Search results for: line parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11178

Search results for: line parameters

2928 Evaluation of Groundwater Quality in North-West Region of Punjab, India

Authors: Jeevan Jyoti Mohindroo, Umesh Kumar Garg

Abstract:

The district of Tarntaran is located25 km south of Amritsar city in Punjab State of Northwestern India. It is 5059 Sq. Km in area. It is surrounded by Amritsar in the North, Kapurthala in the East, and Ferozepur in the South and Pakistan in the West. Patti Town is a municipal council of the Tarntaran district of the Indian state of Punjab, located 45 km from Amritsar its geographical coordinates are 310 16' 51" north to 740 51' 25" East Longitude. The town spreads over an area of 50sq. Km. Moisture content is very less in the air, falling within the semiarid region and frequently facing water scarcity as well as water quality problems. The major sources of employment are agriculture, horticulture and animal husbandry engaging almost 80% of the workforce. Water samples are collected from 400 locations in 20 villages on the Patti –Khem Karan highway with 20 samples from each village, and were subjected to analysis of chemical characteristics. The type of water that predominates in the study area is Ca-Mg-HCO3 type, based on hydro-chemical analysis. Besides, suitability of water for irrigation is evaluated based on the sodium adsorption ratio (SAR), residual sodium carbonate, sodium percent and salinity hazard. Other Physico-chemical parameters such as pH, TDS, conductance, etc. were also determined using a water analysis kit. Analysis of water samples for heavy metal analysis was also carried out in the present study.

Keywords: groundwater, chemical classification, SAR, RSC, USSL diagram

Procedia PDF Downloads 204
2927 Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition

Authors: D. Geringswald, B. Hintze

Abstract:

The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H2:N2). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios.

Keywords: ALD, high aspect ratio, PE-MOCVD, TiN

Procedia PDF Downloads 309
2926 CFD modelling of Microdrops Manipulation by Microfluidic Oscillator

Authors: Tawfiq Chekifi, Brahim Dennai, Rachid Khelfaoui

Abstract:

Over the last few decades, modeling immiscible fluids such as oil and water have been a classical research topic. Droplet-based microfluidics presents a unique platform for mixing, reaction, separation, dispersion of drops, and numerous other functions. For this purpose, several devices were studied, as well as microfluidic oscillator. The latter was obtained from wall attachment microfluidic amplifiers using a feedback loop from the outputs to the control inputs, nevertheless this device have not well used for microdrops applications. In this paper, we suggest a numerical CFD study of a microfluidic oscillator with two different lengths of feedback loop. In order to produce simultaneous microdrops of gasoil on water, a typical geometry that includes double T-junction is connected to the fluidic oscillator. The generation of microdrops is computed by volume-of-fluid method (VOF). Flow oscillations of microdrops were triggered by the Coanda effect of jet flow. The aim of work is to obtain a high oscillation frequency in output of this passive device, the influence of hydrodynamics and physics parameters on the microdrops frequency in the output of our microsystem is also analyzed, The computational results show that, the length of feedback loop, applied pressure on T-junction and interfacial tension have a significant effect on the dispersion of microdrops and its oscillation frequency. Across the range of low Reynold number, the microdrops generation and its dynamics have been accurately controlled by adjusting applying pressure ratio of two phases.

Keywords: fluidic oscillator, microdrops manipulation, VOF (volume of fluid method), microfluidic oscillator

Procedia PDF Downloads 399
2925 Efficiency-Based Model for Solar Urban Planning

Authors: M. F. Amado, A. Amado, F. Poggi, J. Correia de Freitas

Abstract:

Today it is widely understood that global energy consumption patterns are directly related to the ongoing urban expansion and development process. This expansion is based on the natural growth of human activities and has left most urban areas totally dependent on fossil fuel derived external energy inputs. This status-quo of production, transportation, storage and consumption of energy has become inefficient and is set to become even more so when the continuous increases in energy demand are factored in. The territorial management of land use and related activities is a central component in the search for more efficient models of energy use, models that can meet current and future regional, national and European goals. In this paper, a methodology is developed and discussed with the aim of improving energy efficiency at the municipal level. The development of this methodology is based on the monitoring of energy consumption and its use patterns resulting from the natural dynamism of human activities in the territory and can be utilized to assess sustainability at the local scale. A set of parameters and indicators are defined with the objective of constructing a systemic model based on the optimization, adaptation and innovation of the current energy framework and the associated energy consumption patterns. The use of the model will enable local governments to strike the necessary balance between human activities, economic development, and the local and global environment while safeguarding fairness in the energy sector.

Keywords: solar urban planning, solar smart city, urban development, energy efficiency

Procedia PDF Downloads 333
2924 Integration from Laboratory to Industrialization for Hybrid Printed Electronics

Authors: Ahmed Moulay, Mariia Zhuldybina, Mirko Torres, Mike Rozel, Ngoc Duc Trinh, Chloé Bois

Abstract:

Hybrid printed electronics technology (HPE) provides innovative opportunities to enhance conventional electronics applications, which are often based on printed circuit boards (PCB). By combining the best of both performance from conventional electronic components and the flexibility from printed circuits makes it possible to manufacture HPE at high volumes using roll-to-roll printing processes. However, several challenges must be overcome in order to accurately integrate an electronic component on a printed circuit. In this presentation, we will demonstrate the integration process of electronic components from the lab scale to the industrialization. Both the printing quality and the integration technique must be studied to define the optimal conditions. To cover the parameters that influence the print quality of the printed circuit, different printing processes, flexible substrates, and conductive inks will be used to determine the optimized printing process/ink/substrate system. After the systems is selected, an electronic component of 2.5 mm2 chip size will be integrated to validate the functionality of the printed, electronic circuit. Critical information such as the conductive adhesive, the curing conditions, and the chip encapsulation will be determined. Thanks to these preliminary results, we are able to demonstrate the chip integration on a printed circuit using industrial equipment, showing the potential of industrialization, compatible using roll-to-roll printing and integrating processes.

Keywords: flat bed screen-printing, hybrid printed electronics, integration, large-scale production, roll-to-roll printing, rotary screen printing

Procedia PDF Downloads 180
2923 Ice Load Measurements on Known Structures Using Image Processing Methods

Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

This study employs a method based on image analyses and structure information to detect accumulated ice on known structures. The icing of marine vessels and offshore structures causes significant reductions in their efficiency and creates unsafe working conditions. Image processing methods are used to measure ice loads automatically. Most image processing methods are developed based on captured image analyses. In this method, ice loads on structures are calculated by defining structure coordinates and processing captured images. A pyramidal structure is designed with nine cylindrical bars as the known structure of experimental setup. Unsymmetrical ice accumulated on the structure in a cold room represents the actual case of experiments. Camera intrinsic and extrinsic parameters are used to define structure coordinates in the image coordinate system according to the camera location and angle. The thresholding method is applied to capture images and detect iced structures in a binary image. The ice thickness of each element is calculated by combining the information from the binary image and the structure coordinate. Averaging ice diameters from different camera views obtains ice thicknesses of structure elements. Comparison between ice load measurements using this method and the actual ice loads shows positive correlations with an acceptable range of error. The method can be applied to complex structures defining structure and camera coordinates.

Keywords: camera calibration, ice detection, ice load measurements, image processing

Procedia PDF Downloads 370
2922 Earnings vs Cash Flows: The Valuation Perspective

Authors: Megha Agarwal

Abstract:

The research paper is an effort to compare the earnings based and cash flow based methods of valuation of an enterprise. The theoretically equivalent methods based on either earnings such as Residual Earnings Model (REM), Abnormal Earnings Growth Model (AEGM), Residual Operating Income Method (ReOIM), Abnormal Operating Income Growth Model (AOIGM) and its extensions multipliers such as price/earnings ratio, price/book value ratio; or cash flow based models such as Dividend Valuation Method (DVM) and Free Cash Flow Method (FCFM) all provide different estimates of valuation of the Indian giant corporate Reliance India Limited (RIL). An ex-post analysis of published accounting and financial data for four financial years from 2008-09 to 2011-12 has been conducted. A comparison of these valuation estimates with the actual market capitalization of the company shows that the complex accounting based model AOIGM provides closest forecasts. These different estimates may be derived due to inconsistencies in discount rate, growth rates and the other forecasted variables. Although inputs for earnings based models may be available to the investor and analysts through published statements, precise estimation of free cash flows may be better undertaken by the internal management. The estimation of value from more stable parameters as residual operating income and RNOA could be considered superior to the valuations from more volatile return on equity.

Keywords: earnings, cash flows, valuation, Residual Earnings Model (REM)

Procedia PDF Downloads 381
2921 Parametric Urbanism: A Climate Responsive Urban Form for the MENA Region

Authors: Norhan El Dallal

Abstract:

The MENA region is a challenging, rapid urbanizing region, with a special profile; culturally, socially, economically and environmentally. Despite the diversity between different countries of the MENA region they all share similar urban challenges where extensive interventions are crucial. A climate sensitive region as the MENA region requires special attention for development, adaptation and mitigation. Integrating climatic and environmental parameters into the planning process to create a responsive urban form is the aim of this research in which “Parametric Urbanism” as a trend serves as a tool to reach a more sustainable urban morphology. An attempt to parameterize the relation between the climate and the urban form in a detailed manner is the main objective of the thesis. The aim is relating the different passive approaches suitable for the MENA region with the design guidelines of each and every part of the planning phase. Various conceptual scenarios for the network pattern and block subdivision generation based on computational models are the next steps after the parameterization. These theoretical models could be applied on different climatic zones of the dense communities of the MENA region to achieve an energy efficient neighborhood or city with respect to the urban form, morphology, and urban planning pattern. A final criticism of the theoretical model is to be conducted showing the feasibility of the proposed solutions economically. Finally some push and pull policies are to be proposed to help integrate these solutions into the planning process.

Keywords: parametric urbanism, climate responsive, urban form, urban and regional studies

Procedia PDF Downloads 484
2920 Comparative Study of Bread Prepared with and without Germinated Soyabean (Glycine Max) Flour

Authors: Muhammad Arsalan Mahmoo, Allah Rakha, Muhammad Sohail

Abstract:

The supplementation of wheat flour with high lysine legume flours has positive effects on the nutritional value of bread. In present study, germinated and terminated soya flour blends were prepared and supplemented in bread in variable proportions (10 % and 20 % of each) to check its impact on quality and sensory attributes of bread. The results showed that there was a significant increase in protein, ash and crude fat contents due to increase in the level of germinated and ungerminated soya flour. However, the moisture and crude fiber contents of composite flours containing germinated and ungerminated soya flour decreased with increased level of supplementation. Mean values for physical analysis (loaf volume, specific volume, weight loss and force for texture) were significantly higher in breads prepared with germinated soya bean flour.The scores assigned to sensory parameters of breads like volume, color of crust, symmetry, color of crumb, texture, taste and aroma decreased significantly by increasing the level of germinated and ungerminated soya flour in wheat flour while color of crust and taste slightly improved. The scores given to overall acceptability of bread prepared from composite flour supplemented with 10 % germinated soya flour.

Keywords: composite bread, protein energy malnutrition, supplementation, amino acid profile, grain legumes

Procedia PDF Downloads 434
2919 Effects of Palm Waste Ash Residues on Acidic Soil in Relation to Physiological Responses of Habanero Chili Pepper (Capsicum chinense jacq.)

Authors: Kalu Samuel Ukanwa, Kumar Patchigolla, Ruben Sakrabani

Abstract:

The use of biosolids from thermal conversion of palm waste for soil fertility enhancement was tested in acidic soil of Southern Nigeria for the growing of Habanero chili pepper (Capsicum chinense jacq.). Soil samples from the two sites, showed pH 4.8 and 4.8 for site A and B respectively, below 5.6-6.8 optimum range and other fertility parameters indicating a low threshold for pepper growth. Nursery planting was done at different weeks to determine the optimum planting period. Ash analysis showed that it contains 26% of total K, 20% of total Ca, 0.27% of total P, and pH 11. The two sites were laid for an experiment in randomized complete block design and setup with three replications side by side. Each plot measured 3 x 2 m and a total of 15 plots for each site, four treatments, and one control. Outlined as control, 2, 4, 6 and 8 tonnes/hectare of palm waste ash, the combined average for both sites with correspondent yield after six harvests in one season are; 0, 5.8, 6, 6, 14.5 tonnes/hectare respectively to treatments. Optimum nursery survival rate was high in July; the crop yield was linear to the ash application. Site A had 6% yield higher than site B. Fruit development, weight, and total yield in relation to the control plot showed that palm waste ash is effective for soil amendment, nutrient delivery, and exchange.

Keywords: ash, palm waste, pepper, soil amendment

Procedia PDF Downloads 136
2918 Determination of Hydrocarbon Path Migration from Gravity Data Analysis (Ghadames Basin, Southern Tunisia, North Africa)

Authors: Mohamed Dhaoui, Hakim Gabtni

Abstract:

The migration of hydrocarbons is a fairly complicated process that depends on several parameters, both structural and sedimentological. In this study, we will try to determine secondary migration paths which convey hydrocarbon from their main source rock to the largest reservoir of the Paleozoic petroleum system of the Tunisian part of Ghadames basin. In fact, The Silurian source rock is the main source rock of the Paleozoic petroleum system of the Ghadames basin. However, the most solicited reservoir in this area is the Triassic reservoir TAGI (Trias Argilo-Gréseux Inférieur). Several geochemical studies have confirmed that oil products TAGI come mainly from the Tannezuft Silurian source rock. That being said that secondary migration occurs through the fault system which affects the post-Silurian series. Our study is based on analysis and interpretation of gravity data. The gravity modeling was conducted in the northern part of Ghadames basin and the Telemzane uplift. We noted that there is a close relationship between the location of producing oil fields and gravity gradients which separate the positive and negative gravity anomalies. In fact, the analysis and transformation of the Bouguer anomaly map, and the residual gravity map allowed as understanding the architecture of the Precambrian in the study area, thereafter gravimetric models were established allowed to determine the probable migration path.

Keywords: basement, Ghadames, gravity, hydrocarbon, migration path

Procedia PDF Downloads 373
2917 An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude.

Keywords: base isolation, hardening behavior, nonlinear exponential model, seismic isolators, softening behavior

Procedia PDF Downloads 332
2916 State Estimator Performance Enhancement: Methods for Identifying Errors in Modelling and Telemetry

Authors: M. Ananthakrishnan, Sunil K Patil, Koti Naveen, Inuganti Hemanth Kumar

Abstract:

State estimation output of EMS forms the base case for all other advanced applications used in real time by a power system operator. Ensuring tuning of state estimator is a repeated process and cannot be left once a good solution is obtained. This paper attempts to demonstrate methods to improve state estimator solution by identifying incorrect modelling and telemetry inputs to the application. In this work, identification of database topology modelling error by plotting static network using node-to-node connection details is demonstrated with examples. Analytical methods to identify wrong transmission parameters, incorrect limits and mistakes in pseudo load and generator modelling are explained with various cases observed. Further, methods used for active and reactive power tuning using bus summation display, reactive power absorption summary, and transformer tap correction are also described. In a large power system, verifying all network static data and modelling parameter on regular basis is difficult .The proposed tuning methods can be easily used by operators to quickly identify errors to obtain the best possible state estimation performance. This, in turn, can lead to improved decision-support capabilities, ultimately enhancing the safety and reliability of the power grid.

Keywords: active power tuning, database modelling, reactive power, state estimator

Procedia PDF Downloads 16
2915 Prevention of Preterm Birth and Management of Uterine Contractions with Traditional Korean Medicine: Integrative Approach

Authors: Eun-Seop Kim, Eun-Ha Jang, Rana R. Kim, Sae-Byul Jang

Abstract:

Objective: Preterm labor is the most common antecedent of preterm birth(PTB), which is characterized by regular uterine contraction before 37 weeks of pregnancy and cervical change. In acute preterm labor, tocolytics are administered as the first-line medication to suppress uterine contractions but rarely delay pregnancy to 37 weeks of gestation. On the other hand, according to the Korean Traditional Medicine, PTB is caused by the deficiency of Qi and unnecessary energy in the body of the mother. The aim of this study was to demonstrate the benefit of Traditional Korean Medicine as an adjuvant therapy in management of early uterine contractions and the prevention of PTB. Methods: It is a case report of a 38-year-old woman (0-0-6-0) hospitalized for irregular uterine contractions and cervical change at 33+3/7 weeks of gestation. Past history includes chemical pregnancies achieved by Artificial Rroductive Technology(ART), one stillbirth (at 7 weeks) and a laparoscopic surgery for endometriosis. After seven trials of IVF and articificial insemination, she had succeeded in conception via in-vitro fertilization (IVF) with help of Traditional Korean Medicine (TKM) treatments. Due to irregular uterine contractions and cervical changes, 2 TKM were prescribed: Gami-Dangguisan, and Antae-eum, known to nourish blood and clear away heat. 120ml of Gami-Dangguisan was given twice a day monring and evening along with same amount of Antae-eum once a day from 31 August 2013 to 28 November 2013. Tocolytics (Ritodrine) was administered as a first aid for maintenance of pregnancy. Information regarding progress until the delivery was collected during the patient’s visit. Results: On admission, the cervix of 15mm in length and cervical os with 0.5cm-dilated were observed via ultrasonography. 50% cervical effacement was also detected in physical examination. Tocolysis had been temporarily maintained. As a supportive therapy, TKM herbal preparations(gami-dangguisan and Antae-eum) were concomitantly given. As of 34+2/7 weeks of gestation, however intermittent uterine contractions appeared (5-12min) on cardiotocography and vaginal bleeding was also smeared at 34+3/7 weeks. However, enhanced tocolytics and continuous administration of herbal medicine sustained the pregnancy to term. At 37+2/7 weeks, no sign of labor with restored cervical length was confirmed. The woman gave a term birth to a healthy infant via vaginal delivery at 39+3/7 gestational weeks. Conclusions: This is the first successful case report about a preter labor patient administered with conventional tocolytic agents as well as TKM herbal decoctions, delaying delivery to term. This case deserves attention considering it is rare to maintain gestation to term only with tocolytic intervention. Our report implies the potential of herbal medicine as an adjuvant therapy for preterm labor treatment. Further studies are needed to assess the safety and efficacy of TKM herbal medicine as a therapeutic alternative for curing preterm birth.

Keywords: preterm labor, traditional Korean medicine, herbal medicine, integrative treatment, complementary and alternative medicine

Procedia PDF Downloads 378
2914 Removal Efficiency of Some Heavy Metals from Aqueous Solution on Magnetic Nanoparticles

Authors: Gehan El-Sayed Sharaf El-Deen

Abstract:

In this study, super paramagnetic iron-oxide nano- materials (SPMIN) were investigated for removal of toxic heavy metals from aqueous solution. The magnetic nanoparticles of 12 nm were synthesized using a co-precipitation method and characterized by transmission electron microscopy (TEM), transform infrared spectroscopy (FTIR), x-ray diffraction (XRD) and vibrating sample magnetometer (VSM). Batch experiments carried out to investigate the influence of different parameters such as contact time, initial concentration of metal ions, the dosage of SPMIN, desorption,pH value of solutions. The adsorption process was found to be highly pH dependent, which made the nanoparticles selectively adsorb these three metals from wastewater. Maximum sorption for all the studies cations obtained at the first half hour and reached equilibrium at one hour. The adsorption data of heavy metals studied were well fitted with the Langmuir isotherm and the equilibrium data show the percent removal of Ni2+, Zn2+ and Cd2+ were 96.5%, 80% and 75%, respectively. Desorption studies in acidic medium indicate that Zn2+, Ni2+ and Cd2+ were removed by 89%, 2% and 18% from the first cycle. Regeneration studies indicated that SPMIN nanoparticles undergoing successive adsorption–desorption processes for Zn2+ ions retained original metal removal capacity. The results revealed that the most prominent advantage of the prepared SPMIN adsorbent consisted in their separation convenience compared to the other adsorbents and SPMIN has high efficiency for removal the investigated metals from aqueous solution.

Keywords: heavy metals, magnetic nanoparticles, removal efficiency, Batch technique

Procedia PDF Downloads 252
2913 Diffusion Mechanism of Aroma Compound (2-Acetyl-1-Pyrroline) in Rice During Storage

Authors: Mary Ann U. Baradi, Arnold R. Elepaño, Manuel Jose C. Regalado

Abstract:

Aromatic rice has become popular and continues to command higher price than ordinary rice because of its distinctive scent that makes it special. Freshly harvested aromatic rice exhibits strong aromatic scent but decreases with time and conditions during storage. Of the many volatile compounds in aromatic rice, 2-acetyl-1-pyrroline (2AP) is a major compound that gives rice its popcorn-like aroma. The diffusion mechanism of 2AP in rice was investigated. Semi-empirical models explaining 2AP diffusion as affected by temperature and duration were developed. Storage time and temperature affected 2AP loss via diffusion. The amount of 2AP in rice decreased with time. Free 2AP, being volatile, is lost due to diffusion. Storage experiment indicated rapid 2AP loss during the first five weeks and subsequently leveled off afterwards; attaining level of starch bound 2AP. Decline of 2AP during storage followed exponential equation and exhibited four stages; i.e. the initial, second, third and final stage. Free 2AP is easily lost while bound 2AP is left, only to be released upon exposure to high temperature such as cooking. Both free and bound 2AP is found in endosperm while free 2AP is in the bran. Around 63–67% of total 2AP was lost in brown and milled rice of MS 6 paddy kept at ambient. Samples stored at higher temperature (27°C) recorded higher 2AP loss than those kept at lower temperature (15°C). The study should be able to guide processors in understanding and controlling parameters in storage to produce high quality rice.

Keywords: 2-acetyl-1-pyrroline, aromatic rice, diffusion mechanism, storage

Procedia PDF Downloads 345
2912 Fabrication of Textile-Based Radio Frequency Metasurfaces

Authors: Adria Kajenski, Guinevere Strack, Edward Kingsley, Shahriar Khushrushahi, Alkim Akyurtlu

Abstract:

Radio Frequency (RF) metasurfaces are arrangements of subwavelength elements interacting with electromagnetic radiation. These arrangements affect polarization state, amplitude, and phase of impinged radio waves; for example, metasurface designs are used to produce functional passband and stopband filters. Recent advances in additive manufacturing techniques have enabled the low-cost, rapid fabrication of ultra-thin metasurface elements on flexible substrates such as plastic films, paper, and textiles. Furthermore, scalable manufacturing processes promote the integration of fabric-based RF metasurfaces into the market of sensors and devices within the Internet of Things (IoT). The design and fabrication of metasurfaces on textiles require a multidisciplinary team with expertise in i) textile and materials science, ii) metasurface design and simulation, and iii) metasurface fabrication and testing. In this presentation, we will discuss RF metasurfaces on fabric with an emphasis on how the materials, including fabric and inks, along with fabrication techniques, affect the RF performance. We printed metasurfaces using a direct-write approach onto various woven and non-woven fabrics, as well as on fabrics coated with either thermoplastic or thermoset coatings. Our team also performed a range of tests on the printed structures, including different inks and their curing parameters, wash durability, abrasion resistance, and RF performance over time.

Keywords: electronic textiles, metasurface, printed electronics, flexible

Procedia PDF Downloads 197
2911 Silver Grating for Strong and Reproducible SERS Response

Authors: Y. Kalachyova, O. Lyutakov, V. Svorcik

Abstract:

One of the most significant obstacles for the application of surface enhanced Raman spectroscopy (SERS) is the poor reproducibility of SERS active substrates: SERS intensity can be varied from one substrate to another and moreover along the one substrate surface. High enhancement of the near-field intensity is the key factor for ultrasensitive SERS realization. SERS substrate can be prepared through introduction of highly ordered metal array, where light focusing is achieved through excitation of surface plasmon-polaritons (SPPs). In this work, we report the preparation of silver nanostructures with plasmon absorption peaks tuned by the metal arrangement. Excimer laser modification of poly(methyl methacrylate) followed by silver evaporation is proposed as an effective way for the creation of reproducible and effective surface plasmon-polaritons (SPP)-based SERS substrate. Theoretical and experimental studies were performed to optimize structure parameter for effective SPP excitation. It was found that the narrow range of grating periodicity and metal thickness exist, where SPPs can be most efficiently excited. In spite of the fact, that SERS response was almost always achieved, the enhancement factor was found to vary more with the effectivity of SPP excitation. When the real structure parameters were set to optimal for SPP excitation, a SERS enhancement factor was achieved up to four times. Theoretical and experimental investigation of SPP excitation on the two-dimensional periodical silver array was performed with the aim to make SERS response as high as possible.

Keywords: grating, nanostructures, plasmon-polaritons, SERS

Procedia PDF Downloads 273
2910 Dynamic Analysis of the Heat Transfer in the Magnetically Assisted Reactor

Authors: Tomasz Borowski, Dawid Sołoducha, Rafał Rakoczy, Marian Kordas

Abstract:

The application of magnetic field is essential for a wide range of technologies or processes (i.e., magnetic hyperthermia, bioprocessing). From the practical point of view, bioprocess control is often limited to the regulation of temperature at constant values favourable to microbial growth. The main aim of this study is to determine the effect of various types of electromagnetic fields (i.e., static or alternating) on the heat transfer in a self-designed magnetically assisted reactor. The experimental set-up is equipped with a measuring instrument which controlled the temperature of the liquid inside the container and supervised the real-time acquisition of all the experimental data coming from the sensors. Temperature signals are also sampled from generator of magnetic field. The obtained temperature profiles were mathematically described and analyzed. The parameters characterizing the response to a step input of a first-order dynamic system were obtained and discussed. For example, the higher values of the time constant means slow signal (in this case, temperature) increase. After the period equal to about five-time constants, the sample temperature nearly reached the asymptotic value. This dynamical analysis allowed us to understand the heating effect under the action of various types of electromagnetic fields. Moreover, the proposed mathematical description can be used to compare the influence of different types of magnetic fields on heat transfer operations.

Keywords: heat transfer, magnetically assisted reactor, dynamical analysis, transient function

Procedia PDF Downloads 178
2909 Student Project on Using a Spreadsheet for Solving Differential Equations by Euler's Method

Authors: Andriy Didenko, Zanin Kavazovic

Abstract:

Engineering students often have certain difficulties in mastering major theoretical concepts in mathematical courses such as differential equations. Student projects were proposed to motivate students’ learning and can be used as a tool to promote students’ interest in the material. Authors propose a student project that includes the use of Microsoft Excel. This instructional tool is often overlooked by both educators and students. An integral component of the experimental part of such a project is the exploration of an interactive spreadsheet. The aim is to assist engineering students in better understanding of Euler’s method. This method is employed to numerically solve first order differential equations. At first, students are invited to select classic equations from a list presented in a form of a drop-down menu. For each of these equations, students can select and modify certain key parameters and observe the influence of initial condition on the solution. This will give students an insight into the behavior of the method in different configurations as solutions to equations are given in numerical and graphical forms. Further, students could also create their own equations by providing functions of their own choice and a variety of initial conditions. Moreover, they can visualize and explore the impact of the length of the time step on the convergence of a sequence of numerical solutions to the exact solution of the equation. As a final stage of the project, students are encouraged to develop their own spreadsheets for other numerical methods and other types of equations. Such projects promote students’ interest in mathematical applications and further improve their mathematical and programming skills.

Keywords: student project, Euler's method, spreadsheet, engineering education

Procedia PDF Downloads 137
2908 Statistical Mechanical Approach in Modeling of Hybrid Solar Cells for Photovoltaic Applications

Authors: A. E. Kobryn

Abstract:

We present both descriptive and predictive modeling of structural properties of blends of PCBM or organic-inorganic hybrid perovskites of the type CH3NH3PbX3 (X=Cl, Br, I) with P3HT, P3BT or squaraine SQ2 dye sensitizer, including adsorption on TiO2 clusters having rutile (110) surface. In our study, we use a methodology that allows computing the microscopic structure of blends on the nanometer scale and getting insight on miscibility of its components at various thermodynamic conditions. The methodology is based on the integral equation theory of molecular liquids in the reference interaction site representation/model (RISM) and uses the universal force field. Input parameters for RISM, such as optimized molecular geometries and charge distribution of interaction sites, are derived with the use of the density functional theory methods. To compare the diffusivity of the PCBM in binary blends with P3HT and P3BT, respectively, the study is complemented with MD simulation. A very good agreement with experiment and the reports of alternative modeling or simulation is observed for PCBM in P3HT system. The performance of P3BT with perovskites, however, seems as expected. The calculated nanoscale morphologies of blends of P3HT, P3BT or SQ2 with perovskites, including adsorption on TiO2, are all new and serve as an instrument in rational design of organic/hybrid photovoltaics. They are used in collaboration with experts who actually make prototypes or devices for practical applications.

Keywords: multiscale theory and modeling, nanoscale morphology, organic-inorganic halide perovskites, three dimensional distribution

Procedia PDF Downloads 160
2907 Study of Mechanical Properties of Leno Woven Bags in Lower Weight Capacities

Authors: Golda Honey Madhu, Priyanka Gupta, Anil Kumar Yadav

Abstract:

The study is aimed at analyzing and understanding the design and performance properties of leno woven sacks specifically meant for holding lower weight goods under the category of lower weight capacities. The sacks are a huge part of the agro-based packaging industries which helps in keeping the perishable produce, especially fruits, fresh during transit and storage. Nowadays, Leno bags are primarily made from polypropylene, mainly due its cost-effectiveness, reusability and high strength with low weight property making it an ideal packaging solution for transportation. The design parameters are noted, and major properties like tensile strength, abrasion resistance, bursting strength, impact resistance, stiffness and bagging behaviour has been analyzed for lower weight capacities. An examination of these particular weight categories will provide valuable information on how to scale performance. Currently there are standards available for only 25 kg and 50 kg Leno sacks, and this study will further enhance the already existing testing standards and also provide tested structure-property analysis for lower weight Leno sacks. Hence the results of this research can provide significant insights for researchers, manufacturers and industry-experts with the goal of improving the quality and longevity of Leno woven sacks, thereby developing the packaging technology.

Keywords: leno bags, structure-property analysis, agro-based packaging, lower weight sacks

Procedia PDF Downloads 28
2906 Development of Residual Power Series Methods for Efficient Solutions of Stiff Differential Equations

Authors: Gebreegziabher Hailu

Abstract:

This paper presents the development of residual power series methods aimed at efficiently solving stiff differential equations, which pose significant challenges in numerical analysis due to their rapid changes in solution behavior. The RPSM is a numerical approach that generates polynomial-based approximate solutions without the need for linearization, discretization, or perturbation techniques, making it straightforward to implement and less prone to computational errors. We introduce an approach that utilizes power series expansions combined with residual minimization techniques to enhance convergence and stability. By analyzing the theoretical foundations of stiffness, we delve into the formulation of the residual power series method, detailing how it effectively captures the dynamics of stiff systems while maintaining computational efficiency. Numerical experiments demonstrate the method's superiority in terms of accuracy and computational cost when compared to traditional methods like implicit Runge-Kutta or multistep techniques. We also explore adaptive strategies within our framework to automatically adjust parameters based on the stiffness characteristics of the problem at hand. Ultimately, our findings contribute to the broader toolkit for tackling stiff differential equations, offering a robust alternative that promises to streamline computational workflows in various applied mathematics and engineering contexts.

Keywords: residual power series methods, stiff differential equoations, numerical approach, Runge Kutta methods

Procedia PDF Downloads 30
2905 Stability Analysis of Rock Tunnel Subjected to Internal Blast Loading

Authors: Mohammad Zaid, Md. Rehan Sadique

Abstract:

Underground structures are an integral part of urban infrastructures. Tunnels are being used for the transportation of humans and goods from distance to distance. Terrorist attacks on underground structures such as tunnels have resulted in the improvement of design methodologies of tunnels. The design of underground tunnels must include anti-terror design parameters. The study has been carried out to analyse the rock tunnel when subjected to internal blast loading. The finite element analysis has been carried out for 30m by 30m of the cross-section of the tunnel and 35m length of extrusion of the rock tunnel model. The effect of tunnel diameter and overburden depth of tunnel has been studied under internal blast loading. Four different diameters of tunnel considered are 5m, 6m, 7m, and 8m, and four different overburden depth of tunnel considered are 5m, 7.5m, 10m, and 12.5m. The mohr-coulomb constitutive material model has been considered for the Quartzite rock. A concrete damage plasticity model has been adopted for concrete tunnel lining. For the trinitrotoluene (TNT) Jones-Wilkens-Lee (JWL) material model has been considered. Coupled-Eulerian-Lagrangian (CEL) approach for blast analysis has been considered in the present study. The present study concludes that a shallow tunnel having smaller diameter needs more attention in comparison to blast resistant design of deep tunnel having a larger diameter. Further, in the case of shallow tunnels, more bulging has been observed, and a more substantial zone of rock has been affected by internal blast loading.

Keywords: finite element method, blast, rock, tunnel, CEL, JWL

Procedia PDF Downloads 152
2904 Effect of Column Stiffness and Orientation on Seismic Behaviour of Buildings with Vertical Irregularities

Authors: Saraswati Verma, Ankit Batra

Abstract:

In the modern day, structures are designed with a lot of complexities due to economical, aesthetical, and functional needs causing various levels of irregularities to be induced. In the past, several studies have repeatedly shown that irregular structures suffer more damage than regular structures during earthquakes. The present study makes an effort to study the contribution of the orientation of columns in the seismic behaviour of buildings with vertical irregularities namely, soft storey irregularity, mass irregularity and geometric irregularity. The response of the various models is analysed using sap2000 version 14. The parameters through which a comparative response is investigated are displacement, variation in the stiffness contribution, and inter-storey drift. Models with different configurations of column orientations were studied for each vertical irregularity and it was observed that column orientation contributed significantly in affecting a better seismic response. Square columns of the same cross-sectional area showed a good response as compared to that of rectangular columns. The study concludes that as displacement values for buildings with a soft storey and mass irregularity are very high, square columns could be used to minimise the effect of displacement in x and y-axis. In buildings with geometric irregularity, exterior column orientations can be played with to enhance the stiffness in the shorter direction to control the displacement and drift values in both x and y directions.

Keywords: soft storey, mass irregularity, geometric irregularity, column orientation, square column

Procedia PDF Downloads 383
2903 Physiological and Molecular Characterizations of Ricinus Communis Genotypes under Cadmium Stress

Authors: Rini Rahul, Manoj Kumar

Abstract:

Cadmium (Cd) is a poisonous trace metal, which is responsible for excess reactive oxygen species generation (ROS) in plants, thereby adversely affecting their productivity and commercial potential. Ricinus communis (castor) is an industry-efficient non-edible bioenergy crop used for phytoremediation and re-vegetation. We have determined the total Cd content in castor genotypes and established a relationship between the Cd tolerance mechanism and physiological parameters like chlorophyll fluorescence, the total photosynthetic activity, chlorophyll and carotenoid content as well as ROS generation and malondialdehyde content. This study is an effort to comprehend the interrelation between Cd toxicity (control, 250 µM and 500 µM), proline, various ROS scavenging enzymes (anti-oxidative in nature), nicotianamine synthase (NAS) and Natural resistance-associated macrophage protein (NRAMP) gene. The antioxidant enzyme activity increased for WM hence conferring Cd toxicity in this genotype. RcNRAMP genes showed differential expression in GCH2 and WM genotypes; this can also be one of the reasons for Cd toxicity and sensitivity in WM and GCH2, respectively. The cause of pronounced Cd tolerance in WM leaves can be because of enhanced expression of RcNAS1, RcNAS2 and RcNAS3 genes. Our results demonstrate that there is an interrelation between Cd toxicity (control, 250 µM and 500 µM), proline, various ROS scavenging enzymes (anti-oxidative in nature), NAS and NRAMP gene.

Keywords: ricinus communis, cadmium, reactive oxygen species, nicotianamine synthase, NRAMP, malondialdehyde

Procedia PDF Downloads 81
2902 Pharmacokinetics, Dosage Regimen and in Vitro Plasma Protein Binding of Danofloxacin following Intravenous Administration in Adult Buffaloes

Authors: Zahid Manzoor, Shaukat Hussain Munawar, Zahid Iqbal, Imran Ahmad Khan, Abdul Aziz, Hafiz Muhammad Qasim

Abstract:

The present study was aimed to investigate the pharmacokinetics behavior and optimal dosage regimen of danofloxacin in 8 adult healthy buffaloes of local breed (Nili Ravi) following single intravenous administration at the dose of 2.5 mg/kg body weight. Plasma drug concentrations at various time intervals were measured by HPLC method. In vitro plasma protein binding was determined employing the ultrafiltration technique. The distribution and elimination of danofloxacin was rapid, as indicated by the values (Mean±SD) of distribution half-life (t1/2α = 0.25±0.09 hours) and elimination half life (t1/2β = 3.26±0.43 hours), respectively. Volume of distribution at steady state (Vss) was 1.14±0.12 L/kg, displaying its extensive distribution into various body fluids and tissues. The high value of AUC (9.80±2.14 µg/ml.hr) reflected the vast area of the body covered by drug concentration. The mean residence time was noted to be 4.78±0.52 hours. On the basis of pharmacokinetic parameters, a suitable intravenous regimen for danofloxacin in adult buffaloes would be 6.5 mg/kg to be repeated after 12 hours intervals. The present study is the foremost pharmacokinetic study of danofloxacin in the local species which would provide the valueable contribution in the local manufacturing of danofloxacin in Pakistan in future.

Keywords: danofloxacin, pharmacokinetics, plasma protein binding, buffaloes, dosage regimen

Procedia PDF Downloads 615
2901 Effect of Grafting and Rain Shelter Technologies on Performance of Tomato (Lycopersicum esculentum Mill.)

Authors: Evy Latifah, Eli Korlina, Hanik Anggraeni, Kuntoro Boga, Joko Mariyono

Abstract:

During the rainy season, the tomato plants are vulnerable to various diseases. A disease that attacks the leaves of tomato plants (foliar diseases) such as late blight (Phytophtora infestans) and spotting bacteria (bacterial spot / Xanthomonas sp.) In addition, there is a disease that attacks the roots such as fusarium and bacterial wilt. If not immediately anticipated, it will decrease the quality and quantity of crop yields. In fact, it can lead to crop failure. The aim of this research is to know the production of tomato grafting by using Timoty and CLN 3024 tomatoes at rain shelter during rainy season in lowland. Data were analyzed using analysis of variance and tested further by Least Significant Difference (LSD) level of 5 %. The parameters measured were plant height (cm), stem diameter (cm), number of fruit space, canopy extended, number of branches, number of productive branches, and the number of stem segments. The results show at the beginning of growth until the end of the treatment without grafting with relative rain shelter displays the highest plant height. This was followed by extensive crop canopy. For tomato grafting and non-grafting using rain shelter able to produce the number of branches and number of productive branches at most. While at the end of the growth in the number of productive branches generated as much. Highest production of tomatoes produced by tomato dig rafting to use the shelter.

Keywords: field trail, wet and dry season, production, diseases, rain shelter

Procedia PDF Downloads 234
2900 Preparation and Physicochemical Characterization of Non-ionic Surfactant Vesicles Containing Itraconazole

Authors: S. Ataei, F. Sarrafzadeh Javadi, K. Gilani, E. Moazeni

Abstract:

Drug delivery systems using colloidal particulate carriers such as niosomes or liposomes have distinct advantages over conventional dosage forms because the particles can act as drug-containing reservoirs. These carriers play an increasingly important role in drug delivery. Niosomes are vesicular delivery systems which result from the self-assembly of hydrated surfactant. Niosomes are now widely studied as an attractive to liposomes because they alleviate the disadvantages associated with liposomes, such as chemical instability, variable purity of phospholipids and high cost. The encapsulation of drugs in niosomes can decrease drug toxicity, increase the stability of drug and increase the penetrability of drug in the location of application, and may reduce the dose and systemic side effect. Nowadays, Niosomes are used by the pharmaceutical industry in manufacturing skin medications, eye medication, in cosmetic formulas and these vesicular systems can be used to deliver aspiratory drugs. One way of improving dispersion in the water phase and solubility of the hydrophobic drug is to formulate in into niosomes. Itraconazole (ITZ) was chosen as a model hydrophobic drug. This drug is water insoluble (solubility ~ 1 ng/ml at neutral pH), is a broad-spectrum triazole antifungal agent and is used to treat various fungal disease. This study aims to investigate the capability of forming itraconazole niosomes with Spans, Tweens, Brijs as non-ionic surfactants. To this end, various formulations of niosomes have been studied with regard to parameters such as the degree of containment and particle size.

Keywords: physicochemical, non-ionic surfactant vesicles, itraconazole

Procedia PDF Downloads 465
2899 Comparative Growth Rates of Treculia africana Decne: Embryo in Varied Strengths of Murashige and Skoog Basal Medium

Authors: Okafor C. Uche, Agbo P. Ejiofor, Okezie C. Eziuche

Abstract:

This study provides a regeneration protocol for Treculia africana Decne (an endangered plant) through embryo culture. Mature zygotic embryos of T. africana were excised from the seeds aseptically and cultured on varied strengths (full, half and quarter) of Murashige and Skoog (MS) basal medium supplemented. All treatments experienced 100±0.00 percent sprouting except for half and quarter strengths. Plantlets in MS full strength had the highest fresh weight, leaf area, and longest shoot length when compared to other treatments. All explants in full, half, quarter strengths and control had the same number of leaves and sprout rate. Between the treatments, there was a significant difference (P>0.05) in their effect on the length of shoot and root, number of adventitious root, leaf area, and fresh weight. Full strength had the highest mean value in all the above-mentioned parameters and differed significantly (P>0.05) from others except in shoot length, number of adventitious roots, and root length where it did not differ (P<0.05) from half strength. The result of this study indicates that full strength MS basal medium offers a better option for the optimum growth for Treculia africana regeneration in vitro.

Keywords: medium strengths, Murashige and Skoog, Treculia africana, zygotic embryos

Procedia PDF Downloads 259