Search results for: machine hammer peening
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2933

Search results for: machine hammer peening

2123 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran

Authors: Saba Gachpaz, Hamid Reza Heidari

Abstract:

The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.

Keywords: land suitability, machine learning, random forest, sustainable agriculture

Procedia PDF Downloads 84
2122 Using Geo-Statistical Techniques and Machine Learning Algorithms to Model the Spatiotemporal Heterogeneity of Land Surface Temperature and its Relationship with Land Use Land Cover

Authors: Javed Mallick

Abstract:

In metropolitan areas, rapid changes in land use and land cover (LULC) have ecological and environmental consequences. Saudi Arabia's cities have experienced tremendous urban growth since the 1990s, resulting in urban heat islands, groundwater depletion, air pollution, loss of ecosystem services, and so on. From 1990 to 2020, this study examines the variance and heterogeneity in land surface temperature (LST) caused by LULC changes in Abha-Khamis Mushyet, Saudi Arabia. LULC was mapped using the support vector machine (SVM). The mono-window algorithm was used to calculate the land surface temperature (LST). To identify LST clusters, the local indicator of spatial associations (LISA) model was applied to spatiotemporal LST maps. In addition, the parallel coordinate (PCP) method was used to investigate the relationship between LST clusters and urban biophysical variables as a proxy for LULC. According to LULC maps, urban areas increased by more than 330% between 1990 and 2018. Between 1990 and 2018, built-up areas had an 83.6% transitional probability. Furthermore, between 1990 and 2020, vegetation and agricultural land were converted into built-up areas at a rate of 17.9% and 21.8%, respectively. Uneven LULC changes in built-up areas result in more LST hotspots. LST hotspots were associated with high NDBI but not NDWI or NDVI. This study could assist policymakers in developing mitigation strategies for urban heat islands

Keywords: land use land cover mapping, land surface temperature, support vector machine, LISA model, parallel coordinate plot

Procedia PDF Downloads 78
2121 Power Angle Control Strategy of Virtual Synchronous Machine: A Novel Approach to Control Virtual Synchronous Machine

Authors: Shishir Lamichhane, Saurav Dulal, Bibek Gautam, Madan Thapa Magar, Indraman Tamrakar

Abstract:

Renewable energies such as wind turbines and solar photovoltaic have gained significance as a result of global environmental pollution and energy crises. These sources of energy are converted into electrical energy and delivered to end-users through the utility system. As a result of the widespread use of power electronics-based grid-interfacing technologies to accommodate renewable sources of energy, the prevalence of converters has expanded as well. As a result, the power system's rotating inertia is decreasing, endangering the utility grid's stability. The use of Virtual Synchronous Machine (VSM) technology has been proposed to overcome the grid stability problem due to low rotating inertia. The grid-connected inverter used in VSM can be controlled to emulate inertia, which replicates the external features of a synchronous generator. As a result, the rotating inertia is increased to support the power system's stability. A power angle control strategy is proposed in this paper and its model is simulated in MATLAB/Simulink to study the effects of parameter disturbances on the active power and frequency for a VSM. The system consists of a synchronous generator, which is modeled in such a way that the frequency drops to an unacceptable region during transient conditions due to a lack of inertia when VSM is not used. Then, the suggested model incorporating VSM emulates rotating inertia, injecting a controllable amount of energy into the grid during frequency transients to enhance transient stability.

Keywords: damping constant, inertia–constant, ROCOF, transient stability, distributed sources

Procedia PDF Downloads 207
2120 Theoretical and ML-Driven Identification of a Mispriced Credit Risk

Authors: Yuri Katz, Kun Liu, Arunram Atmacharan

Abstract:

Due to illiquidity, mispricing on Credit Markets is inevitable. This creates huge challenges to banks and investors as they seek to find new ways of risk valuation and portfolio management in a post-credit crisis world. Here, we analyze the difference in behavior of the spread-to-maturity in investment and high-yield categories of US corporate bonds between 2014 and 2023. Deviation from the theoretical dependency of this measure in the universe under study allows to identify multiple cases of mispriced credit risk. Remarkably, we observe mispriced bonds in both categories of credit ratings. This identification is supported by the application of the state-of-the-art machine learning model in more than 90% of cases. Noticeably, the ML-driven model-based forecasting of a category of bond’s credit ratings demonstrate an excellent out-of-sample accuracy (AUC = 98%). We believe that these results can augment conventional valuations of credit portfolios.

Keywords: credit risk, credit ratings, bond pricing, spread-to-maturity, machine learning

Procedia PDF Downloads 80
2119 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs Based on Machine Learning Algorithms

Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios

Abstract:

Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity, and aflatoxinogenic capacity of the strains, topography, soil, and climate parameters of the fig orchards, are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive, and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), the concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P, and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques, i.e., dimensionality reduction on the original dataset (principal component analysis), metric learning (Mahalanobis metric for clustering), and k-nearest neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson correlation coefficient (PCC) between observed and predicted values.

Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction

Procedia PDF Downloads 184
2118 Parametric Study of a Washing Machine to Develop an Energy Efficient Program Regarding the Enhanced Washing Efficiency Index and Micro Organism Removal Performance

Authors: Peli̇n Yilmaz, Gi̇zemnur Yildiz Uysal, Emi̇ne Bi̇rci̇, Berk Özcan, Burak Koca, Ehsan Tuzcuoğlu, Fati̇h Kasap

Abstract:

Development of Energy Efficient Programs (EEP) is one of the most significant trends in the wet appliance industry of the recent years. Thanks to the EEP, the energy consumption of a washing machine as one of the most energy-consuming home appliances can shrink considerably, while its washing performance and the textile hygiene should remain almost unchanged. Here in, the goal of the present study is to achieve an optimum EEP algorithm providing excellent textile hygiene results as well as cleaning performance in a domestic washing machine. In this regard, steam-pretreated cold wash approach with a combination of innovative algorithm solution in a relatively short washing cycle duration was implemented. For the parametric study, steam exposure time, washing load, total water consumption, main-washing time, and spinning rpm as the significant parameters affecting the textile hygiene and cleaning performance were investigated within a Design of Experiment study using Minitab 2021 statistical program. For the textile hygiene studies, specific loads containing the contaminated cotton carriers with Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa bacteria were washed. Then, the microbial removal performance of the designed programs was expressed as log reduction calculated as a difference of microbial count per ml of the liquids in which the cotton carriers before and after washing. For the cleaning performance studies, tests were carried out with various types of detergents and EMPA Standard Stain Strip. According to the results, the optimum EEP program provided an excellent hygiene performance of more than 2 log reduction of microorganism and a perfect Washing Efficiency Index (Iw) of 1.035, which is greater than the value specified by EU ecodesign regulation 2019/2023.

Keywords: washing machine, energy efficient programs, hygiene, washing efficiency index, microorganism, escherichia coli, staphylococcus aureus, pseudomonas aeruginosa, laundry

Procedia PDF Downloads 136
2117 Machine learning Assisted Selective Emitter design for Solar Thermophotovoltaic System

Authors: Ambali Alade Odebowale, Andargachew Mekonnen Berhe, Haroldo T. Hattori, Andrey E. Miroshnichenko

Abstract:

Solar thermophotovoltaic systems (STPV) have emerged as a promising solution to overcome the Shockley-Queisser limit, a significant impediment in the direct conversion of solar radiation into electricity using conventional solar cells. The STPV system comprises essential components such as an optical concentrator, selective emitter, and a thermophotovoltaic (TPV) cell. The pivotal element in achieving high efficiency in an STPV system lies in the design of a spectrally selective emitter or absorber. Traditional methods for designing and optimizing selective emitters are often time-consuming and may not yield highly selective emitters, posing a challenge to the overall system performance. In recent years, the application of machine learning techniques in various scientific disciplines has demonstrated significant advantages. This paper proposes a novel nanostructure composed of four-layered materials (SiC/W/SiO2/W) to function as a selective emitter in the energy conversion process of an STPV system. Unlike conventional approaches widely adopted by researchers, this study employs a machine learning-based approach for the design and optimization of the selective emitter. Specifically, a random forest algorithm (RFA) is employed for the design of the selective emitter, while the optimization process is executed using genetic algorithms. This innovative methodology holds promise in addressing the challenges posed by traditional methods, offering a more efficient and streamlined approach to selective emitter design. The utilization of a machine learning approach brings several advantages to the design and optimization of a selective emitter within the STPV system. Machine learning algorithms, such as the random forest algorithm, have the capability to analyze complex datasets and identify intricate patterns that may not be apparent through traditional methods. This allows for a more comprehensive exploration of the design space, potentially leading to highly efficient emitter configurations. Moreover, the application of genetic algorithms in the optimization process enhances the adaptability and efficiency of the overall system. Genetic algorithms mimic the principles of natural selection, enabling the exploration of a diverse range of emitter configurations and facilitating the identification of optimal solutions. This not only accelerates the design and optimization process but also increases the likelihood of discovering configurations that exhibit superior performance compared to traditional methods. In conclusion, the integration of machine learning techniques in the design and optimization of a selective emitter for solar thermophotovoltaic systems represents a groundbreaking approach. This innovative methodology not only addresses the limitations of traditional methods but also holds the potential to significantly improve the overall performance of STPV systems, paving the way for enhanced solar energy conversion efficiency.

Keywords: emitter, genetic algorithm, radiation, random forest, thermophotovoltaic

Procedia PDF Downloads 61
2116 Efficient Manageability and Intelligent Classification of Web Browsing History Using Machine Learning

Authors: Suraj Gururaj, Sumantha Udupa U.

Abstract:

Browsing the Web has emerged as the de facto activity performed on the Internet. Although browsing gets tracked, the manageability aspect of Web browsing history is very poor. In this paper, we have a workable solution implemented by using machine learning and natural language processing techniques for efficient manageability of user’s browsing history. The significance of adding such a capability to a Web browser is that it ensures efficient and quick information retrieval from browsing history, which currently is very challenging. Our solution guarantees that any important websites visited in the past can be easily accessible because of the intelligent and automatic classification. In a nutshell, our solution-based paper provides an implementation as a browser extension by intelligently classifying the browsing history into most relevant category automatically without any user’s intervention. This guarantees no information is lost and increases productivity by saving time spent revisiting websites that were of much importance.

Keywords: adhoc retrieval, Chrome extension, supervised learning, tile, Web personalization

Procedia PDF Downloads 376
2115 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection

Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada

Abstract:

With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.

Keywords: machine learning, imbalanced data, data mining, big data

Procedia PDF Downloads 130
2114 Study of the Use of Artificial Neural Networks in Islamic Finance

Authors: Kaoutar Abbahaddou, Mohammed Salah Chiadmi

Abstract:

The need to find a relevant way to predict the next-day price of a stock index is a real concern for many financial stakeholders and researchers. We have known across years the proliferation of several methods. Nevertheless, among all these methods, the most controversial one is a machine learning algorithm that claims to be reliable, namely neural networks. Thus, the purpose of this article is to study the prediction power of neural networks in the particular case of Islamic finance as it is an under-looked area. In this article, we will first briefly present a review of the literature regarding neural networks and Islamic finance. Next, we present the architecture and principles of artificial neural networks most commonly used in finance. Then, we will show its empirical application on two Islamic stock indexes. The accuracy rate would be used to measure the performance of the algorithm in predicting the right price the next day. As a result, we can conclude that artificial neural networks are a reliable method to predict the next-day price for Islamic indices as it is claimed for conventional ones.

Keywords: Islamic finance, stock price prediction, artificial neural networks, machine learning

Procedia PDF Downloads 237
2113 Sentiment Analysis on the East Timor Accession Process to the ASEAN

Authors: Marcelino Caetano Noronha, Vosco Pereira, Jose Soares Pinto, Ferdinando Da C. Saores

Abstract:

One particularly popular social media platform is Youtube. It’s a video-sharing platform where users can submit videos, and other users can like, dislike or comment on the videos. In this study, we conduct a binary classification task on YouTube’s video comments and review from the users regarding the accession process of Timor Leste to become the eleventh member of the Association of South East Asian Nations (ASEAN). We scrape the data directly from the public YouTube video and apply several pre-processing and weighting techniques. Before conducting the classification, we categorized the data into two classes, namely positive and negative. In the classification part, we apply Support Vector Machine (SVM) algorithm. By comparing with Naïve Bayes Algorithm, the experiment showed SVM achieved 84.1% of Accuracy, 94.5% of Precision, and Recall 73.8% simultaneously.

Keywords: classification, YouTube, sentiment analysis, support sector machine

Procedia PDF Downloads 109
2112 A Generalized Framework for Adaptive Machine Learning Deployments in Algorithmic Trading

Authors: Robert Caulk

Abstract:

A generalized framework for adaptive machine learning deployments in algorithmic trading is introduced, tested, and released as open-source code. The presented software aims to test the hypothesis that recent data contains enough information to form a probabilistically favorable short-term price prediction. Further, the framework contains various adaptive machine learning techniques that are geared toward generating profit during strong trends and minimizing losses during trend changes. Results demonstrate that this adaptive machine learning approach is capable of capturing trends and generating profit. The presentation also discusses the importance of defining the parameter space associated with the dynamic training data-set and using the parameter space to identify and remove outliers from prediction data points. Meanwhile, the generalized architecture enables common users to exploit the powerful machinery while focusing on high-level feature engineering and model testing. The presentation also highlights common strengths and weaknesses associated with the presented technique and presents a broad range of well-tested starting points for feature set construction, target setting, and statistical methods for enforcing risk management and maintaining probabilistically favorable entry and exit points. The presentation also describes the end-to-end data processing tools associated with FreqAI, including automatic data fetching, data aggregation, feature engineering, safe and robust data pre-processing, outlier detection, custom machine learning and statistical tools, data post-processing, and adaptive training backtest emulation, and deployment of adaptive training in live environments. Finally, the generalized user interface is also discussed in the presentation. Feature engineering is simplified so that users can seed their feature sets with common indicator libraries (e.g. TA-lib, pandas-ta). The user also feeds data expansion parameters to fill out a large feature set for the model, which can contain as many as 10,000+ features. The presentation describes the various object-oriented programming techniques employed to make FreqAI agnostic to third-party libraries and external data sources. In other words, the back-end is constructed in such a way that users can leverage a broad range of common regression libraries (Catboost, LightGBM, Sklearn, etc) as well as common Neural Network libraries (TensorFlow, PyTorch) without worrying about the logistical complexities associated with data handling and API interactions. The presentation finishes by drawing conclusions about the most important parameters associated with a live deployment of the adaptive learning framework and provides the road map for future development in FreqAI.

Keywords: machine learning, market trend detection, open-source, adaptive learning, parameter space exploration

Procedia PDF Downloads 89
2111 Combined Machine That Fertilizes Evenly under Plowing on Slopes and Planning an Experiment

Authors: Qurbanov Huseyn Nuraddin

Abstract:

The results of scientific research on a machine that pours an equal amount of mineral fertilizer under the soil to increase the productivity of grain in mountain farming and obtain quality grain are substantiated. The average yield of the crop depends on the nature of the distribution of fertilizers in the soil. Therefore, the study of effective energy-saving methods for the application of mineral fertilizers is the actual task of modern agriculture. Depending on the type and variety of plants in mountain farming, there is an optimal norm of mineral fertilizers. Applying an equal amount of fertilizer to the soil is one of the conditions that increase the efficiency of the field. One of the main agro-technical indicators of the work of mineral fertilizing machines is to ensure equal distribution of mineral fertilizers in the field. Taking into account the above-mentioned issues, a combined plough has been improved in our laboratory.

Keywords: combined plough, mineral fertilizers, sprinkle fluently, fertilizer rate, cereals

Procedia PDF Downloads 73
2110 A Review of Intelligent Fire Management Systems to Reduce Wildfires

Authors: Nomfundo Ngombane, Topside E. Mathonsi

Abstract:

Remote sensing and satellite imaging have been widely used to detect wildfires; nevertheless, the technologies present some limitations in terms of early wildfire detection as the technologies are greatly influenced by weather conditions and can miss small fires. The fires need to have spread a few kilometers for the technologies to provide accurate detection. The South African Advanced Fire Information System uses MODIS (Moderate Resolution Imaging Spectroradiometer) as satellite imaging. MODIS has limitations as it can exclude small fires and can fall short in validating fire vulnerability. Thus in the future, a Machine Learning algorithm will be designed and implemented for the early detection of wildfires. A simulator will be used to evaluate the effectiveness of the proposed solution, and the results of the simulation will be presented.

Keywords: moderate resolution imaging spectroradiometer, advanced fire information system, machine learning algorithm, detection of wildfires

Procedia PDF Downloads 78
2109 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis

Authors: Mehrnaz Mostafavi

Abstract:

The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.

Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans

Procedia PDF Downloads 101
2108 Design and Modeling of Light Duty Trencher

Authors: Yegetaneh T. Dejenu, Delesa Kejela, Abdulak Alemu

Abstract:

From the earliest time of humankind, the trenches were used for water to flow along and for soldiers to hide in during enemy attacks. Now a day due to civilization, the needs of the human being become endless, and the living condition becomes sophisticated. The unbalance between the needs and resource obligates them to find the way to manage this condition. The attempt to use the scares resource in very efficient and effective way makes the trench an endeavor practice in the world in all countries. A trencher is a construction equipment used to dig trenches, especially for laying pipes or cables, installing drainage, irrigation, installing fencing, and in preparation for trench warfare. It is a machine used to make a ditch by cutting the soil ground and effectively used in agricultural irrigation. The most common types of trencher are wheel trencher, chain trencher, micro trencher, portable trencher. In Ethiopia people have been trenching the ditch for many purposes and the tools they are using are Pickaxe, Shovel and some are using Micro Excavators. The adverse effect of using traditional equipment is, time and energy consuming, less productive, difficult and more man power is required. Hence it is necessary to design and produce low price, and simple machine to narrow this gap. Our objective is to design and model a light duty trencher that is used for trenching the ground or soil for making ditch and used for agricultural, ground cabling, ground piping, and drainage system. The designed machine trenches, maximum of 1-meter depth, 30 cm width, and the required length. The working mechanism is fully hydraulic, and the engine with 12.7 hp will provide suitable power for the pump that delivers 23 l/min at 1500 rpm to drive hydraulic motors and actuators.

Keywords: hydraulics, modelling, trenching, ditch

Procedia PDF Downloads 215
2107 Semi-Automatic Design and Fabrication of Water Waste Cleaning Machine

Authors: Chanida Tangjai Benchalak Muangmeesri, Dechrit Maneetham

Abstract:

Collection of marine garbage in the modern world, where technology is vital to existence. Consequently, technology can assist in reducing the duplicate labor in the subject of collecting trash in the water that must be done the same way repeatedly owing to the consequence of suffering an emerging disease or COVID-19. This is due to the rapid advancement of technology. As a result, solid trash and plastic garbage are increasing. Agricultural gardens, canals, ponds, and water basins are all sources of water. Building boat-like instruments for rubbish collection in the water will be done this time. It has two control options, boat control via remote control and boat control via an Internet of Things system. A solar panel with a power output of 40 watts powers the system being able to store so accurate and precise waste collection, allowing for thorough water cleaning. The primary goals are to keep the water's surface clean and assess its quality to support the aquatic ecology.

Keywords: automatic boat, water treatment, cleaning machine, iot

Procedia PDF Downloads 91
2106 Syndromic Surveillance Framework Using Tweets Data Analytics

Authors: David Ming Liu, Benjamin Hirsch, Bashir Aden

Abstract:

Syndromic surveillance is to detect or predict disease outbreaks through the analysis of medical sources of data. Using social media data like tweets to do syndromic surveillance becomes more and more popular with the aid of open platform to collect data and the advantage of microblogging text and mobile geographic location features. In this paper, a Syndromic Surveillance Framework is presented with machine learning kernel using tweets data analytics. Influenza and the three cities Abu Dhabi, Al Ain and Dubai of United Arabic Emirates are used as the test disease and trial areas. Hospital cases data provided by the Health Authority of Abu Dhabi (HAAD) are used for the correlation purpose. In our model, Latent Dirichlet allocation (LDA) engine is adapted to do supervised learning classification and N-Fold cross validation confusion matrix are given as the simulation results with overall system recall 85.595% performance achieved.

Keywords: Syndromic surveillance, Tweets, Machine Learning, data mining, Latent Dirichlet allocation (LDA), Influenza

Procedia PDF Downloads 116
2105 A Data-Driven Platform for Studying the Liquid Plug Splitting Ratio

Authors: Ehsan Atefi, Michael Grigware

Abstract:

Respiratory failure secondary to surfactant deficiency resulting from respiratory distress syndrome is considered one major cause of morbidity in preterm infants. Surfactant replacement treatment (SRT) is considered an effective treatment for this disease. Here, we introduce an AI-mediated approach for estimating the distribution of surfactant in the lung airway of a newborn infant during SRT. Our approach implements machine learning to precisely estimate the splitting ratio of a liquid drop during bifurcation at different injection velocities and patient orientations. This technique can be used to calculate the surfactant residue remaining on the airway wall during the surfactant injection process. Our model works by minimizing the pressure drop difference between the two airway branches at each generation, subject to mass and momentum conservation. Our platform can be used to generate feedback for immediately adjusting the velocity of injection and patient orientation during SRT.

Keywords: respiratory failure, surfactant deficiency, surfactant replacement, machine learning

Procedia PDF Downloads 126
2104 Exploring Artificial Intelligence as a Transformative Tool for Urban Management

Authors: R. R. Govind

Abstract:

In the digital age, artificial intelligence (AI) is having a significant impact on the rapid changes that cities are experiencing. This study explores the profound impact of AI on urban morphology, especially with regard to promoting friendly design choices. It addresses a significant research gap by examining the real-world effects of integrating AI into urban design and management. The main objective is to outline a framework for integrating AI to transform urban settings. The study employs an urban design framework to effectively navigate complicated urban environments, emphasize the need for urban management, and provide efficient planning and design strategies. Taking Gangtok's informal settlements as a focal point, the study employs AI methodologies such as machine learning, predictive analytics, and generative AI to tackle issues of 'urban informality'. The insights garnered not only offer valuable perspectives but also unveil AI's transformative potential in addressing contemporary urban challenges.

Keywords: urban design, artificial intelligence, urban challenges, machine learning, urban informality

Procedia PDF Downloads 61
2103 Rapid Classification of Soft Rot Enterobacteriaceae Phyto-Pathogens Pectobacterium and Dickeya Spp. Using Infrared Spectroscopy and Machine Learning

Authors: George Abu-Aqil, Leah Tsror, Elad Shufan, Shaul Mordechai, Mahmoud Huleihel, Ahmad Salman

Abstract:

Pectobacterium and Dickeya spp which negatively affect a wide range of crops are the main causes of the aggressive diseases of agricultural crops. These aggressive diseases are responsible for a huge economic loss in agriculture including a severe decrease in the quality of the stored vegetables and fruits. Therefore, it is important to detect these pathogenic bacteria at their early stages of infection to control their spread and consequently reduce the economic losses. In addition, early detection is vital for producing non-infected propagative material for future generations. The currently used molecular techniques for the identification of these bacteria at the strain level are expensive and laborious. Other techniques require a long time of ~48 h for detection. Thus, there is a clear need for rapid, non-expensive, accurate and reliable techniques for early detection of these bacteria. In this study, infrared spectroscopy, which is a well-known technique with all its features, was used for rapid detection of Pectobacterium and Dickeya spp. at the strain level. The bacteria were isolated from potato plants and tubers with soft rot symptoms and measured by infrared spectroscopy. The obtained spectra were analyzed using different machine learning algorithms. The performances of our approach for taxonomic classification among the bacterial samples were evaluated in terms of success rates. The success rates for the correct classification of the genus, species and strain levels were ~100%, 95.2% and 92.6% respectively.

Keywords: soft rot enterobacteriaceae (SRE), pectobacterium, dickeya, plant infections, potato, solanum tuberosum, infrared spectroscopy, machine learning

Procedia PDF Downloads 102
2102 Data Poisoning Attacks on Federated Learning and Preventive Measures

Authors: Beulah Rani Inbanathan

Abstract:

In the present era, it is vivid from the numerous outcomes that data privacy is being compromised in various ways. Machine learning is one technology that uses the centralized server, and then data is given as input which is being analyzed by the algorithms present on this mentioned server, and hence outputs are predicted. However, each time the data must be sent by the user as the algorithm will analyze the input data in order to predict the output, which is prone to threats. The solution to overcome this issue is federated learning, where the models alone get updated while the data resides on the local machine and does not get exchanged with the other local models. Nevertheless, even on these local models, there are chances of data poisoning, and it is crystal clear from various experiments done by many people. This paper delves into many ways where data poisoning occurs and the many methods through which it is prevalent that data poisoning still exists. It includes the poisoning attacks on IoT devices, Edge devices, Autoregressive model, and also, on Industrial IoT systems and also, few points on how these could be evadible in order to protect our data which is personal, or sensitive, or harmful when exposed.

Keywords: data poisoning, federated learning, Internet of Things, edge computing

Procedia PDF Downloads 87
2101 Impact Location From Instrumented Mouthguard Kinematic Data In Rugby

Authors: Jazim Sohail, Filipe Teixeira-Dias

Abstract:

Mild traumatic brain injury (mTBI) within non-helmeted contact sports is a growing concern due to the serious risk of potential injury. Extensive research is being conducted looking into head kinematics in non-helmeted contact sports utilizing instrumented mouthguards that allow researchers to record accelerations and velocities of the head during and after an impact. This does not, however, allow the location of the impact on the head, and its magnitude and orientation, to be determined. This research proposes and validates two methods to quantify impact locations from instrumented mouthguard kinematic data, one using rigid body dynamics, the other utilizing machine learning. The rigid body dynamics technique focuses on establishing and matching moments from Euler’s and torque equations in order to find the impact location on the head. The methodology is validated with impact data collected from a lab test with the dummy head fitted with an instrumented mouthguard. Additionally, a Hybrid III Dummy head finite element model was utilized to create synthetic kinematic data sets for impacts from varying locations to validate the impact location algorithm. The algorithm calculates accurate impact locations; however, it will require preprocessing of live data, which is currently being done by cross-referencing data timestamps to video footage. The machine learning technique focuses on eliminating the preprocessing aspect by establishing trends within time-series signals from instrumented mouthguards to determine the impact location on the head. An unsupervised learning technique is used to cluster together impacts within similar regions from an entire time-series signal. The kinematic signals established from mouthguards are converted to the frequency domain before using a clustering algorithm to cluster together similar signals within a time series that may span the length of a game. Impacts are clustered within predetermined location bins. The same Hybrid III Dummy finite element model is used to create impacts that closely replicate on-field impacts in order to create synthetic time-series datasets consisting of impacts in varying locations. These time-series data sets are used to validate the machine learning technique. The rigid body dynamics technique provides a good method to establish accurate impact location of impact signals that have already been labeled as true impacts and filtered out of the entire time series. However, the machine learning technique provides a method that can be implemented with long time series signal data but will provide impact location within predetermined regions on the head. Additionally, the machine learning technique can be used to eliminate false impacts captured by sensors saving additional time for data scientists using instrumented mouthguard kinematic data as validating true impacts with video footage would not be required.

Keywords: head impacts, impact location, instrumented mouthguard, machine learning, mTBI

Procedia PDF Downloads 217
2100 Design of 3-Step Skew BLAC Motor for Better Performance in Electric Power Steering System

Authors: Subrato Saha, Yun-Hyun Cho

Abstract:

In electric power steering (EPS), spoke type brushless ac (BLAC) motors offer distinct advantages over other electric motor types in terms torque smoothness, reliability and efficiency. This paper deals with the shape optimization of spoke type BLAC motor, in order to reduce cogging torque. This paper examines 3 steps skewing rotor angle, optimizing rotor core edge and rotor overlap length for reducing cogging torque in spoke type BLAC motor. The methods were applied to existing machine designs and their performance was calculated using finite- element analysis (FEA). Prototypes of the machine designs were constructed and experimental results obtained. It is shown that the FEA predicted the cogging torque to be nearly reduce using those methods.

Keywords: EPS, 3-Step skewing, spoke type BLAC, cogging torque, FEA, optimization

Procedia PDF Downloads 491
2099 Application of 3-6 Years Old Children Basketball Appropriate Forms of Teaching Auxiliary Equipment in Early Childhood Basketball Game

Authors: Hai Zeng, Anqing Liu, Shuguang Dan, Ying Zhang, Yan Li, Zihang Zeng

Abstract:

Children are strong; the country strong, the development of children Basketball is a strategic advantage. Common forms of basketball equipment has been difficult to meet the needs of young children teaching the game of basketball, basketball development for 3-6 years old children in the form of appropriate teaching aids is a breakthrough basketball game teaching children bottlenecks, improve teaching critical path pleasure, but also the development of early childhood basketball a necessary requirement. In this study, literature, questionnaires, focus group interviews, comparative analysis, for domestic and foreign use of 12 kinds of basketball teaching aids (cloud computing MINI basketball, adjustable basketball MINI, MINI basketball court, shooting assist paw print ball, dribble goggles, dribbling machine, machine cartoon shooting, rebounding machine, against the mat, elastic belt, ladder, fitness ball), from fun and improve early childhood shooting technique, dribbling technology, as well as offensive and defensive rebounding against technology conduct research on conversion technology. The results show that by using appropriate forms of teaching children basketball aids, can effectively improve children's fun basketball game, targeted to improve a technology, different types of aids from different perspectives enrich the connotation of children basketball game. Recommended for children of color psychology, cartoon and environmentally friendly material production aids, and increase research efforts basketball aids children, encourage children to sports teachers aids applications.

Keywords: appropriate forms of children basketball, auxiliary equipment, appli, MINI basketball, 3-6 years old children, teaching

Procedia PDF Downloads 385
2098 A Performance Comparison between Conventional and Flexible Box Erecting Machines Using Dispatching Rules

Authors: Min Kyu Kim, Eun Young Lee, Dong Woo Son, Yoon Seok Chang

Abstract:

In this paper, we introduce a flexible box erecting machine (BEM) that swiftly and automatically transforms cardboard into a three dimensional box. Recently, the parcel service and home-shopping industries have grown rapidly, and there is an increasing need for various box types to ship various products. However, workers cannot fold thousands of boxes manually in a day. As such, automatic BEMs are garnering greater attention. This study takes equipment operation into consideration as well as mechanical improvements in order to design a BEM that is able to outperform its conventional counterparts. We analyzed six dispatching rules – First In First Out (FIFO), Shortest Processing Time (SPT), Earliest Due Date (EDD), Setup Avoidance, EDD + SPT, and EDD + Setup Avoidance – to determine which one was most suitable for BEM operation. Consequently, SPT and Setup Avoidance were found to be the most critical rules, followed by EDD + Setup Avoidance, EDD + SPT, EDD, and FIFO. This hierarchy was valid for both our conventional BEM and our new flexible BEM from the viewpoint of processing time. We believe that this research can contribute to flexible BEM management, which has the potential to increase productivity and convenience.

Keywords: automation, box erecting machine, dispatching rule, setup time

Procedia PDF Downloads 363
2097 Artificial Intelligence in Bioscience: The Next Frontier

Authors: Parthiban Srinivasan

Abstract:

With recent advances in computational power and access to enough data in biosciences, artificial intelligence methods are increasingly being used in drug discovery research. These methods are essentially a series of advanced statistics based exercises that review the past to indicate the likely future. Our goal is to develop a model that accurately predicts biological activity and toxicity parameters for novel compounds. We have compiled a robust library of over 150,000 chemical compounds with different pharmacological properties from literature and public domain databases. The compounds are stored in simplified molecular-input line-entry system (SMILES), a commonly used text encoding for organic molecules. We utilize an automated process to generate an array of numerical descriptors (features) for each molecule. Redundant and irrelevant descriptors are eliminated iteratively. Our prediction engine is based on a portfolio of machine learning algorithms. We found Random Forest algorithm to be a better choice for this analysis. We captured non-linear relationship in the data and formed a prediction model with reasonable accuracy by averaging across a large number of randomized decision trees. Our next step is to apply deep neural network (DNN) algorithm to predict the biological activity and toxicity properties. We expect the DNN algorithm to give better results and improve the accuracy of the prediction. This presentation will review all these prominent machine learning and deep learning methods, our implementation protocols and discuss these techniques for their usefulness in biomedical and health informatics.

Keywords: deep learning, drug discovery, health informatics, machine learning, toxicity prediction

Procedia PDF Downloads 357
2096 Analysis and Control of Camera Type Weft Straightener

Authors: Jae-Yong Lee, Gyu-Hyun Bae, Yun-Soo Chung, Dae-Sub Kim, Jae-Sung Bae

Abstract:

In general, fabric is heat-treated using a stenter machine in order to dry and fix its shape. It is important to shape before the heat treatment because it is difficult to revert back once the fabric is formed. To produce the product of right shape, camera type weft straightener has been applied recently to capture and process fabric images quickly. It is more powerful in determining the final textile quality rather than photo-sensor. Positioning in front of a stenter machine, weft straightener helps to spread fabric evenly and control the angle between warp and weft constantly as right angle by handling skew and bow rollers. To process this tricky procedure, the structural analysis should be carried out in advance, based on which, its control technology can be drawn. A structural analysis is to figure out the specific contact/slippage characteristics between fabric and roller. We already examined the applicability of camera type weft straightener to plain weave fabric and found its possibility and the specific working condition of machine and rollers. In this research, we aimed to explore another applicability of camera type weft straightener. Namely, we tried to figure out camera type weft straightener can be used for fabrics. To find out the optimum condition, we increased the number of rollers. The analysis is done by ANSYS software using Finite Element Analysis method. The control function is demonstrated by experiment. In conclusion, the structural analysis of weft straightener is done to identify a specific characteristic between roller and fabrics. The control of skew and bow roller is done to decrease the error of the angle between warp and weft. Finally, it is proved that camera type straightener can also be used for the special fabrics.

Keywords: camera type weft straightener, structure analysis, control, skew and bow roller

Procedia PDF Downloads 292
2095 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods

Authors: Mohammad Arabi

Abstract:

The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.

Keywords: electric motor, fault detection, frequency features, temporal features

Procedia PDF Downloads 47
2094 Towards a Complete Automation Feature Recognition System for Sheet Metal Manufacturing

Authors: Bahaa Eltahawy, Mikko Ylihärsilä, Reino Virrankoski, Esko Petäjä

Abstract:

Sheet metal processing is automated, but the step from product models to the production machine control still requires human intervention. This may cause time consuming bottlenecks in the production process and increase the risk of human errors. In this paper we present a system, which automatically recognizes features from the CAD-model of the sheet metal product. By using these features, the system produces a complete model of the particular sheet metal product. Then the model is used as an input for the sheet metal processing machine. Currently the system is implemented, capable to recognize more than 11 of the most common sheet metal structural features, and the procedure is fully automated. This provides remarkable savings in the production time, and protects against the human errors. This paper presents the developed system architecture, applied algorithms and system software implementation and testing.

Keywords: feature recognition, automation, sheet metal manufacturing, CAD, CAM

Procedia PDF Downloads 355