Search results for: dynamic rheology study
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 50837

Search results for: dynamic rheology study

50027 Towards a Multilevel System of Talent Management in Small And Medium-Sized Enterprises: French Context Exploration

Authors: Abid Kousay

Abstract:

Appeared and developed essentially in large companies and multinationals, Talent Management (TM) in Small and Medium-Sized Enterprises (SMEs) has remained an under-explored subject till today. Although the literature on TM in the Anglo-Saxon context is developing, it remains monopolized in non-European contexts, especially in France. Therefore, this article aims to address these shortcomings through contributing to TM issues, by adopting a multilevel approach holding the goal of reaching a global holistic vision of interactions between various levels, while applying TM. A qualitative research study carried out within 12 SMEs in France, built on the methodological perspective of grounded theory, will be used in order to go beyond description, to generate or discover a theory or even a unified theoretical explanation. Our theoretical contributions are the results of the grounded theory, the fruit of context considerations and the dynamic of the multilevel approach. We aim firstly to determine the perception of talent and TM in SMEs. Secondly, we formalize TM in SME through the empowerment of all 3 levels in the organization (individual, collective, and organizational). And we generate a multilevel dynamic system model, highlighting the institutionalization dimension in SMEs and the managerial conviction characterized by the domination of the leader's role. Thirdly, this first study shed the light on the importance of rigorous implementation of TM in SMEs in France by directing CEO and HR and TM managers to focus on elements that upstream TM implementation and influence the system internally. Indeed, our systematic multilevel approach policy reminds them of the importance of the strategic alignment while translating TM policy into strategies and practices in SMEs.

Keywords: French context, institutionalization, talent, multilevel approach, talent management system

Procedia PDF Downloads 185
50026 English Reading Preferences among Primary Pupils

Authors: Jezza Mae T. Francisco, Marianet R. Delos Santos, Crisjame C. Toribio

Abstract:

This study aims to determine the reading preference for English enrichment and reading comprehension among primary students and the difference in the reading preference and comprehension for English enrichment among primary students. This study employed a Descriptive-Quantitative Correlational Research Design. This study yielded the following findings: (1) It reveals that primary students got fair on their reading comprehension, and (2) It shows that there is no significant relationship between the reading preference for English enrichment and reading comprehension of the students. It is safe to conclude that the students’ reading preference is growing evidently in various milieus. This can inform the English department curriculum planners to consider their students’ text preferences that interest them to maximize engagement within a dynamic interactive learning process.

Keywords: reading preferences, reading comprehension, primary student, English enrichment

Procedia PDF Downloads 97
50025 Aircraft Components, Manufacturing and Design: Opportunities, Bottlenecks, and Challenges

Authors: Ionel Botef

Abstract:

Aerospace products operate in very aggressive environments characterized by high temperature, high pressure, large stresses on individual components, the presence of oxidizing and corroding atmosphere, as well as internally created or externally ingested particulate materials that induce erosion and impact damage. Consequently, during operation, the materials of individual components degrade. In addition, the impact of maintenance costs for both civil and military aircraft was estimated at least two to three times greater than initial purchase values, and this trend is expected to increase. As a result, for viable product realisation and maintenance, a spectrum of issues regarding novel processing technologies, innovation of new materials, performance, costs, and environmental impact must constantly be addressed. One of these technologies, namely the cold-gas dynamic-spray process has enabled a broad range of coatings and applications, including many that have not been previously possible or commercially practical, hence its potential for new aerospace applications. Therefore, the purpose of this paper is to summarise the state of the art of this technology alongside its theoretical and experimental studies, and explore how the cold-gas dynamic-spray process could be integrated within a framework that finally could lead to more efficient aircraft maintenance. Based on the paper's qualitative findings supported by authorities, evidence, and logic essentially it is argued that the cold-gas dynamic-spray manufacturing process should not be viewed in isolation, but should be viewed as a component of a broad framework that finally leads to more efficient aerospace operations.

Keywords: aerospace, aging aircraft, cold spray, materials

Procedia PDF Downloads 105
50024 A Parametric Study of the Effect of Size, Position, and Number of Flexible Membranes Attached to a Circular Cylinder on the Fluid Flow Behavior

Authors: Nabaouia.Maktouf, Ali Ben Moussa, Saïd Turki

Abstract:

This paper discusses the effect of an attached flexible membrane on the control of fluid around a circular cylinder. A parametric study has been investigated for different positions, sizes, modes as well as frequencies of oscillation of the flexible membrane. The numerical investigation was conducted for a Reynolds number equal to 150 using the commercial code Fluent 16.0 and parallel calculation into 4 processors. The motion of the flexible membrane was managed by the dynamic mesh and compiled into Fluent as a user-defined function. The first part of this paper discusses the effect of changing the position of a flexible membrane sized 8° as an angle of aperture on the aerodynamic coefficients. Results show that the flexible membrane placed at 110° from the stagnation point presents more non-linearity on the behavior of the drag coefficient compared to the drag behavior when placed at 180°, relative to the stagnation point. The effect of the size of the flexible surface was studied for the corresponding angles of aperture: 32° and 42°, respectively. The effect of modes (modes 1, 2, and 3) of vibrations has been investigated at a constant frequency of vibration f=2Hz for angles 32° and 42°. All the calculations have been done with a constant amplitude A =0.001m. A non-linearity of the drag coefficient was clearly observed for all the sizes, modes as well as frequencies of excitation. The Fast Fourier transformation shows the appearance of the natural shedding frequency and the multiples of the frequency of excitation. An increase in the modes of oscillation leads to a more linear behavior of the drag coefficient.

Keywords: fluid flow control, numerical simulation, dynamic mesh, aerodynamic forces, flexible membrane

Procedia PDF Downloads 59
50023 Exploring the Application of Human Resource Management Bundles: A Case Study

Authors: Maniam Kaliannan

Abstract:

Studies on best practice or “bundles” of human resource management aims at providing a ‘universal solution’ to organizations yet critics challenge this view and place importance on the architecture of human resource processes in response to the dynamic needs of organizations. This paper identifies these best practices and explores how the applications of selected human resource management practices to a case study help solved their human resource problems. The case study includes insights on the problems faced; the approach taken to identify its root causes and explores how selected human resource management practices helped managed the overall predicament. The case study results supports the importance of aligning ‘bundles’ of practices with organizational architecture and ensuring that the architecture of human resource practices evolve with the changing needs of organizations. In addition, a framework based on the events of the case study is proposed to systematically manage their human resources

Keywords: bundles, best practices, human resource management, organizational architecture, framework

Procedia PDF Downloads 411
50022 The Relationship between Organization Culture and Organization Learning in Three Different Types of Companies

Authors: Mahmoud Timar, Javad Joukar Borazjani

Abstract:

A dynamic organization helps the management to overcome both internal and external uncertainties and complexities of the organization with more confidence and efficiency. Regarding this issue, in this paper, the influence of organizational culture factors over organizational learning components, which both of them are considered as important characteristics of a dynamic organization, has been studied in three subsidiary companies (production, consultation and service) of National Iranian Oil Company, and moreover we also tried to identify the most dominant culture in these three subsidiaries. Analysis of 840 received questionnaires by SPSS shows that there is a significant relationship between the components of organizational culture and organizational learning; however the rate of relationship between these two factors was different among the examined companies. By the use of Regression, it has been clarified that in the servicing company the highest relationship is between mission and learning environment, while in production division, there is a significant relationship between adaptability and learning needs satisfaction and however in consulting company the highest relationship is between involvement and applying learning in workplace.

Keywords: denison model, culture, leaning, organizational culture, organizational learning

Procedia PDF Downloads 356
50021 End to End Supply Chain Visibility – A Dynamic Capability View

Authors: Mohammad Reza Nafar

Abstract:

In order to get a better understanding of supply chain visibility for creating strategic value, this paper uses a dynamic capability lens to reveal the nature of supply chain visibility. This paper identifies the importance of supply chain visibility in driving supply chain reconfigurability and consequently improving supply chain strategic performance. Empirical evidence shows that visibility has a direct impact on supply chain strategic performance. It also supports that visibility is important for enhancing supply chain reconfigurability, thus creating strategic value in supply chains. Supply chain visibility, therefore, enables firms to reconfigure their supply chain resources for a better competitive advantage. From the perspective of practitioners, the results display several insights into how managers should create strategic value from supply chain visibility. Prominently, managers or decision-makers need to take advantage of supply chain visibility in order to use and recombine resources in a value creation manner.

Keywords: supply chain visibility, strategic performance, competitive advantage, resource mobilization, information system

Procedia PDF Downloads 219
50020 Simulation of Scaled Model of Tall Multistory Structure: Raft Foundation for Experimental and Numerical Dynamic Studies

Authors: Omar Qaftan

Abstract:

Earthquakes can cause tremendous loss of human life and can result in severe damage to a several of civil engineering structures especially the tall buildings. The response of a multistory structure subjected to earthquake loading is a complex task, and it requires to be studied by physical and numerical modelling. For many circumstances, the scale models on shaking table may be a more economical option than the similar full-scale tests. A shaking table apparatus is a powerful tool that offers a possibility of understanding the actual behaviour of structural systems under earthquake loading. It is required to use a set of scaling relations to predict the behaviour of the full-scale structure. Selecting the scale factors is the most important steps in the simulation of the prototype into the scaled model. In this paper, the principles of scaling modelling procedure are explained in details, and the simulation of scaled multi-storey concrete structure for dynamic studies is investigated. A procedure for a complete dynamic simulation analysis is investigated experimentally and numerically with a scale factor of 1/50. The frequency domain accounting and lateral displacement for both numerical and experimental scaled models are determined. The procedure allows accounting for the actual dynamic behave of actual size porotype structure and scaled model. The procedure is adapted to determine the effects of the tall multi-storey structure on a raft foundation. Four generated accelerograms were used as inputs for the time history motions which are in complying with EC8. The output results of experimental works expressed regarding displacements and accelerations are compared with those obtained from a conventional fixed-base numerical model. Four-time history was applied in both experimental and numerical models, and they concluded that the experimental has an acceptable output accuracy in compare with the numerical model output. Therefore this modelling methodology is valid and qualified for different shaking table experiments tests.

Keywords: structure, raft, soil, interaction

Procedia PDF Downloads 120
50019 Dynamic Analysis of Offshore 2-HUS/U Parallel Platform

Authors: Xie Kefeng, Zhang He

Abstract:

For the stability and control demand of offshore small floating platform, a 2-HUS/U parallel mechanism was presented as offshore platform. Inverse kinematics was obtained by institutional constraint equation, and the dynamic model of offshore 2-HUS/U parallel platform was derived based on rigid body’s Lagrangian method. The equivalent moment of inertia, damping and driving force/torque variation of offshore 2-HUS/U parallel platform were analyzed. A numerical example shows that, for parallel platform of given motion, system’s equivalent inertia changes 1.25 times maximally. During the movement of platform, they change dramatically with the system configuration and have coupling characteristics. The maximum equivalent drive torque is 800 N. At the same time, the curve of platform’s driving force/torque is smooth and has good sine features. The control system needs to be adjusted according to kinetic equation during stability and control and it provides a basis for the optimization of control system.

Keywords: 2-HUS/U platform, dynamics, Lagrange, parallel platform

Procedia PDF Downloads 330
50018 Loan Portfolio Quality and the Bank Soundness in the Eccas: An Empirical Evaluation of Cameroonians Banks

Authors: Andre Kadandji, Mouhamadou Fall, Francois Koum Ekalle

Abstract:

This paper aims to analyze the sound banking through the effects of the damage of the loan portfolio in the Cameroonian banking sector through the Z-score. The approach is to test the effect of other CAMEL indicators and macroeconomics indicators on the relationship between the non-performing loan and the soundness of Cameroonian banks. We use a dynamic panel data, made by 13 banks for the period 2010-2013. The analysis provides a model equations embedded in panel data. For the estimation, we use the generalized method of moments to understand the effects of macroeconomic and CAMEL type variables on the ability of Cameroonian banks to face a shock. We find that the management quality and macroeconomic variables neutralize the effects of the non-performing loan on the banks soundness.

Keywords: loan portfolio, sound banking, Z-score, dynamic panel

Procedia PDF Downloads 278
50017 Effect of Variation of Injection Timing on Performance and Emission Characteristics of Compression Ignition Engine: A CFD Approach

Authors: N. Balamurugan, N. V. Mahalakshmi

Abstract:

Compression ignition (CI) engines are known for their high thermal efficiency in comparison with spark-ignited (SI) engines. This makes CI engines a potential candidate for the future prime source of power for transportation sector to reduce greenhouse gas emissions and to shrink carbon footprint. However, CI engines produce high levels of NOx and soot emissions. Conventional methods to reduce NOx and soot emissions often result in the infamous NOx-soot trade-off. The injection parameters are one of the most important factors in the working of CI engines. The engine performance, power output, economy etc., is greatly dependent on the effectiveness of the injection parameters. The injection parameter has their direct impact on combustion process and pollutant formation. The injection parameter’s values are required to be optimised according to the application of the engine. Control of fuel injection mode is one method for reduction of NOx and soot emissions that is achievable. This study aims to assess, compare and analyse the influence of the effect of injection characteristics that is SOI timing studied on combustion and emissions in in-cylinder combustion processes with that of conventional DI Diesel Engine system using the commercial Computational Fluid Dynamic (CFD) package STAR- CD ES-ICE.

Keywords: variation of injection timing, compression ignition engine, spark-ignited, Computational Fluid Dynamic

Procedia PDF Downloads 277
50016 Study of Unsteady Behaviour of Dynamic Shock Systems in Supersonic Engine Intakes

Authors: Siddharth Ahuja, T. M. Muruganandam

Abstract:

An analytical investigation is performed to study the unsteady response of a one-dimensional, non-linear dynamic shock system to external downstream pressure perturbations in a supersonic flow in a varying area duct. For a given pressure ratio across a wind tunnel, the normal shock's location can be computed as per one-dimensional steady gas dynamics. Similarly, for some other pressure ratio, the location of the normal shock will change accordingly, again computed using one-dimensional gas dynamics. This investigation focuses on the small-time interval between the first steady shock location and the new steady shock location (corresponding to different pressure ratios). In essence, this study aims to shed light on the motion of the shock from one steady location to another steady location. Further, this study aims to create the foundation of the Unsteady Gas Dynamics field enabling further insight in future research work. According to the new pressure ratio, a pressure pulse, generated at the exit of the tunnel which travels and perturbs the shock from its original position, setting it into motion. During such activity, other numerous physical phenomena also happen at the same time. However, three broad phenomena have been focused on, in this study - Traversal of a Wave, Fluid Element Interactions and Wave Interactions. The above mentioned three phenomena create, alter and kill numerous waves for different conditions. The waves which are created by the above-mentioned phenomena eventually interact with the shock and set it into motion. Numerous such interactions with the shock will slowly make it settle into its final position owing to the new pressure ratio across the duct, as estimated by one-dimensional gas dynamics. This analysis will be extremely helpful in the prediction of inlet 'unstart' of the flow in a supersonic engine intake and its prominence with the incoming flow Mach number, incoming flow pressure and the external perturbation pressure is also studied to help design more efficient supersonic intakes for engines like ramjets and scramjets.

Keywords: analytical investigation, compression and expansion waves, fluid element interactions, shock trajectory, supersonic flow, unsteady gas dynamics, varying area duct, wave interactions

Procedia PDF Downloads 207
50015 Modeling and Simulation of Ship Structures Using Finite Element Method

Authors: Javid Iqbal, Zhu Shifan

Abstract:

The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.

Keywords: dynamic analysis, finite element methods, ship structure, vibration analysis

Procedia PDF Downloads 122
50014 Data-Driven Dynamic Overbooking Model for Tour Operators

Authors: Kannapha Amaruchkul

Abstract:

We formulate a dynamic overbooking model for a tour operator, in which most reservations contain at least two people. The cancellation rate and the timing of the cancellation may depend on the group size. We propose two overbooking policies, namely economic- and service-based. In an economic-based policy, we want to minimize the expected oversold and underused cost, whereas, in a service-based policy, we ensure that the probability of an oversold situation does not exceed the pre-specified threshold. To illustrate the applicability of our approach, we use tour package data in 2016-2018 from a tour operator in Thailand to build a data-driven robust optimization model, and we tested the proposed overbooking policy in 2019. We also compare the data-driven approach to the conventional approach of fitting data into a probability distribution.

Keywords: applied stochastic model, data-driven robust optimization, overbooking, revenue management, tour operator

Procedia PDF Downloads 116
50013 PDDA: Priority-Based, Dynamic Data Aggregation Approach for Sensor-Based Big Data Framework

Authors: Lutful Karim, Mohammed S. Al-kahtani

Abstract:

Sensors are being used in various applications such as agriculture, health monitoring, air and water pollution monitoring, traffic monitoring and control and hence, play the vital role in the growth of big data. However, sensors collect redundant data. Thus, aggregating and filtering sensors data are significantly important to design an efficient big data framework. Current researches do not focus on aggregating and filtering data at multiple layers of sensor-based big data framework. Thus, this paper introduces (i) three layers data aggregation and framework for big data and (ii) a priority-based, dynamic data aggregation scheme (PDDA) for the lowest layer at sensors. Simulation results show that the PDDA outperforms existing tree and cluster-based data aggregation scheme in terms of overall network energy consumptions and end-to-end data transmission delay.

Keywords: big data, clustering, tree topology, data aggregation, sensor networks

Procedia PDF Downloads 322
50012 Non-Destructive Evaluation for Physical State Monitoring of an Angle Section Thin-Walled Curved Beam

Authors: Palash Dey, Sudip Talukdar

Abstract:

In this work, a cross-breed approach is presented for obtaining both the amount of the damage intensity and location of damage existing in thin-walled members. This cross-breed approach is developed based on response surface methodology (RSM) and genetic algorithm (GA). Theoretical finite element (FE) model of cracked angle section thin walled curved beam has been linked to the developed approach to carry out trial experiments to generate response surface functions (RSFs) of free, forced and heterogeneous dynamic response data. Subsequently, the error between the computed response surface functions and measured dynamic response data has been minimized using GA to find out the optimum damage parameters (amount of the damage intensity and location). A single crack of varying location and depth has been considered in this study. The presented approach has been found to reveal good accuracy in prediction of crack parameters and possess great potential in crack detection as it requires only the current response of a cracked beam.

Keywords: damage parameters, finite element, genetic algorithm, response surface methodology, thin walled curved beam

Procedia PDF Downloads 234
50011 Study on Resource Allocation of Cloud Operating System Based on Multi-Tenant Data Resource Sharing Technology

Authors: Lin Yunuo, Seow Xing Quan, Burra Venkata Durga Kumar

Abstract:

In this modern era, the cloud operating system is the world trend applied in various industries such as business, healthy, etc. In order to deal with the large capacity of requirements in cloud computing, research come up with multi-tenant cloud computing to maximize the benefits of server providers and clients. However, there are still issues in multi-tenant cloud computing especially regarding resource allocation. Issues such as inefficient resource utilization, large latency, lack of scalability and elasticity and poor data isolation had caused inefficient resource allocation in multi-tenant cloud computing. Without a doubt, these issues prevent multitenancy reaches its best condition. In fact, there are multiple studies conducted to determine the optimal resource allocation to solve these problems these days. This article will briefly introduce the cloud operating system, Multi-tenant cloud computing and resource allocation in cloud computing. It then discusses resource allocation in multi-tenant cloud computing and the current challenges it faces. According to the issue ‘ineffective resource utilization’, we will discuss an efficient dynamic scheduling technique for multitenancy, namely Multi-tenant Dynamic Resource Scheduling Model (MTDRSM). Moreover, there also have some recommendations to improve the shortcoming of this model in this paper’s final section.

Keywords: cloud computing, cloud operation system, multitenancy, resource allocation, utilization of cloud resources

Procedia PDF Downloads 72
50010 Universality and Synchronization in Complex Quadratic Networks

Authors: Anca Radulescu, Danae Evans

Abstract:

The relationship between a network’s hardwiring and its emergent dynamics are central to neuroscience. We study the principles of this correspondence in a canonical setup (in which network nodes exhibit well-studied complex quadratic dynamics), then test their universality in biological networks. By extending methods from discrete dynamics, we study the effects of network connectivity on temporal patterns, encapsulating long-term behavior into the rich topology of network Mandelbrot sets. Then elements of fractal geometry can be used to predict and classify network behavior.

Keywords: canonical model, complex dynamics, dynamic networks, fractals, Mandelbrot set, network connectivity

Procedia PDF Downloads 291
50009 Study on Seismic Performance of Reinforced Soil Walls in Order to Offer Modified Pseudo Static Method

Authors: Majid Yazdandoust

Abstract:

This study, tries to suggest a design method based on displacement using finite difference numerical modeling in reinforcing soil retaining wall with steel strip. In this case, dynamic loading characteristics such as duration, frequency, peak ground acceleration, geometrical characteristics of reinforced soil structure and type of the site are considered to correct the pseudo static method and finally introduce the pseudo static coefficient as a function of seismic performance level and peak ground acceleration. For this purpose, the influence of dynamic loading characteristics, reinforcement length, height of reinforced system and type of the site are investigated on seismic behavior of reinforcing soil retaining wall with steel strip. Numerical results illustrate that the seismic response of this type of wall is highly dependent to cumulative absolute velocity, maximum acceleration, and height and reinforcement length so that the reinforcement length can be introduced as the main factor in shape of failure. Considering the loading parameters, mechanically stabilized earth wall parameters and type of the site showed that the used method in this study leads to most efficient designs in comparison with other methods which are generally suggested in cods that are usually based on limit-equilibrium concept. The outputs show the over-estimation of equilibrium design methods in comparison with proposed displacement based methods here.

Keywords: pseudo static coefficient, seismic performance design, numerical modeling, steel strip reinforcement, retaining walls, cumulative absolute velocity, failure shape

Procedia PDF Downloads 473
50008 Development of Noninvasive Method to Analyze Dynamic Changes of Matrix Stiffness and Elasticity Characteristics

Authors: Elena Petersen, Inna Kornienko, Svetlana Guryeva, Sergey Dobdin, Anatoly Skripal, Andrey Usanov, Dmitry Usanov

Abstract:

One of the most important unsolved problems in modern medicine is the increase of chronic diseases that lead to organ dysfunction or even complete loss of function. Current methods of treatment do not result in decreased mortality and disability statistics. Currently, the best treatment for many patients is still transplantation of organs and/or tissues. Therefore, finding a way of correct artificial matrix biofabrication in case of limited number of natural organs for transplantation is a critical task. One important problem that needs to be solved is development of a nondestructive and noninvasive method to analyze dynamic changes of mechanical characteristics of a matrix with minimal side effects on the growing cells. This research was focused on investigating the properties of matrix as a marker of graft condition. In this study, the collagen gel with human primary dermal fibroblasts in suspension (60, 120, 240*103 cells/mL) and collagen gel with cell spheroids were used as model objects. The stiffness and elasticity characteristics were evaluated by a semiconductor laser autodyne. The time and cell concentration dependency of the stiffness and elasticity were investigated. It was shown that these properties changed in a non-linear manner with respect to cell concentration. The maximum matrix stiffness was observed in the collagen gel with the cell concentration of 120*103 cells/mL. This study proved the opportunity to use the mechanical properties of matrix as a marker of graft condition, which can be measured by noninvasive semiconductor laser autodyne technique.

Keywords: graft, matrix, noninvasive method, regenerative medicine, semiconductor laser autodyne

Procedia PDF Downloads 329
50007 Cellular Automata Modelling of Titanium Alloy

Authors: Jyoti Jha, Asim Tewari, Sushil Mishra

Abstract:

The alpha-beta Titanium alloy (Ti-6Al-4V) is the most common alloy in the aerospace industry. The hot workability of Ti–6Al–4V has been investigated by means of hot compression tests carried out in the 750–950 °C temperature range and 0.001–10s-1 strain rate range. Stress-strain plot obtained from the Gleeble 3800 test results show the dynamic recrystallization at temperature 950 °C. The effect of microstructural characteristics of the deformed specimens have been studied and correlated with the test temperature, total strain and strain rate. Finite element analysis in DEFORM 2D has been carried out to see the effect of flow stress parameters in different zones of deformed sample. Dynamic recrystallization simulation based on Cellular automata has been done in DEFORM 2D to simulate the effect of hardening and recovery during DRX. Simulated results well predict the grain growth and DRX in the deformed sample.

Keywords: compression test, Cellular automata, DEFORM , DRX

Procedia PDF Downloads 293
50006 Dynamic Wetting and Solidification

Authors: Yulii D. Shikhmurzaev

Abstract:

The modelling of the non-isothermal free-surface flows coupled with the solidification process has become the topic of intensive research with the advent of additive manufacturing, where complex 3-dimensional structures are produced by successive deposition and solidification of microscopic droplets of different materials. The issue is that both the spreading of liquids over solids and the propagation of the solidification front into the fluid and along the solid substrate pose fundamental difficulties for their mathematical modelling. The first of these processes, known as ‘dynamic wetting’, leads to the well-known ‘moving contact-line problem’ where, as shown recently both experimentally and theoretically, the contact angle formed by the free surfac with the solid substrate is not a function of the contact-line speed but is rather a functional of the flow field. The modelling of the propagating solidification front requires generalization of the classical Stefan problem, which would be able to describe the onset of the process and the non-equilibrium regime of solidification. Furthermore, given that both dynamic wetting and solification occur concurrently and interactively, they should be described within the same conceptual framework. The present work addresses this formidable problem and presents a mathematical model capable of describing the key element of additive manufacturing in a self-consistent and singularity-free way. The model is illustrated simple examples highlighting its main features. The main idea of the work is that both dynamic wetting and solidification, as well as some other fluid flows, are particular cases in a general class of flows where interfaces form and/or disappear. This conceptual framework allows one to derive a mathematical model from first principles using the methods of irreversible thermodynamics. Crucially, the interfaces are not considered as zero-mass entities introduced using Gibbsian ‘dividing surface’ but the 2-dimensional surface phases produced by the continuum limit in which the thickness of what physically is an interfacial layer vanishes, and its properties are characterized by ‘surface’ parameters (surface tension, surface density, etc). This approach allows for the mass exchange between the surface and bulk phases, which is the essence of the interface formation. As shown numerically, the onset of solidification is preceded by the pure interface formation stage, whilst the Stefan regime is the final stage where the temperature at the solidification front asymptotically approaches the solidification temperature. The developed model can also be applied to the flow with the substrate melting as well as a complex flow where both types of phase transition take place.

Keywords: dynamic wetting, interface formation, phase transition, solidification

Procedia PDF Downloads 53
50005 Dynamic Bandwidth Allocation in Fiber-Wireless (FiWi) Networks

Authors: Eman I. Raslan, Haitham S. Hamza, Reda A. El-Khoribi

Abstract:

Fiber-Wireless (FiWi) networks are a promising candidate for future broadband access networks. These networks combine the optical network as the back end where different passive optical network (PON) technologies are realized and the wireless network as the front end where different wireless technologies are adopted, e.g. LTE, WiMAX, Wi-Fi, and Wireless Mesh Networks (WMNs). The convergence of both optical and wireless technologies requires designing architectures with robust efficient and effective bandwidth allocation schemes. Different bandwidth allocation algorithms have been proposed in FiWi networks aiming to enhance the different segments of FiWi networks including wireless and optical subnetworks. In this survey, we focus on the differentiating between the different bandwidth allocation algorithms according to their enhancement segment of FiWi networks. We classify these techniques into wireless, optical and Hybrid bandwidth allocation techniques.

Keywords: fiber-wireless (FiWi), dynamic bandwidth allocation (DBA), passive optical networks (PON), media access control (MAC)

Procedia PDF Downloads 510
50004 Mathieu Stability of Offshore Buoyant Leg Storage and Regasification Platform

Authors: S. Chandrasekaran, P. A. Kiran

Abstract:

Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil and gas industries led to the development of novel geometric form of Buoyant Leg Storage and Regasification Platform (BLSRP). BLSRP consists of a circular deck supported by six buoyant legs placed symmetrically with respect to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of rotational response from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut moored system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental loads induce dynamic tether tension variations, which in turn affect stability of the platform. The present study investigates Mathieu stability of BLSRP under the postulated tether pullout cases by inducing additional tension in the tethers. From the numerical studies carried out, it is seen that postulated tether pullout on any one of the buoyant legs does not result in Mathieu type instability even under excessive tether tension. This is due to the presence of hinged joints, which are capable of dissipating the unbalanced loads to other legs. However, under tether pullout of consecutive buoyant legs, Mathieu-type instability is observed.

Keywords: offshore platforms, stability, postulated failure, dynamic tether tension

Procedia PDF Downloads 166
50003 The Design, Control and Dynamic Performance of an Interior Permanent Magnet Synchronous Generator for Wind Power System

Authors: Olusegun Solomon

Abstract:

This paper describes the concept for the design and maximum power point tracking control for an interior permanent magnet synchronous generator wind turbine system. Two design concepts are compared to outline the effect of magnet design on the performance of the interior permanent magnet synchronous generator. An approximate model that includes the effect of core losses has been developed for the machine to simulate the dynamic performance of the wind energy system. An algorithm for Maximum Power Point Tracking control is included to describe the process for maximum power extraction.

Keywords: permanent magnet synchronous generator, wind power system, wind turbine

Procedia PDF Downloads 202
50002 Event Driven Dynamic Clustering and Data Aggregation in Wireless Sensor Network

Authors: Ashok V. Sutagundar, Sunilkumar S. Manvi

Abstract:

Energy, delay and bandwidth are the prime issues of wireless sensor network (WSN). Energy usage optimization and efficient bandwidth utilization are important issues in WSN. Event triggered data aggregation facilitates such optimal tasks for event affected area in WSN. Reliable delivery of the critical information to sink node is also a major challenge of WSN. To tackle these issues, we propose an event driven dynamic clustering and data aggregation scheme for WSN that enhances the life time of the network by minimizing redundant data transmission. The proposed scheme operates as follows: (1) Whenever the event is triggered, event triggered node selects the cluster head. (2) Cluster head gathers data from sensor nodes within the cluster. (3) Cluster head node identifies and classifies the events out of the collected data using Bayesian classifier. (4) Aggregation of data is done using statistical method. (5) Cluster head discovers the paths to the sink node using residual energy, path distance and bandwidth. (6) If the aggregated data is critical, cluster head sends the aggregated data over the multipath for reliable data communication. (7) Otherwise aggregated data is transmitted towards sink node over the single path which is having the more bandwidth and residual energy. The performance of the scheme is validated for various WSN scenarios to evaluate the effectiveness of the proposed approach in terms of aggregation time, cluster formation time and energy consumed for aggregation.

Keywords: wireless sensor network, dynamic clustering, data aggregation, wireless communication

Procedia PDF Downloads 432
50001 Controlled Shock Response Spectrum Test on Spacecraft Subsystem Using Electrodynamic Shaker

Authors: M. Madheswaran, A. R. Prashant, S. Ramakrishna, V. Ramesh Naidu, P. Govindan, P. Aravindakshan

Abstract:

Shock Response spectrum (SRS) tests are one of the tests that are conducted on some critical systems of spacecraft as part of environmental testing. The SRS tests are conducted to simulate the pyro shocks that occur during launch phases as well as during deployment of spacecraft appendages. Some of the methods to carryout SRS tests are pyro technique method, impact hammer method, drop shock method and using electro dynamic shakers. The pyro technique, impact hammer and drop shock methods are open loop tests, whereas SRS testing using electrodynamic shaker is a controlled closed loop test. SRS testing using electrodynamic shaker offers various advantages such as simple test set up, better controllability and repeatability. However, it is important to devise a a proper test methodology so that safety of the electro dynamic shaker and that of test specimen are not compromised. This paper discusses the challenges that are involved in conducting SRS tests, shaker validation and the necessary precautions to be considered. Approach involved in choosing various test parameters like synthesis waveform, spectrum convergence level, etc., are discussed. A case study of SRS test conducted on an optical payload of Indian Geo stationary spacecraft is presented.

Keywords: maxi-max spectrum, SRS (shock response spectrum), SDOf (single degree of freedom), wavelet synthesis

Procedia PDF Downloads 341
50000 Dynamic of Nonlinear Duopoly Game with Heterogeneous Players

Authors: Jixiang Zhang, Yanhua Wang

Abstract:

A dynamic of Bertrand duopoly game is analyzed, where players use different production methods and choose their prices with bounded rationality. The equilibriums of the corresponding discrete dynamical systems are investigated. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability of Nash equilibrium, as some parameters of the model are varied, gives rise to complex dynamics such as cycles of higher order and chaos. On this basis, we discover that an increase of adjustment speed of bounded rational player can make Bertrand market sink into the chaotic state. Finally, the complex dynamics, bifurcations and chaos are displayed by numerical simulation.

Keywords: Bertrand duopoly model, discrete dynamical system, heterogeneous expectations, nash equilibrium

Procedia PDF Downloads 397
49999 Control of a Stewart Platform for Minimizing Impact Energy in Simulating Spacecraft Docking Operations

Authors: Leonardo Herrera, Shield B. Lin, Stephen J. Montgomery-Smith, Ziraguen O. Williams

Abstract:

Three control algorithms: Proportional-Integral-Derivative, Linear-Quadratic-Gaussian, and Linear-Quadratic-Gaussian with the shift, were applied to the computer simulation of a one-directional dynamic model of a Stewart Platform. The goal was to compare the dynamic system responses under the three control algorithms and to minimize the impact energy when simulating spacecraft docking operations. Equations were derived for the control algorithms and the input and output of the feedback control system. Using MATLAB, Simulink diagrams were created to represent the three control schemes. A switch selector was used for the convenience of changing among different controllers. The simulation demonstrated the controller using the algorithm of Linear-Quadratic-Gaussian with the shift resulting in the lowest impact energy.

Keywords: controller, Stewart platform, docking operation, spacecraft

Procedia PDF Downloads 30
49998 Lyapunov-Based Tracking Control for Nonholonomic Wheeled Mobile Robot

Authors: Raouf Fareh, Maarouf Saad, Sofiane Khadraoui, Tamer Rabie

Abstract:

This paper presents a tracking control strategy based on Lyapunov approach for nonholonomic wheeled mobile robot. This control strategy consists of two levels. First, a kinematic controller is developed to adjust the right and left wheel velocities. Using this velocity control law, the stability of the tracking error is guaranteed using Lyapunov approach. This kinematic controller cannot be generated directly by the motors. To overcome this problem, the second level of the controllers, dynamic control, is designed. This dynamic control law is developed based on Lyapunov theory in order to track the desired trajectories of the mobile robot. The stability of the tracking error is proved using Lupunov and Barbalat approaches. Simulation results on a nonholonomic wheeled mobile robot are given to demonstrate the feasibility and effectiveness of the presented approach.

Keywords: mobile robot, trajectory tracking, Lyapunov, stability

Procedia PDF Downloads 360