Search results for: complex dynamics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7700

Search results for: complex dynamics

6890 Impact of Tryptic Limited Hydrolysis on Bambara Protein-Gum Arabic Soluble Complexes Formation

Authors: Abiola A. Ojesanmi, Eric O. Amonsou

Abstract:

The formation of soluble complexes is usually within a narrow pH range characterized by weak interactions. Moreover, the rigid conformation of globular proteins restricts the number of charged groups capable of interacting with polysaccharides, thereby limiting food applications. Hence, this study investigated the impact of tryptic-limited hydrolysis on the formation of Bambara protein-gum arabic soluble complexes formation. The electrostatic interactions were monitored through turbidimetry analysis. The Bambara protein hydrolysates at a specified degree of hydrolysis, and DHs (2, 5, and 7.5) were characterized using size exclusion chromatography, zeta potential, surface hydrophobicity, and intrinsic fluorescence. The stability of the complexes was investigated using differential scanning calorimetry and rheometry. The limited tryptic hydrolysis significantly widened the pH range of the formation of soluble complexes, with DH 5 having a wider range (pH 7.0 - 4.3) compared to DH 2 and DH 7.5, while there was no notable difference in the optimum complexation pH of the insoluble complexes. Larger peptides (140, 118 kDa) were detected in DH 2 relative to 144, 70, and 61 kDa in DH 5, which were larger than 140, 118, 48, and 32 kDa in DH 7. 5. An increase in net negative charge (- 30 Mv for DH 7.5) and a slight shift in the net neutrality (from pH 4.9 to 4.3) of the hydrolysates were observed which consequently impacted the electrostatic interaction with gum arabic. There was exposure of the hydrophobic amino acids up to 4-fold in comparison with the isolate and a red shift in maximum fluorescence wavelength in DH dependent manner following the hydrolysis. The denaturation temperature of the soluble complex from the hydrolysates shifted to higher values, having DH 5 with the maximum temperature (94.24 °C). A highly interconnected gel-like soluble complex network was formed having DH 5 with a better structure relative to DH 2 and 7.5. The study showed the use of limited tryptic hydrolysis at DH 5 as an effective approach to modify Bambara protein and provided a more stable and wider pH range of formation for soluble complex, thereby enhancing the food application.

Keywords: Bambara groundnut, gum arabic, interaction, soluble complex

Procedia PDF Downloads 32
6889 Numerical Investigations on Dynamic Stall of a Pitching-Plunging Helicopter Blade Airfoil

Authors: Xie Kai, Laith K. Abbas, Chen Dongyang, Yang Fufeng, Rui Xiaoting

Abstract:

Effect of plunging motion on the pitch oscillating NACA0012 airfoil is investigated using computational fluid dynamics (CFD). A simulation model based on overset grid technology and k - ω shear stress transport (SST) turbulence model is established, and the numerical simulation results are compared with available experimental data and other simulations. Two cases of phase angle φ = 0, μ which represents the phase difference between the pitching and plunging motions of an airfoil are performed. Airfoil vortex generation, moving, and shedding are discussed in detail. Good agreements have been achieved with the available literature. The upward plunging motion made the equivalent angle of attack less than the actual one during pitching analysis. It is observed that the formation of the stall vortex is suppressed, resulting in a decrease in the lift coefficient and a delay of the stall angle. However, the downward plunging motion made the equivalent angle of attack higher the actual one.

Keywords: dynamic stall, pitching-plunging, computational fluid dynamics, helicopter blade rotor, airfoil

Procedia PDF Downloads 226
6888 A Study on the Korean Connected Industrial Parks Smart Logistics It Financial Enterprise Architecture

Authors: Ilgoun Kim, Jongpil Jeong

Abstract:

Recently, a connected industrial parks (CIPs) architecture using new technologies such as RFID, cloud computing, CPS, Big Data, 5G 5G, IIOT, VR-AR, and ventral AI algorithms based on IoT has been proposed. This researcher noted the vehicle junction problem (VJP) as a more specific detail of the CIPs architectural models. The VJP noted by this researcher includes 'efficient AI physical connection challenges for vehicles' through ventilation, 'financial and financial issues with complex vehicle physical connections,' and 'welfare and working conditions of the performing personnel involved in complex vehicle physical connections.' In this paper, we propose a public solution architecture for the 'electronic financial problem of complex vehicle physical connections' as a detailed task during the vehicle junction problem (VJP). The researcher sought solutions to businesses, consumers, and Korean social problems through technological advancement. We studied how the beneficiaries of technological development can benefit from technological development with many consumers in Korean society and many small and small Korean company managers, not some specific companies. In order to more specifically implement the connected industrial parks (CIPs) architecture using the new technology, we noted the vehicle junction problem (VJP) within the smart factory industrial complex and noted the process of achieving the vehicle junction problem performance among several electronic processes. This researcher proposes a more detailed, integrated public finance enterprise architecture among the overall CIPs architectures. The main details of the public integrated financial enterprise architecture were largely organized into four main categories: 'business', 'data', 'technique', and 'finance'.

Keywords: enterprise architecture, IT Finance, smart logistics, CIPs

Procedia PDF Downloads 167
6887 Structural Molecular Dynamics Modelling of FH2 Domain of Formin DAAM

Authors: Rauan Sakenov, Peter Bukovics, Peter Gaszler, Veronika Tokacs-Kollar, Beata Bugyi

Abstract:

FH2 (formin homology-2) domains of several proteins, collectively known as formins, including DAAM, DAAM1 and mDia1, promote G-actin nucleation and elongation. FH2 domains of these formins exist as oligomers. Chain dimerization by ring structure formation serves as a structural basis for actin polymerization function of FH2 domain. Proper single chain configuration and specific interactions between its various regions are necessary for individual chains to form a dimer functional in G-actin nucleation and elongation. FH1 and WH2 domain-containing formins were shown to behave as intrinsically disordered proteins. Thus, the aim of this research was to study structural dynamics of FH2 domain of DAAM. To investigate structural features of FH2 domain of DAAM, molecular dynamics simulation of chain A of FH2 domain of DAAM solvated in water box in 50 mM NaCl was conducted at temperatures from 293.15 to 353.15K, with VMD 1.9.2, NAMD 2.14 and Amber Tools 21 using 2z6e and 1v9d PDB structures of DAAM was obtained on I-TASSER webserver. Calcium and ATP bound G-actin 3hbt PDB structure was used as a reference protein with well-described structural dynamics of denaturation. Topology and parameter information of CHARMM 2012 additive all-atom force fields for proteins, carbohydrate derivatives, water and ions were used in NAMD 2.14 and ff19SB force field for proteins in Amber Tools 21. The systems were energy minimized for the first 1000 steps, equilibrated and produced in NPT ensemble for 1ns using stochastic Langevin dynamics and the particle mesh Ewald method. Our root-mean square deviation (RMSD) analysis of molecular dynamics of chain A of FH2 domains of DAAM revealed similar insignificant changes of total molecular average RMSD values of FH2 domain of these formins at temperatures from 293.15 to 353.15K. In contrast, total molecular average RMSD values of G-actin showed considerable increase at 328K, which corresponds to the denaturation of G-actin molecule at this temperature and its transition from native, ordered, to denatured, disordered, state which is well-described in the literature. RMSD values of lasso and tail regions of chain A of FH2 domain of DAAM exhibited higher than total molecular average RMSD at temperatures from 293.15 to 353.15K. These regions are functional in intra- and interchain interactions and contain highly conserved tryptophan residues of lasso region, highly conserved GNYMN sequence of post region and amino acids of the shell of hydrophobic pocket of the salt bridge between Arg171 and Asp321, which are important for structural stability and ordered state of FH2 domain of DAAM and its functions in FH2 domain dimerization. In conclusion, higher than total molecular average RMSD values of lasso and post regions of chain A of FH2 domain of DAAM may explain disordered state of FH2 domain of DAAM at temperatures from 293.15 to 353.15K. Finally, absence of marked transition, in terms of significant changes in average molecular RMSD values between native and denatured states of FH2 domain of DAAM at temperatures from 293.15 to 353.15K, can make it possible to attribute these formins to the group of intrinsically disordered proteins rather than to the group of intrinsically ordered proteins such as G-actin.

Keywords: FH2 domain, DAAM, formins, molecular modelling, computational biophysics

Procedia PDF Downloads 136
6886 Dynamics of the Coupled Fitzhugh-Rinzel Neurons

Authors: Sanjeev Kumar Sharma, Arnab Mondal, Ranjit Kumar Upadhyay

Abstract:

Excitable cells often produce different oscillatory activities that help us to understand the transmitting and processing of signals in the neural system. We consider a FitzHugh-Rinzel (FH-R) model and studied the different dynamics of the model by considering the parameter c as the predominant parameter. The model exhibits different types of neuronal responses such as regular spiking, mixed-mode bursting oscillations (MMBOs), elliptic bursting, etc. Based on the bifurcation diagram, we consider the three regimes (MMBOs, elliptic bursting, and quiescent state). An analytical treatment for the occurrence of the supercritical Hopf bifurcation is studied. Further, we extend our study to a network of a hundred neurons by considering the bi-directional synaptic coupling between them. In this article, we investigate the alternation of spiking propagation and bursting phenomena of an uncoupled and coupled FH-R neurons. We explore that the complete graph of heterogenous desynchronized neurons can exhibit different types of bursting oscillations for certain coupling strength. For higher coupling strength, all the neurons in the network show complete synchronization.

Keywords: excitable neuron model, spiking-bursting, stability and bifurcation, synchronization networks

Procedia PDF Downloads 127
6885 Computational Fluid Dynamics Based Analysis of Heat Exchanging Performance of Rotary Thermal Wheels

Authors: H. M. D. Prabhashana Herath, M. D. Anuradha Wickramasinghe, A. M. C. Kalpani Polgolla, R. A. C. Prasad Ranasinghe, M. Anusha Wijewardane

Abstract:

The demand for thermal comfort in buildings in hot and humid climates increases progressively. In general, buildings in hot and humid climates spend more than 60% of the total energy cost for the functionality of the air conditioning (AC) system. Hence, it is required to install energy efficient AC systems or integrate energy recovery systems for both new and/or existing AC systems whenever possible, to reduce the energy consumption by the AC system. Integrate a Rotary Thermal Wheel as the energy recovery device of an existing AC system has shown very promising with attractive payback periods of less than 5 years. A rotary thermal wheel can be located in the Air Handling Unit (AHU) of a central AC system to recover the energy available in the return air stream. During this study, a sensitivity analysis was performed using a CFD (Computational Fluid Dynamics) software to determine the optimum design parameters (i.e., rotary speed and parameters of the matrix profile) of a rotary thermal wheel for hot and humid climates. The simulations were performed for a sinusoidal matrix geometry. Variation of sinusoidal matrix parameters, i.e., span length and height, were also analyzed to understand the heat exchanging performance and the induced pressure drop due to the air flow. The results show that the heat exchanging performance increases when increasing the wheel rpm. However, the performance increment rate decreases when increasing the rpm. As a result, it is more advisable to operate the wheel at 10-20 rpm. For the geometry, it was found that the sinusoidal geometries with lesser spans and higher heights have higher heat exchanging capabilities. Considering the sinusoidal profiles analyzed during the study, the geometry with 4mm height and 3mm width shows better performance than the other combinations.

Keywords: air conditioning, computational fluid dynamics, CFD, energy recovery, heat exchangers

Procedia PDF Downloads 129
6884 Quantification of Aerodynamic Variables Using Analytical Technique and Computational Fluid Dynamics

Authors: Adil Loya, Kamran Maqsood, Muhammad Duraid

Abstract:

Aerodynamic stability coefficients are necessary to be known before any unmanned aircraft flight is performed. This requires expertise on aerodynamics and stability control of the aircraft. To enable efficacious performance of aircraft requires that a well-defined flight path and aerodynamics should be defined beforehand. This paper presents a study on the aerodynamics of an unmanned aero vehicle (UAV) during flight conditions. Current research holds comparative studies of different parameters for flight aerodynamic, measured using two different open source analytical software programs. These software packages are DATCOM and XLRF5, which help in depicting the flight aerodynamic variables. Computational fluid dynamics (CFD) was also used to perform aerodynamic analysis for which Star CCM+ was used. Output trends of the study demonstrate high accuracies between the two software programs with that of CFD. It can be seen that the Coefficient of Lift (CL) obtained from DATCOM and XFLR is similar to CL of CFD simulation. In the similar manner, other potential aerodynamic stability parameters obtained from analytical software are in good agreement with CFD.

Keywords: XFLR5, DATCOM, computational fluid dynamic, unmanned aero vehicle

Procedia PDF Downloads 296
6883 Separation of Lanthanides Ions from Mineral Waste with Functionalized Pillar[5]Arenes: Synthesis, Physicochemical Characterization and Molecular Dynamics Studies

Authors: Ariesny Vera, Rodrigo Montecinos

Abstract:

The rare-earth elements (REEs) or rare-earth metals (REMs), correspond to seventeen chemical elements composed by the fifteen lanthanoids, as well as scandium and yttrium. Lanthanoids corresponds to lanthanum and the f-block elements, from cerium to lutetium. Scandium and yttrium are considered rare-earth elements because they have ionic radii similar to the lighter f-block elements. These elements were called rare earths because they are simply more difficult to extract and separate individually than the most metals and, generally, they do not accumulate in minerals, they are rarely found in easily mined ores and are often unfavorably distributed in common ores/minerals. REEs show unique chemical and physical properties, in comparison to the other metals in the periodic table. Nowadays, these physicochemical properties are utilized in a wide range of synthetic, catalytic, electronic, medicinal, and military applications. Because of their applications, the global demand for rare earth metals is becoming progressively more important in the transition to a self-sustaining society and greener economy. However, due to the difficult separation between lanthanoid ions, the high cost and pollution of these processes, the scientists search the development of a method that combines selectivity and quantitative separation of lanthanoids from the leaching liquor, while being more economical and environmentally friendly processes. This motivation has favored the design and development of more efficient and environmentally friendly cation extractors with the incorporation of compounds as ionic liquids, membrane inclusion polymers (PIM) and supramolecular systems. Supramolecular chemistry focuses on the development of host-guest systems, in which a host molecule can recognize and bind a certain guest molecule or ion. Normally, the formation of a host-guest complex involves non-covalent interactions Additionally, host-guest interactions can be influenced among others effects by the structural nature of host and guests. The different macrocyclic hosts for lanthanoid species that have been studied are crown ethers, cyclodextrins, cucurbituryls, calixarenes and pillararenes.Among all the factors that can influence and affect lanthanoid (III) coordination, perhaps the most basic of them is the systematic control using macrocyclic substituents that promote a selective coordination. In this sense, macrocycles pillar[n]arenes (P[n]As) present a relatively easy functionalization and they have more π-rich cavity than other host molecules. This gives to P[n]As a negative electrostatic potential in the cavity which would be responsible for the selectivity of these compounds towards cations. Furthermore, the cavity size, the linker, and the functional groups of the polar headgroups could be modified in order to control the association of lanthanoid cations. In this sense, different P[n]As systems, specifically derivatives of the pentamer P[5]A functionalized with amide, amine, phosphate and sulfate derivatives, have been designed in terms of experimental synthesis and molecular dynamics, and the interaction between these P[5]As and some lanthanoid ions such as La³+, Eu³+ and Lu³+ has been studied by physicochemical characterization by 1H-NMR, ITC and fluorescence in the case of Eu³+ systems. The molecular dynamics study of these systems was developed in hexane as solvent, also taking into account the lanthanoid ions mentioned above, and the respective comparison studies between the different ions.

Keywords: lanthanoids, macrocycles, pillar[n]arenes, rare-earth metal extraction, supramolecular chemistry, supramolecular complexes.

Procedia PDF Downloads 77
6882 Preliminary dosimetric Evaluation of a New Therapeutic 177LU Complex for Human Based on Biodistribution Data in Rats

Authors: H. Yousefnia, S. Zolghadri, A. Golabi Dezfuli

Abstract:

Tris (1,10-phenanthroline) lanthanum(III)] trithiocyanate is a new compound that has shown to stop DNA synthesis in CCRF-CEM and Ehrlich ascites cells leading to a cell cycle arrest in G0/G1. One other important property of the phenanthroline nucleus is its ability to act as a triplet-state photosensitizer especially in complexes with lanthanides. In Nowadays, the radiation dose assessment resource (RADAR) method is known as the most common method for absorbed dose calculation. 177Lu was produced by irradiation of a natural Lu2O3 target at a thermal neutron flux of approximately 4 × 1013 n/cm2•s. 177Lu-PL3 was prepared in the optimized condition. The radiochemical yield was checked by ITLC method. The biodistribution of the complex was investigated by intravenously injection to wild-type rats via their tail veins. In this study, the absorbed dose of 177Lu-PL3 to human organs was estimated by RADAR method. 177Lu was prepared with a specific activity of 2.6-3 GBq.mg-1 and radionuclide purity of 99.98 %. The 177Lu-PL3 complex can prepare with high radiochemical yield (> 99 %) at optimized conditions. The results show that liver and spleen have received the highest absorbed dose of 1.051 and 0.441 mSv/MBq, respectivley. The absorbed dose values for these two dose-limiting tissues suggest more biological studies special in tumor-bearing animals.

Keywords: internal dosimetry, Lutetium-177, radar, animals

Procedia PDF Downloads 372
6881 Transport and Mixing Phenomena Developed by Vortex Formation in Flow around Airfoil Using Lagrangian Coherent Structures

Authors: Riaz Ahmad, Jiazhong Zhang, Asma Farooqi

Abstract:

In this study, mass transport between separation bubbles and the flow around a two-dimensional airfoil are numerically investigated using Lagrangian Coherent Structures (LCSs). Finite Time Lyapunov Exponent (FTLE) technique is used for the computation to identify invariant manifolds and LCSs. Moreover, the Characteristic Base Split (CBS) scheme combined with dual time stepping technique is applied to simulate such transient flow at low Reynolds number. We then investigate the evolution of vortex structures during the transport process with the aid of LCSs. To explore the vortex formation at the surface of the airfoil, the dynamics of separatrix is also taken into account which is formed by the combination of stable-unstable manifolds. The Lagrangian analysis gives a detailed understanding of vortex dynamics and separation bubbles which plays a significant role to explore the performance of the unsteady flow generated by the airfoil. Transport process and flow separation phenomena are studied extensively to analyze the flow pattern by Lagrangian point of view.

Keywords: transport phenomena, CBS Method, vortex formation, Lagrangian Coherent Structures

Procedia PDF Downloads 139
6880 CFD Study on the Effect of Primary Air on Combustion of Simulated MSW Process in the Fixed Bed

Authors: Rui Sun, Tamer M. Ismail, Xiaohan Ren, M. Abd El-Salam

Abstract:

Incineration of municipal solid waste (MSW) is one of the key scopes in the global clean energy strategy. A computational fluid dynamics (CFD) model was established. In order to reveal these features of the combustion process in a fixed porous bed of MSW. Transporting equations and process rate equations of the waste bed were modeled and set up to describe the incineration process, according to the local thermal conditions and waste property characters. Gas phase turbulence was modeled using k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The heterogeneous reaction rates were determined using Arrhenius eddy dissipation and the Arrhenius-diffusion reaction rates. The effects of primary air flow rate and temperature in the burning process of simulated MSW are investigated experimentally and numerically. The simulation results in bed are accordant with experimental data well. The model provides detailed information on burning processes in the fixed bed, which is otherwise very difficult to obtain by conventional experimental techniques.

Keywords: computational fluid dynamics (CFD) model, waste incineration, municipal solid waste (MSW), fixed bed, primary air

Procedia PDF Downloads 402
6879 An Optimized Method for 3D Magnetic Navigation of Nanoparticles inside Human Arteries

Authors: Evangelos G. Karvelas, Christos Liosis, Andreas Theodorakakos, Theodoros E. Karakasidis

Abstract:

In the present work, a numerical method for the estimation of the appropriate gradient magnetic fields for optimum driving of the particles into the desired area inside the human body is presented. The proposed method combines Computational Fluid Dynamics (CFD), Discrete Element Method (DEM) and Covariance Matrix Adaptation (CMA) evolution strategy for the magnetic navigation of nanoparticles. It is based on an iteration procedure that intents to eliminate the deviation of the nanoparticles from a desired path. Hence, the gradient magnetic field is constantly adjusted in a suitable way so that the particles’ follow as close as possible to a desired trajectory. Using the proposed method, it is obvious that the diameter of particles is crucial parameter for an efficient navigation. In addition, increase of particles' diameter decreases their deviation from the desired path. Moreover, the navigation method can navigate nanoparticles into the desired areas with efficiency approximately 99%.

Keywords: computational fluid dynamics, CFD, covariance matrix adaptation evolution strategy, discrete element method, DEM, magnetic navigation, spherical particles

Procedia PDF Downloads 142
6878 Experimental Studies and CFD Predictions on Hydrodynamics of Gas-Solid Flow in an ICFB with a Draft Tube

Authors: Ravi Gujjula, Chinna Eranna, Narasimha Mangadoddy

Abstract:

Hydrodynamic study of gas and solid flow in an internally circulating fluidized bed with draft tube is made in this paper using high speed camera and pressure probes for the laboratory ICFB test rig 3.0 m X 2.7 m column having a draft tube located in the center of ICFB. Experiments were conducted using different sized sand particles with varying particle size distribution. At each experimental run the standard pressure-flow curves for both draft tube and annular region beds measured and the same time downward particles velocity in the annular bed region were also measured. The effect of superficial gas velocity, static bed height (40, 50 & 60 cm) and the draft tube gap height (10.5 & 14.5 cm) on pressure drop profiles, solid circulation pattern, and gas bypassing dynamics for the ICFB investigated extensively. The mechanism of governing solid recirculation and the pressure losses in an ICFB has been eluded based on gas and solid dynamics obtained from the experimental data. 3D ICFB CFD simulation runs conducted and extracted data validated with ICFB experimental data.

Keywords: icfb, cfd, pressure drop, solids recirculation, bed height, draft tube

Procedia PDF Downloads 516
6877 Modeling and Dynamics Analysis for Intelligent Skid-Steering Vehicle Based on Trucksim-Simulink

Authors: Yansong Zhang, Xueyuan Li, Junjie Zhou, Xufeng Yin, Shihua Yuan, Shuxian Liu

Abstract:

Aiming at the verification of control algorithms for skid-steering vehicles, a vehicle simulation model of 6×6 electric skid-steering unmanned vehicle was established based on Trucksim and Simulink. The original transmission and steering mechanism of Trucksim are removed, and the electric skid-steering model and a closed-loop controller for the vehicle speed and yaw rate are built in Simulink. The simulation results are compared with the ones got by theoretical formulas. The results show that the predicted tire mechanics and vehicle kinematics of Trucksim-Simulink simulation model are closed to the theoretical results. Therefore, it can be used as an effective approach to study the dynamic performance and control algorithm of skid-steering vehicle. In this paper, a method of motion control based on feed forward control is also designed. The simulation results show that the feed forward control strategy can make the vehicle follow the target yaw rate more quickly and accurately, which makes the vehicle have more maneuverability.

Keywords: skid-steering, Trucksim-Simulink, feedforward control, dynamics

Procedia PDF Downloads 324
6876 Translating Creativity to an Educational Context: A Method to Augment the Professional Training of Newly Qualified Secondary School Teachers

Authors: Julianne Mullen-Williams

Abstract:

This paper will provide an overview of a three year mixed methods research project that explores if methods from the supervision of dramatherapy can augment the occupational psychology of newly qualified secondary school teachers. It will consider how creativity and the use of metaphor, as applied in the supervision of dramatherapists, can be translated to an educational context in order to explore the explicit / implicit dynamics between the teacher trainee/ newly qualified teacher and the organisation in order to support the super objective in training for teaching; how to ‘be a teacher.’ There is growing evidence that attrition rates among teachers are rising after only five years of service owing to too many national initiatives, an unmanageable curriculum and deteriorating student discipline. The fieldwork conducted entailed facilitating a reflective space for Newly Qualified Teachers from all subject areas, using methods from the supervision of dramatherapy, to explore the social and emotional aspects of teaching and learning with the ultimate aim of improving the occupational psychology of teachers. Clinical supervision is a formal process of professional support and learning which permits individual practitioners in frontline service jobs; counsellors, psychologists, dramatherapists, social workers and nurses to expand their knowledge and proficiency, take responsibility for their own practice, and improve client protection and safety of care in complex clinical situations. It is deemed integral to continued professional practice to safeguard vulnerable people and to reduce practitioner burnout. Dramatherapy supervision incorporates all of the above but utilises creative methods as a tool to gain insight and a deeper understanding of the situation. Creativity and the use of metaphor enable the supervisee to gain an aerial view of the situation they are exploring. The word metaphor in Greek means to ‘carry across’ indicating a transfer of meaning form one frame of reference to another. The supervision support was incorporated into each group’s induction training programme. The first year group attended fortnightly one hour sessions, the second group received two one hour sessions every term. The existing literature on the supervision and mentoring of secondary school teacher trainees calls for changes in pre-service teacher education and in the induction period. There is a particular emphasis on the need to include reflective and experiential learning, within training programmes and within the induction period, in order to help teachers manage the interpersonal dynamics and emotional impact within a high pressurised environment

Keywords: dramatherapy supervision, newly qualified secondary school teachers, professional development, teacher education

Procedia PDF Downloads 388
6875 Stability Analysis of Modelling the Effect of Vaccination and Novel Quarantine-Adjusted Incidence on the Spread of Newcastle Disease

Authors: Nurudeen O. Lasisi, Sirajo Abdulrahman, Abdulkareem A. Ibrahim

Abstract:

Newcastle disease is an infection of domestic poultry and other bird species with the virulent Newcastle disease virus (NDV). In this paper, we study the dynamics of the modeling of the Newcastle disease virus (NDV) using a novel quarantine-adjusted incidence. The comparison of Vaccination, linear incident rate and novel quarantine-adjusted incident rate in the models are discussed. The dynamics of the models yield disease-free and endemic equilibrium states.The effective reproduction numbers of the models are computed in order to measure the relative impact of an individual bird or combined intervention for effective disease control. We showed the local and global stability of endemic equilibrium states of the models and we found that the stability of endemic equilibrium states of models are globally asymptotically stable if the effective reproduction numbers of the models equations are greater than a unit.

Keywords: effective reproduction number, Endemic state, Mathematical model, Newcastle disease virus, novel quarantine-adjusted incidence, stability analysis

Procedia PDF Downloads 121
6874 Improving Binding Selectivity in Molecularly Imprinted Polymers from Templates of Higher Biomolecular Weight: An Application in Cancer Targeting and Drug Delivery

Authors: Ben Otange, Wolfgang Parak, Florian Schulz, Michael Alexander Rubhausen

Abstract:

The feasibility of extending the usage of molecular imprinting technique in complex biomolecules is demonstrated in this research. This technique is promising in diverse applications in areas such as drug delivery, diagnosis of diseases, catalysts, and impurities detection as well as treatment of various complications. While molecularly imprinted polymers MIP remain robust in the synthesis of molecules with remarkable binding sites that have high affinities to specific molecules of interest, extending the usage to complex biomolecules remains futile. This work reports on the successful synthesis of MIP from complex proteins: BSA, Transferrin, and MUC1. We show in this research that despite the heterogeneous binding sites and higher conformational flexibility of the chosen proteins, relying on their respective epitopes and motifs rather than the whole template produces highly sensitive and selective MIPs for specific molecular binding. Introduction: Proteins are vital in most biological processes, ranging from cell structure and structural integrity to complex functions such as transport and immunity in biological systems. Unlike other imprinting templates, proteins have heterogeneous binding sites in their complex long-chain structure, which makes their imprinting to be marred by challenges. In addressing this challenge, our attention is inclined toward the targeted delivery, which will use molecular imprinting on the particle surface so that these particles may recognize overexpressed proteins on the target cells. Our goal is thus to make surfaces of nanoparticles that specifically bind to the target cells. Results and Discussions: Using epitopes of BSA and MUC1 proteins and motifs with conserved receptors of transferrin as the respective templates for MIPs, significant improvement in the MIP sensitivity to the binding of complex protein templates was noted. Through the Fluorescence Correlation Spectroscopy FCS measurements on the size of protein corona after incubation of the synthesized nanoparticles with proteins, we noted a high affinity of MIPs to the binding of their respective complex proteins. In addition, quantitative analysis of hard corona using SDS-PAGE showed that only a specific protein was strongly bound on the respective MIPs when incubated with similar concentrations of the protein mixture. Conclusion: Our findings have shown that the merits of MIPs can be extended to complex molecules of higher biomolecular mass. As such, the unique merits of the technique, including high sensitivity and selectivity, relative ease of synthesis, production of materials with higher physical robustness, and higher stability, can be extended to more templates that were previously not suitable candidates despite their abundance and usage within the body.

Keywords: molecularly imprinted polymers, specific binding, drug delivery, high biomolecular mass-templates

Procedia PDF Downloads 55
6873 Surface Elevation Dynamics Assessment Using Digital Elevation Models, Light Detection and Ranging, GPS and Geospatial Information Science Analysis: Ecosystem Modelling Approach

Authors: Ali K. M. Al-Nasrawi, Uday A. Al-Hamdany, Sarah M. Hamylton, Brian G. Jones, Yasir M. Alyazichi

Abstract:

Surface elevation dynamics have always responded to disturbance regimes. Creating Digital Elevation Models (DEMs) to detect surface dynamics has led to the development of several methods, devices and data clouds. DEMs can provide accurate and quick results with cost efficiency, in comparison to the inherited geomatics survey techniques. Nowadays, remote sensing datasets have become a primary source to create DEMs, including LiDAR point clouds with GIS analytic tools. However, these data need to be tested for error detection and correction. This paper evaluates various DEMs from different data sources over time for Apple Orchard Island, a coastal site in southeastern Australia, in order to detect surface dynamics. Subsequently, 30 chosen locations were examined in the field to test the error of the DEMs surface detection using high resolution global positioning systems (GPSs). Results show significant surface elevation changes on Apple Orchard Island. Accretion occurred on most of the island while surface elevation loss due to erosion is limited to the northern and southern parts. Concurrently, the projected differential correction and validation method aimed to identify errors in the dataset. The resultant DEMs demonstrated a small error ratio (≤ 3%) from the gathered datasets when compared with the fieldwork survey using RTK-GPS. As modern modelling approaches need to become more effective and accurate, applying several tools to create different DEMs on a multi-temporal scale would allow easy predictions in time-cost-frames with more comprehensive coverage and greater accuracy. With a DEM technique for the eco-geomorphic context, such insights about the ecosystem dynamic detection, at such a coastal intertidal system, would be valuable to assess the accuracy of the predicted eco-geomorphic risk for the conservation management sustainability. Demonstrating this framework to evaluate the historical and current anthropogenic and environmental stressors on coastal surface elevation dynamism could be profitably applied worldwide.

Keywords: DEMs, eco-geomorphic-dynamic processes, geospatial Information Science, remote sensing, surface elevation changes,

Procedia PDF Downloads 267
6872 Liquid Temperature Effect on Sound Propagation in Polymeric Solution with Gas Bubbles

Authors: S. Levitsky

Abstract:

Acoustic properties of polymeric liquids are high sensitive to free gas traces in the form of fine bubbles. Their presence is typical for such liquids because of chemical reactions, small wettability of solid boundaries, trapping of air in technological operations, etc. Liquid temperature influences essentially its rheological properties, which may have an impact on the bubble pulsations and sound propagation in the system. The target of the paper is modeling of the liquid temperature effect on single bubble dynamics and sound dispersion and attenuation in polymeric solution with spherical gas bubbles. The basic sources of attenuation (heat exchange between gas in microbubbles and surrounding liquid, rheological and acoustic losses) are taken into account. It is supposed that in the studied temperature range the interface mass transfer has a minor effect on bubble dynamics. The results of the study indicate that temperature raise yields enhancement of bubble pulsations and increase in sound attenuation in the near-resonance range and may have a strong impact on sound dispersion in the liquid-bubble mixture at frequencies close to the resonance frequency of bubbles.

Keywords: sound propagation, gas bubbles, temperature effect, polymeric liquid

Procedia PDF Downloads 304
6871 Design and Optimization of Flow Field for Cavitation Reduction of Valve Sleeves

Authors: Kamal Upadhyay, Zhou Hua, Yu Rui

Abstract:

This paper aims to improve the streamline linked with the flow field and cavitation on the valve sleeve. We observed that local pressure fluctuation produces a low-pressure zone, central to the formation of vapor volume fraction within the valve chamber led to air-bubbles (or cavities). Thus, it allows simultaneously to a severe negative impact on the inner surface and lifespan of the valve sleeves. Cavitation reduction is a vitally important issue to pressure control valves. The optimization of the flow field is proposed in this paper to reduce the cavitation of valve sleeves. In this method, the inner wall of the valve sleeve is changed from a cylindrical surface to the conical surface, leading to the decline of the fluid flow velocity and the rise of the outlet pressure. Besides, the streamline is distributed inside the sleeve uniformly. Thus, the bubble generation is lessened. The fluid models are built and analysis of flow field distribution, pressure, vapor volume and velocity was carried out using computational fluid dynamics (CFD) and numerical technique. The results indicate that this structure can suppress the cavitation of valve sleeves effectively.

Keywords: streamline, cavitation, optimization, computational fluid dynamics

Procedia PDF Downloads 145
6870 Real Time Data Communication with FlightGear Using Simulink Over a UDP Protocol

Authors: Adil Loya, Ali Haider, Arslan A. Ghaffor, Abubaker Siddique

Abstract:

Simulation and modelling of Unmanned Aero Vehicle (UAV) has gained wide popularity in front of aerospace community. The demand of designing and modelling optimized control system for UAV has increased ten folds since last decade. The reason is next generation warfare is dependent on unmanned technologies. Therefore, this research focuses on the simulation of nonlinear UAV dynamics on Simulink and its integration with Flightgear. There has been lots of research on implementation of optimizing control using Simulink, however, there are fewer known techniques to simulate these dynamics over Flightgear and a tedious technique of acquiring data has been tackled in this research horizon. Sending data to Flightgear is easy but receiving it from Simulink is not that straight forward, i.e. we can only receive control data on the output. However, in this research we have managed to get the data out from the Flightgear by implementation of level 2 s-function block within Simulink. Moreover, the results captured from Flightgear over a Universal Datagram Protocol (UDP) communication are then compared with the attitude signal that were sent previously. This provide useful information regarding the difference in outputs attained from Simulink to Flightgear. It was found that values received on Simulink were in high agreement with that of the Flightgear output. And complete study has been conducted in a discrete way.

Keywords: aerospace, flight control, flightgear, communication, Simulink

Procedia PDF Downloads 286
6869 Reliability of Eyewitness Statements in Fire and Explosion Investigations

Authors: Jeff Colwell, Benjamin Knox

Abstract:

While fire and explosion incidents are often observed by eyewitnesses, the weight that fire investigators should place on those observations in their investigations is a complex issue. There is no doubt that eyewitness statements can be an important component to an investigation, particularly when other evidence is sparse, as is often the case when damage to the scene is severe. However, it is well known that eyewitness statements can be incorrect for a variety of reasons, including deception. In this paper, we reviewed factors that can have an effect on the complex processes associated with the perception, retention, and retrieval of an event. We then review the accuracy of eyewitness statements from unique criminal and civil incidents, including fire and explosion incidents, in which the accuracy of the statements could be independently evaluated. Finally, the motives for deceptive eyewitness statements are described, along with techniques that fire and explosion investigators can employ, to increase the accuracy of the eyewitness statements that they solicit.

Keywords: fire, explosion, eyewitness, reliability

Procedia PDF Downloads 382
6868 Haiti and Power Symbolic: An Analysis Understanding of the Impact of the Presidential Political Speeches

Authors: Marc Arthur Bien Aimé, Julio da Silveira Moreira

Abstract:

This study examines the political speech in Haiti over the course of the decade 2011-2021, focusing on the speeches of the presidents Michel J. Martelly and Jovenel Moïse and their impacts on their awareness collective. In using a qualitative approach, we have analyzed the speech of the president pronounced in response to the political instability of countries, as well as interviews with a group of 20 Haitians living in Port- Au-Prince. Our results put in evidence their complex relationship between politics, awareness collective, and the influence of the powers imperialists. We show that the situation in Haiti's disastrous social and political situation is driven by personal political interests and the absence of a state political project. Moreover, the speeches of the president’s analysis are meaningless, transforming concepts such as social progress and justice in simple words. This political rhetoric contributes to the domination symbolic of the population of Haitian. This study is also linked to the theme “Constitutions, processes democratic and critical of the state in Latin America,” emphasizing the importance of analysis of political speech to understand the complexities of the democratic process and criticism of the State in their Latin American region. We suggest future research to deepen our understanding of these political dynamics and their impact on public policies and developments of the constitutions throughout Latin America.

Keywords: political discourse, conscience collective, inequality social, democratic processes, constitutions, Haiti

Procedia PDF Downloads 61
6867 Weak Mutually Unbiased Bases versus Mutually Unbiased Bases in Terms of T-Designs

Authors: Mohamed Shalaby, Yasser Kamal, Negm Shawky

Abstract:

Mutually unbiased bases (MUBs) have an important role in the field of quantum computation and information. A complete set of these bases can be constructed when the system dimension is the power of the prime. Constructing such complete set in composite dimensions is still an open problem. Recently, the concept of weak mutually unbiased bases (WMUBs) in composite dimensions was introduced. A complete set of such bases can be constructed by combining the MUBs in each subsystem. In this paper, we present a comparative study between MUBs and WMUBs in the context of complex projective t-design. Explicit proofs are presented.

Keywords: complex projective t-design, finite quantum systems, mutually unbiased bases, weak mutually unbiased bases

Procedia PDF Downloads 448
6866 Photoimpedance Spectroscopy Analysis of Planar and Nano-Textured Thin-Film Silicon Solar Cells

Authors: P. Kumar, D. Eisenhauer, M. M. K. Yousef, Q. Shi, A. S. G. Khalil, M. R. Saber, C. Becker, T. Pullerits, K. J. Karki

Abstract:

In impedance spectroscopy (IS) the response of a photo-active device is analysed as a function of ac bias. It is widely applied in a broad class of material systems and devices. It gives access to fundamental mechanisms of operation of solar cells. We have implemented a method of IS where we modulate the light instead of the bias. This scheme allows us to analyze not only carrier dynamics but also impedance of device locally. Here, using this scheme, we have measured the frequency-dependent photocurrent response of the thin-film planar and nano-textured Si solar cells using this method. Photocurrent response is measured in range of 50 Hz to 50 kHz. Bode and Nyquist plots are used to determine characteristic lifetime of both the cells. Interestingly, the carrier lifetime of both planar and nano-textured solar cells depend on back and front contact positions. This is due to either heterogeneity of device or contacts are not optimized. The estimated average lifetime is found to be shorter for the nano-textured cell, which could be due to the influence of the textured interface on the carrier relaxation dynamics.

Keywords: carrier lifetime, impedance, nano-textured, photocurrent

Procedia PDF Downloads 233
6865 Analysis of Epileptic Electroencephalogram Using Detrended Fluctuation and Recurrence Plots

Authors: Mrinalini Ranjan, Sudheesh Chethil

Abstract:

Epilepsy is a common neurological disorder characterised by the recurrence of seizures. Electroencephalogram (EEG) signals are complex biomedical signals which exhibit nonlinear and nonstationary behavior. We use two methods 1) Detrended Fluctuation Analysis (DFA) and 2) Recurrence Plots (RP) to capture this complex behavior of EEG signals. DFA considers fluctuation from local linear trends. Scale invariance of these signals is well captured in the multifractal characterisation using detrended fluctuation analysis (DFA). Analysis of long-range correlations is vital for understanding the dynamics of EEG signals. Correlation properties in the EEG signal are quantified by the calculation of a scaling exponent. We report the existence of two scaling behaviours in the epileptic EEG signals which quantify short and long-range correlations. To illustrate this, we perform DFA on extant ictal (seizure) and interictal (seizure free) datasets of different patients in different channels. We compute the short term and long scaling exponents and report a decrease in short range scaling exponent during seizure as compared to pre-seizure and a subsequent increase during post-seizure period, while the long-term scaling exponent shows an increase during seizure activity. Our calculation of long-term scaling exponent yields a value between 0.5 and 1, thus pointing to power law behaviour of long-range temporal correlations (LRTC). We perform this analysis for multiple channels and report similar behaviour. We find an increase in the long-term scaling exponent during seizure in all channels, which we attribute to an increase in persistent LRTC during seizure. The magnitude of the scaling exponent and its distribution in different channels can help in better identification of areas in brain most affected during seizure activity. The nature of epileptic seizures varies from patient-to-patient. To illustrate this, we report an increase in long-term scaling exponent for some patients which is also complemented by the recurrence plots (RP). RP is a graph that shows the time index of recurrence of a dynamical state. We perform Recurrence Quantitative analysis (RQA) and calculate RQA parameters like diagonal length, entropy, recurrence, determinism, etc. for ictal and interictal datasets. We find that the RQA parameters increase during seizure activity, indicating a transition. We observe that RQA parameters are higher during seizure period as compared to post seizure values, whereas for some patients post seizure values exceeded those during seizure. We attribute this to varying nature of seizure in different patients indicating a different route or mechanism during the transition. Our results can help in better understanding of the characterisation of epileptic EEG signals from a nonlinear analysis.

Keywords: detrended fluctuation, epilepsy, long range correlations, recurrence plots

Procedia PDF Downloads 176
6864 The Study on Enhanced Micro Climate of the Oyster Mushroom Cultivation House with Multi-Layered Shelves by Using Computational Fluid Dynamics Analysis in Winter

Authors: Sunghyoun Lee, Byeongkee Yu, Chanjung Lee, Yeongtaek Lim

Abstract:

Oyster mushrooms are one of the ingredients that Koreans prefer. The oyster mushroom cultivation house has multiple layers in order to increase the mushroom production per unit area. However, the growing shelves in the house act as obstacles and hinder the circulation of the interior air, which leads to the difference of cultivation environment between the upper part and lower part of the growing shelves. Due to this difference of environments, growth distinction occurs according to the area of the growing shelves. It is known that minute air circulation around the mushroom cap facilitates the metabolism of mushrooms and improves its quality. This study has utilized the computational fluid dynamics (CFD) program, that is, FLUENT R16, in order to analyze the improvement of the internal environment uniformity of the oyster mushroom cultivation house. The analyzed factors are velocity distribution, temperature distribution, and humidity distribution. In order to maintain the internal environment uniformity of the oyster mushroom cultivation house, it appeared that installing circulation fan at the upper part of the working passage towards the ceiling is effective. When all the environmental control equipment – unit cooler, inlet fan, outlet fan, air circulation fan, and humidifier - operated simultaneously, the RMS figure on the growing shelves appeared as follows: velocity 28.23%, temperature 30.47%, humidity 7.88%. However, when only unit cooler and air circulation fan operated, the RMS figure on the growing shelves appeared as follows: velocity 22.28%, temperature 0.87%, humidity 0.82%. Therefore, in order to maintain the internal environment uniformity of the mushroom cultivation house, reducing the overall operating time of inlet fan, outlet fan, and humidifier is needed, and managing the internal environment with unit cooler and air circulation fan appropriately is essential.

Keywords: air circulation fan, computational fluid dynamics, multi-layered shelves cultivation, oyster mushroom cultivation house

Procedia PDF Downloads 206
6863 Output-Feedback Control Design for a General Class of Systems Subject to Sampling and Uncertainties

Authors: Tomas Menard

Abstract:

The synthesis of output-feedback control law has been investigated by many researchers since the last century. While many results exist for the case of Linear Time Invariant systems whose measurements are continuously available, nowadays, control laws are usually implemented on micro-controller, then the measurements are discrete-time by nature. This fact has to be taken into account explicitly in order to obtain a satisfactory behavior of the closed-loop system. One considers here a general class of systems corresponding to an observability normal form and which is subject to uncertainties in the dynamics and sampling of the output. Indeed, in practice, the modeling of the system is never perfect, this results in unknown uncertainties in the dynamics of the model. We propose here an output feedback algorithm which is based on a linear state feedback and a continuous-discrete time observer. The main feature of the proposed control law is that only discrete-time measurements of the output are needed. Furthermore, it is formally proven that the state of the closed loop system exponentially converges toward the origin despite the unknown uncertainties. Finally, the performances of this control scheme are illustrated with simulations.

Keywords: dynamical systems, output feedback control law, sampling, uncertain systems

Procedia PDF Downloads 286
6862 A Comprehensive Evaluation of IGBTs Performance under Zero Current Switching

Authors: Ly. Benbahouche

Abstract:

Currently, several soft switching topologies have been studied to achieve high power switching efficiency, reduced cost, improved reliability and reduced parasites. It is well known that improvement in power electronics systems always depend on advanced in power devices. The IGBT has been successfully used in a variety of switching applications such as motor drives and appliance control because of its superior characteristics. The aim of this paper is focuses on simulation and explication of the internal dynamics of IGBTs behaviour under the most popular soft switching schemas that is Zero Current Switching (ZCS) environments. The main purpose of this paper is to point out some mechanisms relating to current tail during the turn-off and examination of the response at turn-off with variation of temperature, inductance L, snubber capacitors Cs, and bus voltage in order to achieve an improved understanding of internal carrier dynamics. It is shown that the snubber capacitor, the inductance and even the temperature controls the magnitude and extent of the tail current, hence the turn-off time (switching speed of the device). Moreover, it has also been demonstrated that the ZCS switching can be utilized efficiently to improve and reduce the power losses as well as the turn-off time. Furthermore, the turn-off loss in ZCS was found to depend on the time of switching of the device.

Keywords: PT-IGBT, ZCS, turn-off losses, dV/dt

Procedia PDF Downloads 316
6861 RANS Simulation of Viscous Flow around Hull of Multipurpose Amphibious Vehicle

Authors: M. Nakisa, A. Maimun, Yasser M. Ahmed, F. Behrouzi, A. Tarmizi

Abstract:

The practical application of the Computational Fluid Dynamics (CFD), for predicting the flow pattern around Multipurpose Amphibious Vehicle (MAV) hull has made much progress over the last decade. Today, several of the CFD tools play an important role in the land and water going vehicle hull form design. CFD has been used for analysis of MAV hull resistance, sea-keeping, maneuvering and investigating its variation when changing the hull form due to varying its parameters, which represents a very important task in the principal and final design stages. Resistance analysis based on CFD (Computational Fluid Dynamics) simulation has become a decisive factor in the development of new, economically efficient and environmentally friendly hull forms. Three-dimensional finite volume method (FVM) based on Reynolds Averaged Navier-Stokes equations (RANS) has been used to simulate incompressible flow around three types of MAV hull bow models in steady-state condition. Finally, the flow structure and streamlines, friction and pressure resistance and velocity contours of each type of hull bow will be compared and discussed.

Keywords: RANS simulation, multipurpose amphibious vehicle, viscous flow structure, mechatronic

Procedia PDF Downloads 312