro-Level Shifts: The Case of Video Volunteers’ IndiaUnheard Program

Authors: Pooja Ichplani, Archna Kumar, Jessica Mayberry

Abstract:

Community Video (CV) is a participatory medium that has immense potential to strengthen community communications and amplify the voice of people for their empowerment. By building capacities especially of marginalized community groups and providing a platform to freely voice their ideas, CV endeavours to bring about shifts towards more participatory, bottom up development processes and greater power in the hands of the people, especially the disadvantaged. In various parts of the world, among marginalized community groups, community video initiatives have become instrumental in facilitating micro-level, yet significant changes in communities. Video Volunteers (VV) is an organization that promotes community media and works towards providing disadvantaged communities with journalistic, critical thinking and creative skills they need for catalysing change in their communities. Working since 2002, VV has evolved a unique community media model fostering locally-owned and managed media production, as well as building people’s capacities to articulate and share their perspectives on the issues that matter to them – on a local and a global scale. Further, by integrating a livelihood aspect within its model, VV has actively involved people from poor marginalized communities and provided them a new tool for serving their communities whilst keeping their identities intact. This paper, based on a qualitative research, seeks to map the range of VV impacts in communities and provide an in-depth analysis of factors contributing to VV impacting change in communities. Study tools included content analysis of a longitudinal sample of impact videos produced, narratives of community correspondents using the Most Significant Change Technique (MSCT) and interviews with key informants. Using a multi-fold analysis, the paper seeks to gain holistic insights. At the first level, the paper profiles the Community Correspondents (CCs), spearheading change, and maps their personal and social context and their perceptions about VV in their personal lives. Secondly, at an organizational level, the paper maps the significance of impacts brought about in the CCs communities and their association, challenges and achievements while working with VV. Lastly, at the community level, it consists of analysis of the nature of impacts achieved and aspects influencing the same. Finally, the study critiques the functioning of Video Volunteers as a community media initiative using the tipping point theory emphasizing on the power of context that is constituted by their socio-cultural environment. It concludes how empowerment of its Community Correspondents, multifarious activities during pre and post video production, and other innovative mechanisms have enabled in center staging issues of marginalized communities and snowballing processes of change in communities.

Keywords: community media, empowerment, participatory communication, social change

Procedia PDF Downloads 137
7271 Mechanical and Micro-Structural Properties of Fly Ash Based Geopolymer with High-Temperature Exposure

Authors: Young-Cheol Choi, Joo-Hyung Kim, Gyu-Don Moon

Abstract:

This paper discusses the effect of Na2O (alkali) content, SiO2/Na2O mole ratio, and elevated temperature on the mechanical performance of fly-ash-based inorganic green geopolymer composites. Fly-ash-based geopolymers, which were manufactured with varying alkali contents (4–8 % of fly ash weight) and SiO2/Na2O mole ratios (0.6–1.4), were subjected to elevated temperatures up to 900 ºC ; the geopolymer composites and their performance were evaluated on the basis of weight loss and strength loss after temperature exposure. In addition, mineralogical changes due to the elevated temperature exposure were studied using x-ray diffraction. Investigations of microstructures and microprobe analysis were performed using mercury intrusion porosimetry. The results showed that the fly-ash-based geopolymer responded significantly to high-temperature conditions.

Keywords: fly ash, geopolymer, micro-structure, high-temperature, mechanical structural

Procedia PDF Downloads 597
7270 Optimal Planning and Design of Hybrid Energy System for Taxila University

Authors: Habib Ur Rahman Habib

Abstract:

Renewable energy resources are being realized as suitable options in hybrid energy planning for on-grid and micro grid. In this paper, operation, planning and optimal design of on-grid distributed energy resources based hybrid system are investigated. The aim is to minimize the cost of the overall energy system keeping in view the environmental emission and minimum penetration of conventional energy resources. Seven grid connected different case studies including diesel only, diesel-renewable based, and renewable based only are designed to perform economic analysis, operational planning and emission. Sensitivity analysis is implemented to investigate the impact of different parameters on the performance of energy resources.

Keywords: data management, renewable energy, distributed energy, smart grid, micro-grid, modeling, energy planning, design optimization

Procedia PDF Downloads 460
7269 A ZVT-ZCT-PWM DC-DC Boost Converter with Direct Power Transfer

Authors: Naim Suleyman Ting, Yakup Sahin, Ismail Aksoy

Abstract:

This paper presents a zero voltage transition-zero current transition (ZVT-ZCT)-PWM DC-DC boost converter with direct power transfer. In this converter, the main switch turns on with ZVT and turns off with ZCT. The auxiliary switch turns on and off with zero current switching (ZCS). The main diode turns on with ZVS and turns off with ZCS. Besides, the additional current or voltage stress does not occur on the main device. The converter has features as simple structure, fast dynamic response and easy control. Also, the proposed converter has direct power transfer feature as well as excellent soft switching techniques. In this study, the operating principle of the converter is presented and its operation is verified for 1 kW and 100 kHz model.

Keywords: direct power transfer, boost converter, zero-voltage transition, zero-current transition

Procedia PDF Downloads 822
7268 Critical Review of Clean Energy Mix as Means of Boosting Power Generation in Nigeria

Authors: B. Adebayo, A. A. Adebayo

Abstract:

Adequate power generation and supply are enormous challenges confronting Nigeria state today. This is a powerful mechanism that drives industrial development and socio-economy of any nation. The present level of power generation and supply have become national embarrassment to both government and the citizens of Nigeria, where over 60% of the population have no access to electricity. This paper is set to review the abundant clean energy alternative sources available in abundance that are capable of boosting power generation. The clean energy sources waiting to be exploited include: nuclear, solar and wind energy. The environmental benefits of these sources of power generation are identified. Nuclear energy is a powerful clean energy source. However, Africa accounted for 20% of known recoverable reserve and uranium produces heat of 500,000 MJ/kg. Moreover, Nigeria receives average daily solar radiation of over 5.249 kWh/m2/day. Researchers have shown that wind speed and power flux densities varied from 1.5 – 4.1 m/s and 5.7 – 22.5 W/m2 respectively. It is a fact that the cost of doing business in Nigeria is very high, leading to winding up of the multi-national companies and then led to increase unemployment level. More importantly, readily available vast quantity of energy will reduce cost of running industries. Hence, more industries will come on board, goods, services, and more job creation will be achieved. This clean source of power generation is devoid of production of green house gases, elimination of environmental pollution, and reduced waste disposal. Then Nigerians will live in harmony with the environment.

Keywords: power, generation, energy, mix, clean, industrial

Procedia PDF Downloads 310
7267 Customized Cow’s Urine Battery Using MnO2 Depolarizer

Authors: Raj Kumar Rajak, Bharat Mishra

Abstract:

Bio-battery represents an entirely new long term, reasonable, reachable and ecofriendly approach to production of sustainable energy. Types of batteries have been developed using MnO2 in various ways. MnO2 is suitable with physical, chemical, electrochemical, and catalytic properties, serving as an effective cathodic depolarizer and may be considered as being the life blood of the battery systems. In the present experimental work, we have studied the effect of generation of power by bio-battery using different concentrations of MnO2. The tests show that it is possible to generate electricity using cow’s urine as an electrolyte. After ascertaining the optimum concentration of MnO2, various battery parameters and performance indicates that cow urine solely produces power of 695 mW, while a combination with MnO2 (40%) enhances power of bio-battery, i.e. 1377 mW. On adding more and more MnO2 to the electrolyte, the power suppressed because inflation of internal resistance. The analysis of the data produced from experiment shows that MnO2 is quite suitable to energize the bio-battery.

Keywords: bio-batteries, cow’s urine, manganese dioxide, non-conventional

Procedia PDF Downloads 261
7266 SPARK: An Open-Source Knowledge Discovery Platform That Leverages Non-Relational Databases and Massively Parallel Computational Power for Heterogeneous Genomic Datasets

Authors: Thilina Ranaweera, Enes Makalic, John L. Hopper, Adrian Bickerstaffe

Abstract:

Data are the primary asset of biomedical researchers, and the engine for both discovery and research translation. As the volume and complexity of research datasets increase, especially with new technologies such as large single nucleotide polymorphism (SNP) chips, so too does the requirement for software to manage, process and analyze the data. Researchers often need to execute complicated queries and conduct complex analyzes of large-scale datasets. Existing tools to analyze such data, and other types of high-dimensional data, unfortunately suffer from one or more major problems. They typically require a high level of computing expertise, are too simplistic (i.e., do not fit realistic models that allow for complex interactions), are limited by computing power, do not exploit the computing power of large-scale parallel architectures (e.g. supercomputers, GPU clusters etc.), or are limited in the types of analysis available, compounded by the fact that integrating new analysis methods is not straightforward. Solutions to these problems, such as those developed and implemented on parallel architectures, are currently available to only a relatively small portion of medical researchers with access and know-how. The past decade has seen a rapid expansion of data management systems for the medical domain. Much attention has been given to systems that manage phenotype datasets generated by medical studies. The introduction of heterogeneous genomic data for research subjects that reside in these systems has highlighted the need for substantial improvements in software architecture. To address this problem, we have developed SPARK, an enabling and translational system for medical research, leveraging existing high performance computing resources, and analysis techniques currently available or being developed. It builds these into The Ark, an open-source web-based system designed to manage medical data. SPARK provides a next-generation biomedical data management solution that is based upon a novel Micro-Service architecture and Big Data technologies. The system serves to demonstrate the applicability of Micro-Service architectures for the development of high performance computing applications. When applied to high-dimensional medical datasets such as genomic data, relational data management approaches with normalized data structures suffer from unfeasibly high execution times for basic operations such as insert (i.e. importing a GWAS dataset) and the queries that are typical of the genomics research domain. SPARK resolves these problems by incorporating non-relational NoSQL databases that have been driven by the emergence of Big Data. SPARK provides researchers across the world with user-friendly access to state-of-the-art data management and analysis tools while eliminating the need for high-level informatics and programming skills. The system will benefit health and medical research by eliminating the burden of large-scale data management, querying, cleaning, and analysis. SPARK represents a major advancement in genome research technologies, vastly reducing the burden of working with genomic datasets, and enabling cutting edge analysis approaches that have previously been out of reach for many medical researchers.

Keywords: biomedical research, genomics, information systems, software

Procedia PDF Downloads 270
7265 Image Processing of Scanning Electron Microscope Micrograph of Ferrite and Pearlite Steel for Recognition of Micro-Constituents

Authors: Subir Gupta, Subhas Ganguly

Abstract:

In this paper, we demonstrate the new area of application of image processing in metallurgical images to develop the more opportunity for structure-property correlation based approaches of alloy design. The present exercise focuses on the development of image processing tools suitable for phrase segmentation, grain boundary detection and recognition of micro-constituents in SEM micrographs of ferrite and pearlite steels. A comprehensive data of micrographs have been experimentally developed encompassing the variation of ferrite and pearlite volume fractions and taking images at different magnification (500X, 1000X, 15000X, 2000X, 3000X and 5000X) under scanning electron microscope. The variation in the volume fraction has been achieved using four different plain carbon steel containing 0.1, 0.22, 0.35 and 0.48 wt% C heat treated under annealing and normalizing treatments. The obtained data pool of micrographs arbitrarily divided into two parts to developing training and testing sets of micrographs. The statistical recognition features for ferrite and pearlite constituents have been developed by learning from training set of micrographs. The obtained features for microstructure pattern recognition are applied to test set of micrographs. The analysis of the result shows that the developed strategy can successfully detect the micro constitutes across the wide range of magnification and variation of volume fractions of the constituents in the structure with an accuracy of about +/- 5%.

Keywords: SEM micrograph, metallurgical image processing, ferrite pearlite steel, microstructure

Procedia PDF Downloads 199
7264 Harmonics and Flicker Levels at Substation

Authors: Ali Borhani Manesh, Sirus Mohammadi

Abstract:

Harmonic distortion is caused by nonlinear devices in the power system. A nonlinear device is one in which the current is not proportional to the applied voltage. Harmonic distortion is present to some degree on all power systems. Proactive monitoring of power quality disturbance levels by electricity utilities is vital to allow cost-effective mitigation when disturbances are perceived to be approaching planning levels and also to protect the security of customer installations. Ensuring that disturbance levels are within limits at the HV and EHV points of supply of the network is essential if satisfactory levels downstream are to be maintained. This paper presents discussion on a power quality monitoring campaign performed at the sub-transmission point of supply of a distribution network with the objective of benchmarking background disturbance levels prior to modifications to the substation and to ensure emissions from HV customers and the downstream MV networks are within acceptable levels. Some discussion on the difficulties involved in such a study is presented. This paper presents a survey of voltage and current harmonic distortion levels at transmission system in Kohgiloye and Boyrahmad. The effects of harmonics on capacitors and power transformers are discussed.

Keywords: power quality, harmonics, flicker, measurement, substation

Procedia PDF Downloads 696
7263 Field-Programmable Gate Array Based Tester for Protective Relay

Authors: H. Bentarzi, A. Zitouni

Abstract:

The reliability of the power grid depends on the successful operation of thousands of protective relays. The failure of one relay to operate as intended may lead the entire power grid to blackout. In fact, major power system failures during transient disturbances may be caused by unnecessary protective relay tripping rather than by the failure of a relay to operate. Adequate relay testing provides a first defense against false trips of the relay and hence improves power grid stability and prevents catastrophic bulk power system failures. The goal of this research project is to design and enhance the relay tester using a technology such as Field Programmable Gate Array (FPGA) card NI 7851. A PC based tester framework has been developed using Simulink power system model for generating signals under different conditions (faults or transient disturbances) and LabVIEW for developing the graphical user interface and configuring the FPGA. Besides, the interface system has been developed for outputting and amplifying the signals without distortion. These signals should be like the generated ones by the real power system and large enough for testing the relay’s functionality. The signals generated that have been displayed on the scope are satisfactory. Furthermore, the proposed testing system can be used for improving the performance of protective relay.

Keywords: amplifier class D, field-programmable gate array (FPGA), protective relay, tester

Procedia PDF Downloads 216
7262 Transient Performance Analysis of Gate Inside Junctionless Transistor (GI-JLT)

Authors: Sangeeta Singh, Pankaj Kumar, P. N. Kondekar

Abstract:

In this paper, the transient device performance analysis of n-type Gate Inside Junctionless Transistor (GIJLT)has been evaluated. 3-D Bohm Quantum Potential (BQP)transport device simulation has been used to evaluate the delay and power dissipation performance. GI-JLT has a number of desirable device parameters such as reduced propagation delay, dynamic power dissipation, power and delay product, intrinsic gate delay and energy delay product as compared to Gate-all-around transistors GAA-JLT. In addition to this, various other device performance parameters namely, on/off current ratio, short channel effects (SCE), transconductance Generation Factor(TGF) and unity gain cut-off frequency (fT) and subthreshold slope (SS) of the GI-JLT and Gate-all-around junctionless transistor(GAA-JLT) have been analyzed and compared. GI-JLT shows better device performance characteristics than GAA-JLT for low power and high frequency applications, because of its larger gate electrostatic control on the device operation.

Keywords: gate-inside junctionless transistor GI-JLT, gate-all-around junctionless transistor GAA-JLT, propagation delay, power delay product

Procedia PDF Downloads 579
7261 Design and Thermal Analysis of Power Harvesting System of a Hexagonal Shaped Small Spacecraft

Authors: Mansa Radhakrishnan, Anwar Ali, Muhammad Rizwan Mughal

Abstract:

Many universities around the world are working on modular and low budget architecture of small spacecraft to reduce the development cost of the overall system. This paper focuses on the design of a modular solar power harvesting system for a hexagonal-shaped small satellite. The designed solar power harvesting systems are composed of solar panels and power converter subsystems. The solar panel is composed of solar cells mounted on the external face of the printed circuit board (PCB), while the electronic components of power conversion are mounted on the interior side of the same PCB. The solar panel with dimensions 16.5cm × 99cm is composed of 36 solar cells (each solar cell is 4cm × 7cm) divided into four parallel banks where each bank consists of 9 solar cells. The output voltage of a single solar cell is 2.14V, and the combined output voltage of 9 series connected solar cells is around 19.3V. The output voltage of the solar panel is boosted to the satellite power distribution bus voltage level (28V) by a boost converter working on a constant voltage maximum power point tracking (MPPT) technique. The solar panel module is an eight-layer PCB having embedded coil in 4 internal layers. This coil is used to control the attitude of the spacecraft, which consumes power to generate a magnetic field and rotate the spacecraft. As power converter and distribution subsystem components are mounted on the PCB internal layer, therefore it is mandatory to do thermal analysis in order to ensure that the overall module temperature is within thermal safety limits. The main focus of the overall design is on compactness, miniaturization, and efficiency enhancement.

Keywords: small satellites, power subsystem, efficiency, MPPT

Procedia PDF Downloads 74
7260 The Use of Budgeting as an Effective Management Tool for Small, Medium and Micro Enterprises during COVID-19 Pandemic: A Perspective from South Africa

Authors: Abongile Zweni, Grate Moyo, Ricardo Peters, Bingwen Yan

Abstract:

Budgets are one of the most important tools that organisations, big or small, need to use as management tools. When organisations, particularly Small, Medium and Micro Enterprises (SMMEs), do not use budgets, they are bound to fail in their infancy stage. The aim of this study was to assess whether or not SMMEs in South Africa used budgets as an effective management tool during the COVID-19 pandemic. For the purposes of this study, data was collected using an online questionnaire (survey). This study used the quantitative research approach. The study used descriptive statistics to analyse the research question. The study found that most SMMEs did not use budgets during the COVID-19 pandemic; one of the reasons, amongst others, was that most of them had to close down during the lockdown, and some of them did not even qualify for government bailout or government grants.

Keywords: budget management, SMMEs, COVID-19, South Africa

Procedia PDF Downloads 192
7259 Analysis of DC\DC Converter of Photovoltaic System with MPPT Algorithms Comparison

Authors: Badr M. Alshammari, Mohamed A. Khlifi

Abstract:

This paper presents the analysis of DC/DC converter including a comparative study of control methods to extract the maximum power and to track the maximum power point (MPP) from photovoltaic (PV) systems under changeable environmental conditions. This paper proposes two methods of maximum power point tracking algorithm for photovoltaic systems, based on the first hand on P&O control and the other hand on the first order IC. The MPPT system ensures that solar cells can deliver the maximum power possible to the load. Different algorithms are used to design it. Here we compare them and simulate the photovoltaic system with two algorithms. The algorithms are used to control the duty cycle of a DC-DC converter in order to boost the output voltage of the PV generator and guarantee the operation of the solar panels in the Maximum Power Point (MPP). Simulation and experimental results show that the proposed algorithms can effectively improve the efficiency of a photovoltaic array output.

Keywords: solar cell, DC/DC boost converter, MPPT, photovoltaic system

Procedia PDF Downloads 202
7258 Design and Implementation of DC-DC Converter with Inc-Cond Algorithm

Authors: Mustafa Engin Başoğlu, Bekir Çakır

Abstract:

The most important component affecting the efficiency of photovoltaic power systems are solar panels. Efficiency of these systems are significantly affected because of being low efficiency of solar panel. Therefore, solar panels should be operated under maximum power point conditions through a power converter. In this study, design boost converter with maximum power point tracking (MPPT) operation has been designed and performed with Incremental Conductance (Inc-Cond) algorithm by using direct duty control. Furthermore, it is shown that performance of boost converter with MPPT operation fails under low load resistance connection.

Keywords: boost converter, incremental conductance (Inc-Cond), MPPT, solar panel

Procedia PDF Downloads 1046
7257 Trabecular Bone Radiograph Characterization Using Fractal, Multifractal Analysis and SVM Classifier

Authors: I. Slim, H. Akkari, A. Ben Abdallah, I. Bhouri, M. Hedi Bedoui

Abstract:

Osteoporosis is a common disease characterized by low bone mass and deterioration of micro-architectural bone tissue, which provokes an increased risk of fracture. This work treats the texture characterization of trabecular bone radiographs. The aim was to analyze according to clinical research a group of 174 subjects: 87 osteoporotic patients (OP) with various bone fracture types and 87 control cases (CC). To characterize osteoporosis, Fractal and MultiFractal (MF) methods were applied to images for features (attributes) extraction. In order to improve the results, a new method of MF spectrum based on the q-stucture function calculation was proposed and a combination of Fractal and MF attributes was used. The Support Vector Machines (SVM) was applied as a classifier to distinguish between OP patients and CC subjects. The features fusion (fractal and MF) allowed a good discrimination between the two groups with an accuracy rate of 96.22%.

Keywords: fractal, micro-architecture analysis, multifractal, osteoporosis, SVM

Procedia PDF Downloads 393
7256 Voltage and Frequency Regulation Using the Third-Party Mid-Size Battery

Authors: Roghieh A. Biroon, Zoleikha Abdollahi

Abstract:

The recent growth of renewables, e.g., solar panels, batteries, and electric vehicles (EVs) in residential and small commercial sectors, has potential impacts on the stability and operation of power grids. Considering approximately 50 percent share of the residential and the commercial sectors in the electricity demand market, the significance of these impacts, and the necessity of addressing them are more highlighted. Utilities and power system operators should manage the renewable electricity sources integration with power systems in such a way to extract the most possible advantages for the power systems. The most common effect of high penetration level of the renewables is the reverse power flow in the distribution feeders when the customers generate more power than their needs. The reverse power flow causes voltage rise and thermal issues in the power grids. To overcome the voltage rise issues in the distribution system, several techniques have been proposed including reducing transformers short circuit resistance and feeder impedance, installing autotransformers/voltage regulators along the line, absorbing the reactive power by distributed generators (DGs), and limiting the PV and battery sizes. In this study, we consider a medium-scale battery energy storage to manage the power energy and address the aforementioned issues on voltage deviation and power loss increase. We propose an optimization algorithm to find the optimum size and location for the battery. The optimization for the battery location and size is so that the battery maintains the feeder voltage deviation and power loss at a certain desired level. Moreover, the proposed optimization algorithm controls the charging/discharging profile of the battery to absorb the negative power flow from residential and commercial customers in the feeder during the peak time and sell the power back to the system during the off-peak time. The proposed battery regulates the voltage problem in the distribution system while it also can play frequency regulation role in islanded microgrids. This battery can be regulated and controlled by the utilities or a third-party ancillary service provider for the utilities to reduce the power system loss and regulate the distribution feeder voltage and frequency in standard level.

Keywords: ancillary services, battery, distribution system and optimization

Procedia PDF Downloads 131
7255 Design of Solar Charge Controller and Power Converter with the Multisim

Authors: Sohal Latif

Abstract:

Solar power is in the form of photovoltaic, also known as PV, which is a form of renewable energy that applies solar panels in producing electricity from the sun. It has a vital role in fulfilling the present need for clean and renewable energy to get rid of conventional and non-renewable energy sources that emit high levels of greenhouse gases. Solar energy is embraced because of its availability, easy accessibility, and effectiveness in the provision of power, chiefly in country areas. In solar charging, device charge entails a change of light power into electricity using photovoltaic or PV panels, which supply direct current electric power or DC. Here, the solar charge controller has a very crucial role to play regarding the voltages and the currents coming from the solar panels to take up the changing needs of a battery without overcharging the same. Certain devices, such as inverters, are required to transform the DC power produced by the solar panels into an AC to serve the normal electrical appliances and the current power network. This project was initiated for a project of a solar charge controller and power converter with the MULTISIM. The formation of this project begins with a literature survey to obtain basic knowledge about power converters, charge controllers, and photovoltaic systems. Fundamentals of the operation of solar panels include the process by which light is converted into electricity and a comparison of PWM and MPPT chargers with controllers. Knowledge of rectifiers is built to help achieve AC-to-DC and DC-AC change. Choosing a resistor, capacitance, MOSFET, and OP-AMP is done by the need of the system. The circuit diagrams of converters and charge controllers are designed using the Multisim program. Pulse width modulation, Bubba oscillator circuit, and inverter circuits are modeled and simulated. In the subsequent steps, the analysis of the simulation outcomes indicates the efficiency of the intended converter systems. The various outputs from the different configurations, with the transformer incorporated as well as without it, are then monitored for effective power conversion as well as power regulation.

Keywords: solar charge controller, MULTISIM, converter, inverter

Procedia PDF Downloads 22