Search results for: augmented/mixed/virtual reality
4367 Integration of Technology in Business Education: Emerging Voices from Business Education Classrooms in Nigeria Secondary Schools
Authors: Clinton Chidiebere Anyanwu
Abstract:
Secondary education is a vital part of a virtuous circle of economic growth within the context of a globalised knowledge economy. The teaching of Business Education entails teaching learners the essentials, rudiments, assumptions, and methods of business. Hence, it was deemed necessary for the study to investigate technology integration in Business Education. Drawing from the theoretical frameworks of technological pedagogical content knowledge (TPACK), and unified theory of acceptance and use of technology (UTAUT), the study observes teachers’ level of technology use in Business Education classrooms. Using a mixed-methods sequential explanatory design, probability, and purposive sampling, the majority of participants were found to be not integrating technology to an acceptable level and a small percentage was. After an analysis of constructs from UTAUT, some of this could be attributed to the lack of facilitating conditions in the teaching and learning of Business Education. The implication of the study findings is that poor investment in technology integration in secondary schools in Nigeria affects pedagogical implementations and effective teaching and learning of Business Education subjects. The study concludes that if facilitating conditions and professional development are considered to address the shortfalls in terms of TPACK, technology integration will become a reality in secondary schools in Nigeria.Keywords: business education, secondary education, technology integration, TPACK, UTAUT
Procedia PDF Downloads 2244366 An Artificially Intelligent Teaching-Agent to Enhance Learning Interactions in Virtual Settings
Authors: Abdulwakeel B. Raji
Abstract:
This paper introduces a concept of an intelligent virtual learning environment that involves communication between learners and an artificially intelligent teaching agent in an attempt to replicate classroom learning interactions. The benefits of this technology over current e-learning practices is that it creates a virtual classroom where real time adaptive learning interactions are made possible. This is a move away from the static learning practices currently being adopted by e-learning systems. Over the years, artificial intelligence has been applied to various fields, including and not limited to medicine, military applications, psychology, marketing etc. The purpose of e-learning applications is to ensure users are able to learn outside of the classroom, but a major limitation has been the inability to fully replicate classroom interactions between teacher and students. This study used comparative surveys to gain information and understanding of the current learning practices in Nigerian universities and how they compare to these practices compare to the use of a developed e-learning system. The study was conducted by attending several lectures and noting the interactions between lecturers and tutors and as an aftermath, a software has been developed that deploys the use of an artificial intelligent teaching-agent alongside an e-learning system to enhance user learning experience and attempt to create the similar learning interactions to those found in classroom and lecture hall settings. Dialogflow has been used to implement a teaching-agent, which has been developed using JSON, which serves as a virtual teacher. Course content has been created using HTML, CSS, PHP and JAVASCRIPT as a web-based application. This technology can run on handheld devices and Google based home technologies to give learners an access to the teaching agent at any time. This technology also implements the use of definite clause grammars and natural language processing to match user inputs and requests with defined rules to replicate learning interactions. This technology developed covers familiar classroom scenarios such as answering users’ questions, asking ‘do you understand’ at regular intervals and answering subsequent requests, taking advanced user queries to give feedbacks at other periods. This software technology uses deep learning techniques to learn user interactions and patterns to subsequently enhance user learning experience. A system testing has been undergone by undergraduate students in the UK and Nigeria on the course ‘Introduction to Database Development’. Test results and feedback from users shows that this study and developed software is a significant improvement on existing e-learning systems. Further experiments are to be run using the software with different students and more course contents.Keywords: virtual learning, natural language processing, definite clause grammars, deep learning, artificial intelligence
Procedia PDF Downloads 1374365 Training in Psychology in Brazil: Reflections on the Role of Early Supervised Internships in Undergraduate Courses
Authors: Ana Paula Melchiors Stahlschmidt, Cristina Py de Pinto Gomes Mairesse
Abstract:
This paper presents observations on the early supervised internships in Psychology, currently called basic internships in Brazil, and its importance in professional training. The work is an experience report and focuses on the Professional training, illustrated by the reality of a Brazilian institution, used as a case study. It was developed from the authors' experience as academic supervisors of this kind of practice throughout this undergraduate course, combined with aspects investigated in the post-doctoral research of one of them. Theoretical references on the subject and related national legislation are analyzed, as well as reports of students who experienced at least one semester of this type of practice, articulated to the observations of the authors. The results demonstrate the importance of the early supervised internships as a way of creating opportunities for the students of a first contact with the professional reality and the practice of psychologists in different fields of insertion, preparing them for further experiments that require more involvement in activities of training and practices in Psychology.Keywords: training of psychologists, internships in psychology, supervised internships, combination of theory and practice
Procedia PDF Downloads 4624364 Optimization Model for Support Decision for Maximizing Production of Mixed Fruit Tree Farms
Authors: Andrés I. Ávila, Patricia Aros, César San Martín, Elizabeth Kehr, Yovana Leal
Abstract:
We consider a linear programming model to help farmers to decide if it is convinient to choose among three kinds of export fruits for their future investment. We consider area, investment, water, productivitiy minimal unit, and harvest restrictions and a monthly based model to compute the average income in five years. Also, conditions on the field as area, water availability and initia investment are required. Using the Chilean costs and dollar-peso exchange rate, we can simulate several scenarios to understand the possible risks associated to this market.Keywords: mixed integer problem, fruit production, support decision model, fruit tree farms
Procedia PDF Downloads 4604363 Problems Arising in Visual Perception: A Philosophical and Epistemological Analysis
Authors: K. A.Tharanga, K. H. H. Damayanthi
Abstract:
Perception is an epistemological concept discussed in Philosophy. Perception, in other word, vision, is one of the ways that human beings get empirical knowledge after five senses. However, we face innumerable problems when achieving knowledge from perception, and therefore the knowledge gained through perception is uncertain. what we see in the external world is not real. These are the major issues that we face when receiving knowledge through perception. Sometimes there is no physical existence of what we really see. In such cases, the perception is relative. The following frames will be taken into consideration when perception is analyzed illusions and delusions, the figure of a physical object, appearance and the reality of a physical object, time factor, and colour of a physical object. seeing and knowing become vary according to the above conceptual frames. We cannot come to a proper conclusion of what we see in the empirical world. Because the things that we see are not really there. Hence the scientific knowledge which is gained from observation is doubtful. All the factors discussed in science remain in the physical world. There is a leap from ones existence to the existence of a world outside his/her mind. Indeed, one can suppose that what he/she takes to be real is just a massive deception. However, depending on the above facts, if someone begins to doubt about the whole world, it is unavoidable to become his/her view a scepticism or nihilism. This is a certain reality.Keywords: empirical, perception, sceptisism, nihilism
Procedia PDF Downloads 1454362 The Reality of the Application of Environmental Accounting in the Iron and Steel Sector in Libya: A Case Study in the Libyan Iron and Steel Company, Misurata, Libya
Authors: Eltaib Elzarrouk E. E. Abdalmajeed
Abstract:
This research aims at shedding the light on environmental accounting, which is considered to be one of the most important areas in accounting discipline. It also studies the reality of the application of environmental accounting in the iron and steel sector in Libya. The questionnaire of this study was used for data collection from respondents who are employed in the Libyan Iron and Steel Company, Misurata – Libya (LISC). The Statistical Package for Social Sciences (SPSS) was also used for the analysis. Several important results were revealed include that the (LISC) relatively applies environmental accounting, and it faces some obstacles in conducting its application. Furthermore, the researched company realizes the importance of applying environmental accounting as a need for quality procedures. It was suggested that training courses should be held periodically to spread the awareness of environmental accounting environment. In addition, social responsibility and sustainability should be taken into consideration in the company's strategic plan.Keywords: environment, environmental accounting, environmental accounting disclosure, The Libyan Iron and Steel Company, Misurata- Libya (LISC)
Procedia PDF Downloads 1584361 Enumerative Search for Crane Schedule in Anodizing Operations
Authors: Kanate Pantusavase, Jaramporn Hassamontr
Abstract:
This research aims to develop an algorithm to generate a schedule of multiple cranes that will maximize load throughputs in anodizing operation. The algorithm proposed utilizes an enumerative strategy to search for constant time between successive loads and crane covering range over baths. The computer program developed is able to generate a near-optimal crane schedule within reasonable times, i.e. within 10 minutes. Its results are compared with existing solutions from an aluminum extrusion industry. The program can be used to generate crane schedules for mixed products, thus allowing mixed-model line balancing to improve overall cycle times.Keywords: crane scheduling, anodizing operations, cycle time minimization
Procedia PDF Downloads 4674360 Digital Reconstruction of Museum's Statue Using 3D Scanner for Cultural Preservation in Indonesia
Authors: Ahmad Zaini, F. Muhammad Reza Hadafi, Surya Sumpeno, Muhtadin, Mochamad Hariadi
Abstract:
The lack of information about museum’s collection reduces the number of visits of museum. Museum’s revitalization is an urgent activity to increase the number of visits. The research's roadmap is building a web-based application that visualizes museum in the virtual form including museum's statue reconstruction in the form of 3D. This paper describes implementation of three-dimensional model reconstruction method based on light-strip pattern on the museum statue using 3D scanner. Noise removal, alignment, meshing and refinement model's processes is implemented to get a better 3D object reconstruction. Model’s texture derives from surface texture mapping between object's images with reconstructed 3D model. Accuracy test of dimension of the model is measured by calculating relative error of virtual model dimension compared against the original object. The result is realistic three-dimensional model textured with relative error around 4.3% to 5.8%.Keywords: 3D reconstruction, light pattern structure, texture mapping, museum
Procedia PDF Downloads 4724359 Separation Performance of CO₂ by Mixed Matrix Membrane Comprising Carbide-Derived Carbon
Authors: Musa Najimu, Isam Aljundi
Abstract:
In this study, the development of mixed matrix membrane (MMM) containing carbide-derived carbon (CDC) for the separation of CO₂ was investigated. MMM with four different loadings (0.1 to 2 wt%) were prepared by the dry/wet phase inversion technique. Prior to this, the formula of the control polysulfone (PSF) membrane was optimized in terms of the PSF concentration in a mixture of NMP/THF solvents and ethanol. Prepared samples were characterized and tested for CO₂ and CH₄ gas permeation. The optimization of the control PSF membrane revealed that 30 wt% PSF is the critical polymer concentration in the formulation. Characterization results unveiled reinforcement of thermal stability and improved polarity imparted by CDC in the MMM, in addition to uniform dispersion of filler up to 1 wt% loading. Furthermore, the incorporation of CDC in PSF membrane formulation enhanced both the CO₂ permeance and ideal selectivity over the control membrane. A CDC loading of 0.5 wt% resulted in the highest CO₂ permeance of 5.5 GPU corresponding to 120% increase in permeance while a CDC loading of 1 wt% resulted in the highest selectivity (CO₂ /CH₄) of 27 corresponding to 29% increase in selectivity. Studies of operating temperature effect showed that an optimum operating temperature for M1.0 membrane is 20 ⁰C. In addition, the feed pressure studies showed that high pressure feeds will favor high performance of the membrane and a good CO₂ /CH₄ separation.Keywords: carbide derived carbon, mixed matrix membrane, CO₂ separation, polysulfone
Procedia PDF Downloads 2104358 Urban Dynamics Modelling of Mixed Land Use for Sustainable Urban Development in Indian Context
Authors: Rewati Raman, Uttam K. Roy
Abstract:
One of the main adversaries of city planning in present times is the ever-expanding problem of urbanization and the antagonistic issues accompanying it. The prevalent challenges in urbanization such as population growth, urban sprawl, poverty, inequality, pollution, congestion, etc. call for reforms in the urban fabric as well as in planning theory and practice. One of the various paradigms of city planning, land use planning, has been the major instruments for spatial planning of cities and regions in India. Zoning regulation based land use planning in the form of land use and development control plans (LUDCP) and development control regulations (DCR) have been considered mainstream guiding principles in land use planning for decades. In spite of many advantages of such zoning based regulations, over a period of time, it has been critiqued by scholars for its own limitations of isolation and lack of vitality, inconvenience in business in terms of proximity to residence and low operating cost, unsuitable environment for small investments, higher travel distance for facilities, amenities and thereby higher expenditure, safety issues etc. Mixed land use has been advocated as a tool to avoid such limitations in city planning by researchers. In addition, mixed land use can offer many advantages like housing variety and density, the creation of an economic blend of compatible land use, compact development, stronger neighborhood character, walkability, and generation of jobs, etc. Alternatively, the mixed land use beyond a suitable balance of use can also bring disadvantages like traffic congestion, encroachments, very high-density housing leading to a slum like condition, parking spill out, non-residential uses operating on residential premises paying less tax, chaos hampering residential privacy, pressure on existing infrastructure facilities, etc. This research aims at studying and outlining the various challenges and potentials of mixed land use zoning, through modeling tools, as a competent instrument for city planning in lieu of the present urban scenario. The methodology of research adopted in this paper involves the study of a mixed land use neighborhood in India, identification of indicators and parameters related to its extent and spatial pattern and the subsequent use of system dynamics as a modeling tool for simulation. The findings from this analysis helped in identifying the various advantages and challenges associated with the dynamic nature of a mixed use urban settlement. The results also confirmed the hypothesis that mixed use neighborhoods are catalysts for employment generation, socioeconomic gains while improving vibrancy, health, safety, and security. It is also seen that certain challenges related to chaos, lack of privacy and pollution prevail in mixed use neighborhoods, which can be mitigated by varying the percentage of mixing as per need, ensuring compatibility of adjoining use, institutional interventions in the form of policies, neighborhood micro-climatic interventions, etc. Therefore this paper gives a consolidated and holistic framework and quantified outcome pertaining to the extent and spatial pattern of mixed land use that should be adopted to ensure sustainable urban planning.Keywords: mixed land use, sustainable development, system dynamics analysis, urban dynamics modelling
Procedia PDF Downloads 1774357 Development of an Automatic Computational Machine Learning Pipeline to Process Confocal Fluorescence Images for Virtual Cell Generation
Authors: Miguel Contreras, David Long, Will Bachman
Abstract:
Background: Microscopy plays a central role in cell and developmental biology. In particular, fluorescence microscopy can be used to visualize specific cellular components and subsequently quantify their morphology through development of virtual-cell models for study of effects of mechanical forces on cells. However, there are challenges with these imaging experiments, which can make it difficult to quantify cell morphology: inconsistent results, time-consuming and potentially costly protocols, and limitation on number of labels due to spectral overlap. To address these challenges, the objective of this project is to develop an automatic computational machine learning pipeline to predict cellular components morphology for virtual-cell generation based on fluorescence cell membrane confocal z-stacks. Methods: Registered confocal z-stacks of nuclei and cell membrane of endothelial cells, consisting of 20 images each, were obtained from fluorescence confocal microscopy and normalized through software pipeline for each image to have a mean pixel intensity value of 0.5. An open source machine learning algorithm, originally developed to predict fluorescence labels on unlabeled transmitted light microscopy cell images, was trained using this set of normalized z-stacks on a single CPU machine. Through transfer learning, the algorithm used knowledge acquired from its previous training sessions to learn the new task. Once trained, the algorithm was used to predict morphology of nuclei using normalized cell membrane fluorescence images as input. Predictions were compared to the ground truth fluorescence nuclei images. Results: After one week of training, using one cell membrane z-stack (20 images) and corresponding nuclei label, results showed qualitatively good predictions on training set. The algorithm was able to accurately predict nuclei locations as well as shape when fed only fluorescence membrane images. Similar training sessions with improved membrane image quality, including clear lining and shape of the membrane, clearly showing the boundaries of each cell, proportionally improved nuclei predictions, reducing errors relative to ground truth. Discussion: These results show the potential of pre-trained machine learning algorithms to predict cell morphology using relatively small amounts of data and training time, eliminating the need of using multiple labels in immunofluorescence experiments. With further training, the algorithm is expected to predict different labels (e.g., focal-adhesion sites, cytoskeleton), which can be added to the automatic machine learning pipeline for direct input into Principal Component Analysis (PCA) for generation of virtual-cell mechanical models.Keywords: cell morphology prediction, computational machine learning, fluorescence microscopy, virtual-cell models
Procedia PDF Downloads 2094356 Modeling of Anisotropic Hardening Based on Crystal Plasticity Theory and Virtual Experiments
Authors: Bekim Berisha, Sebastian Hirsiger, Pavel Hora
Abstract:
Advanced material models involving several sets of model parameters require a big experimental effort. As models are getting more and more complex like e.g. the so called “Homogeneous Anisotropic Hardening - HAH” model for description of the yielding behavior in the 2D/3D stress space, the number and complexity of the required experiments are also increasing continuously. In the context of sheet metal forming, these requirements are even more pronounced, because of the anisotropic behavior or sheet materials. In addition, some of the experiments are very difficult to perform e.g. the plane stress biaxial compression test. Accordingly, tensile tests in at least three directions, biaxial tests and tension-compression or shear-reverse shear experiments are performed to determine the parameters of the macroscopic models. Therefore, determination of the macroscopic model parameters based on virtual experiments is a very promising strategy to overcome these difficulties. For this purpose, in the framework of multiscale material modeling, a dislocation density based crystal plasticity model in combination with a FFT-based spectral solver is applied to perform virtual experiments. Modeling of the plastic behavior of metals based on crystal plasticity theory is a well-established methodology. However, in general, the computation time is very high and therefore, the computations are restricted to simplified microstructures as well as simple polycrystal models. In this study, a dislocation density based crystal plasticity model – including an implementation of the backstress – is used in a spectral solver framework to generate virtual experiments for three deep drawing materials, DC05-steel, AA6111-T4 and AA4045 aluminum alloys. For this purpose, uniaxial as well as multiaxial loading cases, including various pre-strain histories, has been computed and validated with real experiments. These investigations showed that crystal plasticity modeling in the framework of Representative Volume Elements (RVEs) can be used to replace most of the expensive real experiments. Further, model parameters of advanced macroscopic models like the HAH model can be determined from virtual experiments, even for multiaxial deformation histories. It was also found that crystal plasticity modeling can be used to model anisotropic hardening more accurately by considering the backstress, similar to well-established macroscopic kinematic hardening models. It can be concluded that an efficient coupling of crystal plasticity models and the spectral solver leads to a significant reduction of the amount of real experiments needed to calibrate macroscopic models. This advantage leads also to a significant reduction of computational effort needed for the optimization of metal forming process. Further, due to the time efficient spectral solver used in the computation of the RVE models, detailed modeling of the microstructure are possible.Keywords: anisotropic hardening, crystal plasticity, micro structure, spectral solver
Procedia PDF Downloads 3184355 Normalizing Flow to Augmented Posterior: Conditional Density Estimation with Interpretable Dimension Reduction for High Dimensional Data
Authors: Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L. Duan
Abstract:
The conditional density characterizes the distribution of a response variable y given other predictor x and plays a key role in many statistical tasks, including classification and outlier detection. Although there has been abundant work on the problem of Conditional Density Estimation (CDE) for a low-dimensional response in the presence of a high-dimensional predictor, little work has been done for a high-dimensional response such as images. The promising performance of normalizing flow (NF) neural networks in unconditional density estimation acts as a motivating starting point. In this work, the authors extend NF neural networks when external x is present. Specifically, they use the NF to parameterize a one-to-one transform between a high-dimensional y and a latent z that comprises two components [zₚ, zₙ]. The zₚ component is a low-dimensional subvector obtained from the posterior distribution of an elementary predictive model for x, such as logistic/linear regression. The zₙ component is a high-dimensional independent Gaussian vector, which explains the variations in y not or less related to x. Unlike existing CDE methods, the proposed approach coined Augmented Posterior CDE (AP-CDE) only requires a simple modification of the common normalizing flow framework while significantly improving the interpretation of the latent component since zₚ represents a supervised dimension reduction. In image analytics applications, AP-CDE shows good separation of 𝑥-related variations due to factors such as lighting condition and subject id from the other random variations. Further, the experiments show that an unconditional NF neural network based on an unsupervised model of z, such as a Gaussian mixture, fails to generate interpretable results.Keywords: conditional density estimation, image generation, normalizing flow, supervised dimension reduction
Procedia PDF Downloads 1044354 Mixed Integer Programing for Multi-Tier Rebate with Discontinuous Cost Function
Authors: Y. Long, L. Liu, K. V. Branin
Abstract:
One challenge faced by procurement decision-maker during the acquisition process is how to compare similar products from different suppliers and allocate orders among different products or services. This work focuses on allocating orders among multiple suppliers considering rebate. The objective function is to minimize the total acquisition cost including purchasing cost and rebate benefit. Rebate benefit is complex and difficult to estimate at the ordering step. Rebate rules vary for different suppliers and usually change over time. In this work, we developed a system to collect the rebate policies, standardized the rebate policies and developed two-stage optimization models for ordering allocation. Rebate policy with multi-tiers is considered in modeling. The discontinuous cost function of rebate benefit is formulated for different scenarios. A piecewise linear function is used to approximate the discontinuous cost function of rebate benefit. And a Mixed Integer Programing (MIP) model is built for order allocation problem with multi-tier rebate. A case study is presented and it shows that our optimization model can reduce the total acquisition cost by considering rebate rules.Keywords: discontinuous cost function, mixed integer programming, optimization, procurement, rebate
Procedia PDF Downloads 2654353 Calibration of Mini TEPC and Measurement of Lineal Energy in a Mixed Radiation Field Produced by Neutrons
Authors: I. C. Cho, W. H. Wen, H. Y. Tsai, T. C. Chao, C. J. Tung
Abstract:
Tissue-equivalent proportional counter (TEPC) is a useful instrument used to measure radiation single-event energy depositions in a subcellular target volume. The quantity of measurements is the microdosimetric lineal energy, which determines the relative biological effectiveness, RBE, for radiation therapy or the radiation-weighting factor, WR, for radiation protection. TEPC is generally used in a mixed radiation field, where each component radiation has its own RBE or WR value. To reduce the pile-up effect during radiotherapy measurements, a miniature TEPC (mini TEPC) with cavity size in the order of 1 mm may be required. In the present work, a homemade mini TEPC with a cylindrical cavity of 1 mm in both the diameter and the height was constructed to measure the lineal energy spectrum of a mixed radiation field with high- and low-LET radiations. Instead of using external radiation beams to penetrate the detector wall, mixed radiation fields were produced by the interactions of neutrons with TEPC walls that contained small plugs of different materials, i.e. Li, B, A150, Cd and N. In all measurements, mini TEPC was placed at the beam port of the Tsing Hua Open-pool Reactor (THOR). Measurements were performed using the propane-based tissue-equivalent gas mixture, i.e. 55% C3H8, 39.6% CO2 and 5.4% N2 by partial pressures. The gas pressure of 422 torr was applied for the simulation of a 1 m diameter biological site. The calibration of mini TEPC was performed using two marking points in the lineal energy spectrum, i.e. proton edge and electron edge. Measured spectra revealed high lineal energy (> 100 keV/m) peaks due to neutron-capture products, medium lineal energy (10 – 100 keV/m) peaks from hydrogen-recoil protons, and low lineal energy (< 10 keV/m) peaks of reactor photons. For cases of Li and B plugs, the high lineal energy peaks were quite prominent. The medium lineal energy peaks were in the decreasing order of Li, Cd, N, A150, and B. The low lineal energy peaks were smaller compared to other peaks. This study demonstrated that internally produced mixed radiations from the interactions of neutrons with different plugs in the TEPC wall provided a useful approach for TEPC measurements of lineal energies.Keywords: TEPC, lineal energy, microdosimetry, radiation quality
Procedia PDF Downloads 4724352 The Rite of Jihadification in ISIS Modified Video Games: Mass Deception and Dialectic of Religious Regression in Technological Progression
Authors: Venus Torabi
Abstract:
ISIS, the terrorist organization, modified two videogames, ARMA III and Grand Theft Auto 5 (2013) as means of online recruitment and ideological propaganda. The urge to study the mechanism at work, whether it has been successful or not, derives (Digital) Humanities experts to explore how codes of terror, Islamic ideology and recruitment strategies are incorporated into the ludic mechanics of videogames. Another aspect of the significance lies in the fact that this is a latent problem that has not been fully addressed in an interdisciplinary framework prior to this study, to the best of the researcher’s knowledge. Therefore, due to the complexity of the subject, the present paper entangles with game studies, philosophical and religious poles to form the methodology of conducting the research. As a contextualized epistemology of such exploitation of videogames, the core argument is building on the notion of “Culture Industry” proposed by Theodore W. Adorno and Max Horkheimer in Dialectic of Enlightenment (2002). This article posits that the ideological underpinnings of ISIS’s cause corroborated by the action-bound mechanics of the videogames are in line with adhering to the Islamic Eschatology as a furnishing ground and an excuse in exercising terrorism. It is an account of ISIS’s modification of the videogames, a tool of technological progression to practice online radicalization. Dialectically, this practice is packed up in rhetoric for recognizing a religious myth (the advent of a savior), as a hallmark of regression. The study puts forth that ISIS’s wreaking havoc on the world, both in reality and within action videogames, is negotiating the process of self-assertion in the players of such videogames (by assuming one’s self a member of terrorists) that leads to self-annihilation. It tries to unfold how ludic Mod videogames are misused as tools of mass deception towards ethnic cleansing in reality and line with the distorted Eschatological myth. To conclude, this study posits videogames to be a new avenue of mass deception in the framework of the Culture Industry. Yet, this emerges as a two-edged sword of mass deception in ISIS’s modification of videogames. It shows that ISIS is not only trying to hijack the minds through online/ludic recruitment, it potentially deceives the Muslim communities or those prone to radicalization into believing that it's terrorist practices are preparing the world for the advent of a religious savior based on Islamic Eschatology. This is to claim that the harsh actions of the videogames are potentially breeding minds by seeds of terrorist propaganda and numbing them to violence. The real world becomes an extension of that harsh virtual environment in a ludic/actual continuum, the extension that is contributing to the mass deception mechanism of the terrorists, in a clandestine trend.Keywords: culture industry, dialectic, ISIS, islamic eschatology, mass deception, video games
Procedia PDF Downloads 1404351 Lesbian Stereotype Representation in Cinema in Turkey
Authors: Hasan Gürkan, Rengin Ozan
Abstract:
Cinema, as a popular mass media tool, affects the general perception of the society against sexual identity. By establishing on interaction relationship with cinema and social reality, the study also tries to answer what the importance of lesbian identity in social life in films in Turkey is. This article focus on representing the description of the women characters who call their selves lesbian in Turkey cinema. The study tries to answer these three questions: First, how the lesbian characters are represented in films in Turkey? Second, what is the reality of the lesbian sexual identity in the films? Third, what are the differences and similarities between the lesbian characters in films in Turkey before 2000s and after 2000s? The films are analysed by the sociological film interpretation in this study. When comparing the films before 2000 and after 2000, it is possible to say that there have been no lesbian characters in many films. Especially almost all of the films (Haremde Dört Kadın, Ver Elini İstanbul, Dul Bir Kadın, Gramofon Avrat, Lola and Billidikid), during 1960s, just threw looks indirect the lesbian sex identity. Just in the films Düş Gezginleri, İki Genç Kız and Nar, the women character (also called them as lesbian) are the leading role and the plot of the films is progressing over these characters.Keywords: cinema in Turkey, lesbian identity, representation, stereotype
Procedia PDF Downloads 3454350 Linguistic World Order in the 21st Century: Need of Alternative Linguistics
Authors: Shailendra Kumar Singh
Abstract:
In the 21st century, we are living through extraordinary times as we are linguistically blessed to live through an era in which the each sociolinguistic example of living appears to be refreshingly new without any precedence of the past. The word `New Linguistic World Order’ is no longer just the intangible fascination but an indication of the emerging reality that we are living through a time in which the word ‘linguistic purism’ no longer invokes the sense of self categorization and self identification. The contemporary world of today is linguistically rewarding. This is a time in which the very existence of global, powerful and local needs to be revisited in the context of power shift, demographic shift, social psychological shift and technological shift. Hence, the old linguistic world view has to be challenged in the midst of 21st century. The first years of the 21st century have thus far been marked by the rise global economy, technological revolution and demographic shift, now we are witnessing linguistic shift which is leading towards forming a new linguistic world order. On the other hand, with rising powers of China and India in Asia in tandem the notion of alternative west is set to become a lot more interesting linguistically. It comes at a point when the world is moving towards inclusive globalization due to vanishing power corridor of the west and ascending geopolitical impact of emerging superpower and superpower in waiting. Now it is a reality that the western world no longer continues to rise – in fact, it will have more pressure to act in situation when the alternative west is looking for balanced globalization. It is more than likely that demographically strong languages of alternative west will be in advantageous position. The paper challenges our preconceptions about the nature of sociolinguistic nature of world in the 21st century. It investigates what a linguistic world is likely to be in the future in contrast to what was a linguistic world before 21st century. In particular, the paper tries to answer the following questions: (a) What will be the common linguistic thread across world? (b) How unprecedented transformations can be mapped linguistically? (c) Do we need alternative linguistics to define inclusive globalization as the linguistic reality of the contemporary world has already been reshaped by increasingly integrated world economy, linguistic revolution and alternative west? (d) In which ways these issues can be addressed holistically? (e) Why linguistic world order is changing dramatically? (f) Is it true that the linguistic world around is changing faster than we can even really cope? (g) Is it true that what is coming next is linguistically greater than ever? (h) Do we need to prepare ourselves with new theoretical strategies to address emerging sociolinguistic reality?Keywords: alternative linguistics, new linguistic world order, power shift, demographic shift, social psychological shift, technological shift
Procedia PDF Downloads 3394349 Simulation to Detect Virtual Fractional Flow Reserve in Coronary Artery Idealized Models
Authors: Nabila Jaman, K. E. Hoque, S. Sawall, M. Ferdows
Abstract:
Coronary artery disease (CAD) is one of the most lethal diseases of the cardiovascular diseases. Coronary arteries stenosis and bifurcation angles closely interact for myocardial infarction. We want to use computer-aided design model coupled with computational hemodynamics (CHD) simulation for detecting several types of coronary artery stenosis with different locations in an idealized model for identifying virtual fractional flow reserve (vFFR). The vFFR provides us the information about the severity of stenosis in the computational models. Another goal is that we want to imitate patient-specific computed tomography coronary artery angiography model for constructing our idealized models with different left anterior descending (LAD) and left circumflex (LCx) bifurcation angles. Further, we want to analyze whether the bifurcation angles has an impact on the creation of narrowness in coronary arteries or not. The numerical simulation provides the CHD parameters such as wall shear stress (WSS), velocity magnitude and pressure gradient (PGD) that allow us the information of stenosis condition in the computational domain.Keywords: CAD, CHD, vFFR, bifurcation angles, coronary stenosis
Procedia PDF Downloads 1604348 Solid-Liquid-Polymer Mixed Matrix Membrane Using Liquid Additive Adsorbed on Activated Carbon Dispersed in Polymeric Membrane for CO2/CH4 Separation
Authors: P. Chultheera, T. Rirksomboon, S. Kulprathipanja, C. Liu, W. Chinsirikul, N. Kerddonfag
Abstract:
Gas separation by selective transport through polymeric membranes is one of the rapid growing branches of membrane technology. However, the tradeoff between the permeability and selectivity is one of the critical challenges encountered by pure polymer membranes, which in turn limits their large-scale application. To enhance gas separation performances, mixed matrix membranes (MMMs) have been developed. In this study, MMMs were prepared by a solution-coating method and tested for CO2/CH4 separation through permeability and selectivity using a membrane testing unit at room temperature and a pressure of 100 psig. The fabricated MMMs were composed of silicone rubber dispersed with the activated carbon individually absorbed with polyethylene glycol (PEG) as a liquid additive. PEG emulsified silicone rubber MMMs showed superior gas separation on cellulose acetate membrane with both high permeability and selectivity compared with silicone rubber membrane and alone support membrane. However, the MMMs performed limited stability resulting from the undesirable PEG leakage. To stabilize the MMMs, PEG was then incorporated into activated carbon by adsorption. It was found that the incorporation of solid and liquid was effective to improve the separation performance of MMMs.Keywords: mixed matrix membrane, membrane, CO₂/CH₄ separation, activated carbon
Procedia PDF Downloads 3444347 Vocational Education for Sustainable Development: Teaching Methods and Practices
Authors: Seyilnan Hannah Wadak, Dangway Monica Clement
Abstract:
This theoretical study explores distinct teaching methods and practices for integrating sustainable development principles into vocational education. It examines how vocational institutions can prepare students for a sustainability-oriented workforce while addressing environmental and social challenges. The research analyzes current literature, case studies, and emerging trends to identify effective strategies for incorporating sustainability across various vocational disciplines. Key approaches discussed include experiential learning, green skills training, and interdisciplinary projects that simulate real-world sustainability challenges. The study also investigates the role of technology, such as virtual reality and online collaboration tools, in enhancing sustainability education. Additionally, it addresses the importance of industry partnerships and community engagement in creating relevant, practical learning experiences. The paper highlights potential barriers to implementation and proposes solutions for overcoming them, including professional development for educators and curriculum redesign. Findings suggest that integrating sustainability into vocational education not only enhances students’ employability but also contributes to broader societal goals of sustainable development. This research provides a comprehensive framework for educational institutions and policymakers to transform vocational programs, ensuring they meet the evolving demands of a sustainable future.Keywords: vocational education, sustainable development, teaching methods, experiential learning, green skills, curriculum integration, industry partnerships, educational technology
Procedia PDF Downloads 374346 Modelling Insider Attacks in Public Cloud
Authors: Roman Kulikov, Svetlana Kolesnikova
Abstract:
Last decade Cloud Computing technologies have been rapidly becoming ubiquitous. Each year more and more organizations, corporations, internet services and social networks trust their business sensitive information to Public Cloud. The data storage in Public Cloud is protected by security mechanisms such as firewalls, cryptography algorithms, backups, etc.. In this way, however, only outsider attacks can be prevented, whereas virtualization tools can be easily compromised by insider. The protection of Public Cloud’s critical elements from internal intruder remains extremely challenging. A hypervisor, also called a virtual machine manager, is a program that allows multiple operating systems (OS) to share a single hardware processor in Cloud Computing. One of the hypervisor's functions is to enforce access control policies. Furthermore, it prevents guest OS from disrupting each other and from accessing each other's memory or disk space. Hypervisor is the one of the most critical and vulnerable elements in Cloud Computing infrastructure. Nevertheless, it has been poorly protected from being compromised by insider. By exploiting certain vulnerabilities, privilege escalation can be easily achieved in insider attacks on hypervisor. In this way, an internal intruder, who has compromised one process, is able to gain control of the entire virtual machine. Thereafter, the consequences of insider attacks in Public Cloud might be more catastrophic and significant to virtual tools and sensitive data than of outsider attacks. So far, almost no preventive security countermeasures have been developed. There has been little attention paid for developing models to assist risks mitigation strategies. In this paper formal model of insider attacks on hypervisor is designed. Our analysis identifies critical hypervisor`s vulnerabilities that can be easily compromised by internal intruder. Consequently, possible conditions for successful attacks implementation are uncovered. Hence, development of preventive security countermeasures can be improved on the basis of the proposed model.Keywords: insider attack, public cloud, cloud computing, hypervisor
Procedia PDF Downloads 3664345 An Integrated Mixed-Integer Programming Model to Address Concurrent Project Scheduling and Material Ordering
Authors: Babak H. Tabrizi, Seyed Farid Ghaderi
Abstract:
Concurrent planning of project scheduling and material ordering can provide more flexibility to the project scheduling problem, as the project execution costs can be enhanced. Hence, the issue has been taken into account in this paper. To do so, a mixed-integer mathematical model is developed which considers the aforementioned flexibility, in addition to the materials quantity discount and space availability restrictions. Moreover, the activities duration has been treated as decision variables. Finally, the efficiency of the proposed model is tested by different instances. Additionally, the influence of the aforementioned parameters is investigated on the model performance.Keywords: material ordering, project scheduling, quantity discount, space availability
Procedia PDF Downloads 3724344 Effect of Carbon Nanotubes on Nanocomposite from Nanofibrillated Cellulose
Authors: M. Z. Shazana, R. Rosazley, M. A. Izzati, A. W. Fareezal, I. Rushdan, A. B. Suriani, S. Zakaria
Abstract:
There is an increasing interest in the development of flexible energy storage for application of Carbon Nanotubes and nanofibrillated cellulose (NFC). In this study, nanocomposite is consisting of Carbon Nanotube (CNT) mixed with suspension of nanofibrillated cellulose (NFC) from Oil Palm Empty Fruit Bunch (OPEFB). The use of Carbon Nanotube (CNT) as additive nanocomposite was improved the conductivity and mechanical properties of nanocomposite from nanofibrillated cellulose (NFC). The nanocomposite were characterized for electrical conductivity and mechanical properties in uniaxial tension, which were tensile to measure the bond of fibers in nanocomposite. The processing route is environmental friendly which leads to well-mixed structures and good results as well.Keywords: carbon nanotube (CNT), nanofibrillated cellulose (NFC), mechanical properties, electrical conductivity
Procedia PDF Downloads 3374343 An Efficient Motion Recognition System Based on LMA Technique and a Discrete Hidden Markov Model
Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier
Abstract:
Human motion recognition has been extensively increased in recent years due to its importance in a wide range of applications, such as human-computer interaction, intelligent surveillance, augmented reality, content-based video compression and retrieval, etc. However, it is still regarded as a challenging task especially in realistic scenarios. It can be seen as a general machine learning problem which requires an effective human motion representation and an efficient learning method. In this work, we introduce a descriptor based on Laban Movement Analysis technique, a formal and universal language for human movement, to capture both quantitative and qualitative aspects of movement. We use Discrete Hidden Markov Model (DHMM) for training and classification motions. We improve the classification algorithm by proposing two DHMMs for each motion class to process the motion sequence in two different directions, forward and backward. Such modification allows avoiding the misclassification that can happen when recognizing similar motions. Two experiments are conducted. In the first one, we evaluate our method on a public dataset, the Microsoft Research Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely used dataset for evaluating action/gesture recognition methods. In the second experiment, we build a dataset composed of 10 gestures(Introduce yourself, waving, Dance, move, turn left, turn right, stop, sit down, increase velocity, decrease velocity) performed by 20 persons. The evaluation of the system includes testing the efficiency of our descriptor vector based on LMA with basic DHMM method and comparing the recognition results of the modified DHMM with the original one. Experiment results demonstrate that our method outperforms most of existing methods that used the MSRC-12 dataset, and a near perfect classification rate in our dataset.Keywords: human motion recognition, motion representation, Laban Movement Analysis, Discrete Hidden Markov Model
Procedia PDF Downloads 2144342 Stochastic Modelling for Mixed Mode Fatigue Delamination Growth of Wind Turbine Composite Blades
Authors: Chi Zhang, Hua-Peng Chen
Abstract:
With the increasingly demanding resources in the word, renewable and clean energy has been considered as an alternative way to replace traditional ones. Thus, one of practical examples for using wind energy is wind turbine, which has gained more attentions in recent research. Like most offshore structures, the blades, which is the most critical components of the wind turbine, will be subjected to millions of loading cycles during service life. To operate safely in marine environments, the blades are typically made from fibre reinforced composite materials to resist fatigue delamination and harsh environment. The fatigue crack development of blades is uncertain because of indeterminate mechanical properties for composite and uncertainties under offshore environment like wave loads, wind loads, and humid environments. There are three main delamination failure modes for composite blades, and the most common failure type in practices is subjected to mixed mode loading, typically a range of opening (mode 1) and shear (mode 2). However, the fatigue crack development for mixed mode cannot be predicted as deterministic values because of various uncertainties in realistic practical situation. Therefore, selecting an effective stochastic model to evaluate the mixed mode behaviour of wind turbine blades is a critical issue. In previous studies, gamma process has been considered as an appropriate stochastic approach, which simulates the stochastic deterioration process to proceed in one direction such as realistic situation for fatigue damage failure of wind turbine blades. On the basis of existing studies, various Paris Law equations are discussed to simulate the propagation of the fatigue crack growth. This paper develops a Paris model with the stochastic deterioration modelling according to gamma process for predicting fatigue crack performance in design service life. A numerical example of wind turbine composite materials is investigated to predict the mixed mode crack depth by Paris law and the probability of fatigue failure by gamma process. The probability of failure curves under different situations are obtained from the stochastic deterioration model for comparisons. Compared with the results from experiments, the gamma process can take the uncertain values into consideration for crack propagation of mixed mode, and the stochastic deterioration process shows a better agree well with realistic crack process for composite blades. Finally, according to the predicted results from gamma stochastic model, assessment strategies for composite blades are developed to reduce total lifecycle costs and increase resistance for fatigue crack growth.Keywords: Reinforced fibre composite, Wind turbine blades, Fatigue delamination, Mixed failure mode, Stochastic process.
Procedia PDF Downloads 4134341 Relation of the Anomalous Magnetic Moment of Electron with the Proton and Neutron Masses
Authors: Sergei P. Efimov
Abstract:
The anomalous magnetic moment of the electron is calculated by introducing the effective mass of the virtual part of the electron structure. In this case, the anomalous moment is inversely proportional to the effective mass Meff, which is shown to be a linear combination of the neutron, proton, and electrostatic electron field masses. The spin of a rotating structure is assumed to be equal to 3/2, while the spin of a 'bare' electron is equal to unity, the resultant spin being 1/2. A simple analysis gives the coefficients for a linear combination of proton and electron masses, the approximation precision giving here nine significant digits after the decimal point. The summand proportional to α² adds four more digits. Thus, the conception of the effective mass Meff leads to the formula for the total magnetic moment of the electron, which is accurate to fourteen digits. Association with the virtual beta-decay reaction and possible reasons for simplicity of the derived formula are discussed.Keywords: anomalous magnetic moment of electron, comparison with quantum electrodynamics. effective mass, fifteen significant figures, proton and neutron masses
Procedia PDF Downloads 1284340 Development of Advanced Virtual Radiation Detection and Measurement Laboratory (AVR-DML) for Nuclear Science and Engineering Students
Authors: Lily Ranjbar, Haori Yang
Abstract:
Online education has been around for several decades, but the importance of online education became evident after the COVID-19 pandemic. Eventhough the online delivery approach works well for knowledge building through delivering content and oversight processes, it has limitations in developing hands-on laboratory skills, especially in the STEM field. During the pandemic, many education institutions faced numerous challenges in delivering lab-based courses, especially in the STEM field. Also, many students worldwide were unable to practice working with lab equipment due to social distancing or the significant cost of highly specialized equipment. The laboratory plays a crucial role in nuclear science and engineering education. It can engage students and improve their learning outcomes. In addition, online education and virtual labs have gained substantial popularity in engineering and science education. Therefore, developing virtual labs is vital for institutions to deliver high-class education to their students, including their online students. The School of Nuclear Science and Engineering (NSE) at Oregon State University, in partnership with SpectralLabs company, has developed an Advanced Virtual Radiation Detection and Measurement Lab (AVR-DML) to offer a fully online Master of Health Physics program. It was essential for us to use a system that could simulate nuclear modules that accurately replicate the underlying physics, the nature of radiation and radiation transport, and the mechanics of the instrumentations used in the real radiation detection lab. It was all accomplished using a Realistic, Adaptive, Interactive Learning System (RAILS). RAILS is a comprehensive software simulation-based learning system for use in training. It is comprised of a web-based learning management system that is located on a central server, as well as a 3D-simulation package that is downloaded locally to user machines. Users will find that the graphics, animations, and sounds in RAILS create a realistic, immersive environment to practice detecting different radiation sources. These features allow students to coexist, interact and engage with a real STEM lab in all its dimensions. It enables them to feel like they are in a real lab environment and to see the same system they would in a lab. Unique interactive interfaces were designed and developed by integrating all the tools and equipment needed to run each lab. These interfaces provide students full functionality for data collection, changing the experimental setup, and live data collection with real-time updates for each experiment. Students can manually do all experimental setups and parameter changes in this lab. Experimental results can then be tracked and analyzed in an oscilloscope, a multi-channel analyzer, or a single-channel analyzer (SCA). The advanced virtual radiation detection and measurement laboratory developed in this study enabled the NSE school to offer a fully online MHP program. This flexibility of course modality helped us to attract more non-traditional students, including international students. It is a valuable educational tool as students can walk around the virtual lab, make mistakes, and learn from them. They have an unlimited amount of time to repeat and engage in experiments. This lab will also help us speed up training in nuclear science and engineering.Keywords: advanced radiation detection and measurement, virtual laboratory, realistic adaptive interactive learning system (rails), online education in stem fields, student engagement, stem online education, stem laboratory, online engineering education
Procedia PDF Downloads 944339 IRIS An Interactive Video Game for Children with Long-Term Illness in Hospitals
Authors: Ganetsou Evanthia, Koutsikos Emmanouil, Austin Anna Maria
Abstract:
Information technology has long served the needs of individuals for learning and entertainment, but much less for children in sickness. The aim of the proposed online video game is to provide immersive learning opportunities as well as essential social and emotional scenarios for hospital-bound children with long-term illness. Online self-paced courses on chosen school subjects, including specialised software and multisensory assessments, aim at enhancing children’s academic achievement and sense of inclusion, while doctor minigames familiarise and educate young patients on their medical conditions. Online ethical dilemmas will offer children opportunities to contemplate on the importance of medical procedures and following assigned medication, often challenging for young patients; they will therefore reflect on their condition, reevaluate their perceptions about hospitalisation, and assume greater personal responsibility for their progress. Children’s emotional and psychosocial needs are addressed by engaging in social conventions, such as interactive, daily, collaborative mini games with other hospitalised peers, like virtual competitive sports games, weekly group psychodrama sessions, and online birthday parties or sleepovers. Social bonding is also fostered by having a virtual pet to interact with and take care of, as well as a virtual nurse to discuss and reflect on the mood of the day, engage in constructive dialogue and perspective taking, and offer reminders. Access to the platform will be available throughout the day depending on the patient’s health status. The program is designed to minimise escapism and feelings of exclusion, and can flexibly be adapted to offer post-treatment and a support online system at home.Keywords: long-term illness, children, hospital, interactive games, cognitive, socioemotional development
Procedia PDF Downloads 804338 Supplier Selection by Considering Cost and Reliability
Authors: K. -H. Yang
Abstract:
Supplier selection problem is one of the important issues of supply chain problems. Two categories of methodologies include qualitative and quantitative approaches which can be applied to supplier selection problems. However, due to the complexities of the problem and lacking of reliable and quantitative data, qualitative approaches are more than quantitative approaches. This study considers operational cost and supplier’s reliability factor and solves the problem by using a quantitative approach. A mixed integer programming model is the primary analytic tool. Analyses of different scenarios with variable cost and reliability structures show that the effectiveness of this approach to the supplier selection problem.Keywords: mixed integer programming, quantitative approach, supplier’s reliability, supplier selection
Procedia PDF Downloads 387