Search results for: innovative business model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20527

Search results for: innovative business model

12277 Parameterized Lyapunov Function Based Robust Diagonal Dominance Pre-Compensator Design for Linear Parameter Varying Model

Authors: Xiaobao Han, Huacong Li, Jia Li

Abstract:

For dynamic decoupling of linear parameter varying system, a robust dominance pre-compensator design method is given. The parameterized pre-compensator design problem is converted into optimal problem constrained with parameterized linear matrix inequalities (PLMI); To solve this problem, firstly, this optimization problem is equivalently transformed into a new form with elimination of coupling relationship between parameterized Lyapunov function (PLF) and pre-compensator. Then the problem was reduced to a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a newly constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator was achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation of a turbofan engine PLPV model.

Keywords: linear parameter varying (LPV), parameterized Lyapunov function (PLF), linear matrix inequalities (LMI), diagonal dominance pre-compensator

Procedia PDF Downloads 399
12276 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability

Procedia PDF Downloads 289
12275 Ground Surface Temperature History Prediction Using Long-Short Term Memory Neural Network Architecture

Authors: Venkat S. Somayajula

Abstract:

Ground surface temperature history prediction model plays a vital role in determining standards for international nuclear waste management. International standards for borehole based nuclear waste disposal require paleoclimate cycle predictions on scale of a million forward years for the place of waste disposal. This research focuses on developing a paleoclimate cycle prediction model using Bayesian long-short term memory (LSTM) neural architecture operated on accumulated borehole temperature history data. Bayesian models have been previously used for paleoclimate cycle prediction based on Monte-Carlo weight method, but due to limitations pertaining model coupling with certain other prediction networks, Bayesian models in past couldn’t accommodate prediction cycle’s over 1000 years. LSTM has provided frontier to couple developed models with other prediction networks with ease. Paleoclimate cycle developed using this process will be trained on existing borehole data and then will be coupled to surface temperature history prediction networks which give endpoints for backpropagation of LSTM network and optimize the cycle of prediction for larger prediction time scales. Trained LSTM will be tested on past data for validation and then propagated for forward prediction of temperatures at borehole locations. This research will be beneficial for study pertaining to nuclear waste management, anthropological cycle predictions and geophysical features

Keywords: Bayesian long-short term memory neural network, borehole temperature, ground surface temperature history, paleoclimate cycle

Procedia PDF Downloads 128
12274 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection

Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón

Abstract:

Structural inspection activities are necessary to ensure the correct functioning of infrastructures. Unmanned Aerial Vehicle (UAV) techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. A methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of visible Red-Blue-Green (RGB) and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.

Keywords: aerial thermography, data processing, drone, low-cost, point cloud

Procedia PDF Downloads 143
12273 Topology and Shape Optimization of Macpherson Control Arm under Fatigue Loading

Authors: Abolfazl Hosseinpour, Javad Marzbanrad

Abstract:

In this research, the topology and shape optimization of a Macpherson control arm has been accomplished to achieve lighter weight. Present automotive market demands low cost and light weight component to meet the need of fuel efficient and cost effective vehicle. This in turn gives the rise to more effective use of materials for automotive parts which can reduce the mass of vehicle. Since automotive components are under dynamic loads which cause fatigue damage, considering fatigue criteria seems to be essential in designing automotive components. At first, in order to create severe loading condition for control arm, some rough roads are generated through power spectral density. Then, the most critical loading conditions are obtained through multibody dynamics analysis of a full vehicle model. Then, the topology optimization is performed based on fatigue life criterion using HyperMesh software, which resulted to 50 percent mass reduction. In the next step a CAD model is created using CATIA software and shape optimization is performed to achieve accurate dimensions with less mass.

Keywords: topology optimization, shape optimization, fatigue life, MacPherson control arm

Procedia PDF Downloads 316
12272 Improving Sales through Inventory Reduction: A Retail Chain Case Study

Authors: M. G. Mattos, J. E. Pécora Jr, T. A. Briso

Abstract:

Today's challenging business environment, with unpredictable demand and volatility, requires a supply chain strategy that handles uncertainty and risks in the right way. Even though inventory models have been previously explored, this paper seeks to apply these concepts on a practical situation. This study involves the inventory replenishment problem, applying techniques that are mainly based on mathematical assumptions and modeling. The primary goal is to improve the retailer’s supply chain processes taking store differences when setting the various target stock levels. Through inventory review policy, picking piece implementation and minimum exposure definition, we were able not only to promote the inventory reduction as well as improve sales results. The inventory management theory from literature review was then tested on a single case study regarding a particular department in one of the largest Latam retail chains.

Keywords: inventory, distribution, retail, risk, safety stock, sales, uncertainty

Procedia PDF Downloads 268
12271 A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor

Authors: Theoktisti Makridou, Konstantinos Tsaprailis, George Arvanitakis, Charalampos Kontoes

Abstract:

In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance.

Keywords: mosquito abundance, supervised machine learning, culex pipiens, spatial sampling, west nile virus, earth observation data

Procedia PDF Downloads 148
12270 Time Travel Testing: A Mechanism for Improving Renewal Experience

Authors: Aritra Majumdar

Abstract:

While organizations strive to expand their new customer base, retaining existing relationships is a key aspect of improving overall profitability and also showcasing how successful an organization is in holding on to its customers. It is an experimentally proven fact that the lion’s share of profit always comes from existing customers. Hence seamless management of renewal journeys across different channels goes a long way in improving trust in the brand. From a quality assurance standpoint, time travel testing provides an approach to both business and technology teams to enhance the customer experience when they look to extend their partnership with the organization for a defined phase of time. This whitepaper will focus on key pillars of time travel testing: time travel planning, time travel data preparation, and enterprise automation. Along with that, it will call out some of the best practices and common accelerator implementation ideas which are generic across verticals like healthcare, insurance, etc. In this abstract document, a high-level snapshot of these pillars will be provided. Time Travel Planning: The first step of setting up a time travel testing roadmap is appropriate planning. Planning will include identifying the impacted systems that need to be time traveled backward or forward depending on the business requirement, aligning time travel with other releases, frequency of time travel testing, preparedness for handling renewal issues in production after time travel testing is done and most importantly planning for test automation testing during time travel testing. Time Travel Data Preparation: One of the most complex areas in time travel testing is test data coverage. Aligning test data to cover required customer segments and narrowing it down to multiple offer sequencing based on defined parameters are keys for successful time travel testing. Another aspect is the availability of sufficient data for similar combinations to support activities like defect retesting, regression testing, post-production testing (if required), etc. This section will talk about the necessary steps for suitable data coverage and sufficient data availability from a time travel testing perspective. Enterprise Automation: Time travel testing is never restricted to a single application. The workflow needs to be validated in the downstream applications to ensure consistency across the board. Along with that, the correctness of offers across different digital channels needs to be checked in order to ensure a smooth customer experience. This section will talk about the focus areas of enterprise automation and how automation testing can be leveraged to improve the overall quality without compromising on the project schedule. Along with the above-mentioned items, the white paper will elaborate on the best practices that need to be followed during time travel testing and some ideas pertaining to accelerator implementation. To sum it up, this paper will be written based on the real-time experience author had on time travel testing. While actual customer names and program-related details will not be disclosed, the paper will highlight the key learnings which will help other teams to implement time travel testing successfully.

Keywords: time travel planning, time travel data preparation, enterprise automation, best practices, accelerator implementation ideas

Procedia PDF Downloads 159
12269 Modeling of Erosion and Sedimentation Impacts from off-Road Vehicles in Arid Regions

Authors: Abigail Rosenberg, Jennifer Duan, Michael Poteuck, Chunshui Yu

Abstract:

The Barry M. Goldwater Range, West in southwestern Arizona encompasses 2,808 square kilometers of Sonoran Desert. The hyper-arid range has an annual rainfall of less than 10 cm with an average high temperature of 41 degrees Celsius in July to an average low of 4 degrees Celsius in January. The range shares approximately 60 kilometers of the international border with Mexico. A majority of the range is open for recreational use, primarily off-highway vehicles. Because of its proximity to Mexico, the range is also heavily patrolled by U.S. Customs and Border Protection seeking to intercept and apprehend inadmissible people and illicit goods. Decades of off-roading and Border Patrol activities have negatively impacted this sensitive desert ecosystem. To assist the range program managers, this study is developing a model to identify erosion prone areas and calibrate the model’s parameters using the Automated Geospatial Watershed Assessment modeling tool.

Keywords: arid lands, automated geospatial watershed assessment, erosion modeling, sedimentation modeling, watershed modeling

Procedia PDF Downloads 374
12268 Climate Change and Landslide Risk Assessment in Thailand

Authors: Shotiros Protong

Abstract:

The incidents of sudden landslides in Thailand during the past decade have occurred frequently and more severely. It is necessary to focus on the principal parameters used for analysis such as land cover land use, rainfall values, characteristic of soil and digital elevation model (DEM). The combination of intense rainfall and severe monsoons is increasing due to global climate change. Landslide occurrences rapidly increase during intense rainfall especially in the rainy season in Thailand which usually starts around mid-May and ends in the middle of October. The rain-triggered landslide hazard analysis is the focus of this research. The combination of geotechnical and hydrological data are used to determine permeability, conductivity, bedding orientation, overburden and presence of loose blocks. The regional landslide hazard mapping is developed using the Slope Stability Index SINMAP model supported on Arc GIS software version 10.1. Geological and land use data are used to define the probability of landslide occurrences in terms of geotechnical data. The geological data can indicate the shear strength and the angle of friction values for soils above given rock types, which leads to the general applicability of the approach for landslide hazard analysis. To address the research objectives, the methods are described in this study: setup and calibration of the SINMAP model, sensitivity of the SINMAP model, geotechnical laboratory, landslide assessment at present calibration and landslide assessment under future climate simulation scenario A2 and B2. In terms of hydrological data, the millimetres/twenty-four hours of average rainfall data are used to assess the rain triggered landslide hazard analysis in slope stability mapping. During 1954-2012 period, is used for the baseline of rainfall data at the present calibration. The climate change in Thailand, the future of climate scenarios are simulated by spatial and temporal scales. The precipitation impact is need to predict for the climate future, Statistical Downscaling Model (SDSM) version 4.2, is used to assess the simulation scenario of future change between latitude 16o 26’ and 18o 37’ north and between longitude 98o 52’ and 103o 05’ east by SDSM software. The research allows the mapping of risk parameters for landslide dynamics, and indicates the spatial and time trends of landslide occurrences. Thus, regional landslide hazard mapping under present-day climatic conditions from 1954 to 2012 and simulations of climate change based on GCM scenarios A2 and B2 from 2013 to 2099 related to the threshold rainfall values for the selected the study area in Uttaradit province in the northern part of Thailand. Finally, the landslide hazard mapping will be compared and shown by areas (km2 ) in both the present and the future under climate simulation scenarios A2 and B2 in Uttaradit province.

Keywords: landslide hazard, GIS, slope stability index (SINMAP), landslides, Thailand

Procedia PDF Downloads 564
12267 Fuzzy Data, Random Drift, and a Theoretical Model for the Sequential Emergence of Religious Capacity in Genus Homo

Authors: Margaret Boone Rappaport, Christopher J. Corbally

Abstract:

The ancient ape ancestral population from which living great ape and human species evolved had demographic features affecting their evolution. The population was large, had great genetic variability, and natural selection was effective at honing adaptations. The emerging populations of chimpanzees and humans were affected more by founder effects and genetic drift because they were smaller. Natural selection did not disappear, but it was not as strong. Consequences of the 'population crash' and the human effective population size are introduced briefly. The history of the ancient apes is written in the genomes of living humans and great apes. The expansion of the brain began before the human line emerged. Coalescence times for some genes are very old – up to several million years, long before Homo sapiens. The mismatch between gene trees and species trees highlights the anthropoid speciation processes, and gives the human genome history a fuzzy, probabilistic quality. However, it suggests traits that might form a foundation for capacities emerging later. A theoretical model is presented in which the genomes of early ape populations provide the substructure for the emergence of religious capacity later on the human line. The model does not search for religion, but its foundations. It suggests a course by which an evolutionary line that began with prosimians eventually produced a human species with biologically based religious capacity. The model of the sequential emergence of religious capacity relies on cognitive science, neuroscience, paleoneurology, primate field studies, cognitive archaeology, genomics, and population genetics. And, it emphasizes five trait types: (1) Documented, positive selection of sensory capabilities on the human line may have favored survival, but also eventually enriched human religious experience. (2) The bonobo model suggests a possible down-regulation of aggression and increase in tolerance while feeding, as well as paedomorphism – but, in a human species that remains cognitively sharp (unlike the bonobo). The two species emerged from the same ancient ape population, so it is logical to search for shared traits. (3) An up-regulation of emotional sensitivity and compassion seems to have occurred on the human line. This finds support in modern genetic studies. (4) The authors’ published model of morality's emergence in Homo erectus encompasses a cognitively based, decision-making capacity that was hypothetically overtaken, in part, by religious capacity. Together, they produced a strong, variable, biocultural capability to support human sociability. (5) The full flowering of human religious capacity came with the parietal expansion and smaller face (klinorhynchy) found only in Homo sapiens. Details from paleoneurology suggest the stage was set for human theologies. Larger parietal lobes allowed humans to imagine inner spaces, processes, and beings, and, with the frontal lobe, led to the first theologies composed of structured and integrated theories of the relationships between humans and the supernatural. The model leads to the evolution of a small population of African hominins that was ready to emerge with religious capacity when the species Homo sapiens evolved two hundred thousand years ago. By 50-60,000 years ago, when human ancestors left Africa, they were fully enabled.

Keywords: genetic drift, genomics, parietal expansion, religious capacity

Procedia PDF Downloads 341
12266 Compliance and Assessment Process of Information Technology in Accounting, in Turkey

Authors: Kocakaya Eda, Argun Doğan

Abstract:

This study analyzed the present state of information technology in the field of accounting by bibliometric analysis of scientific studies on the impact on the transformation of e-billing and tax managementin Turkey. With comparative bibliometric analysis, the innovation and positive effects of the process that changed with e-transformation in the field of accounting with e-transformation in businesses and the information technologies used in accounting and tax management were analyzed comparatively. By evaluating the data obtained as a result of these analyzes, suggestions on the use of information technologies in accounting and tax management and the positive and negative effects of e-transformation on the analyzed activities of the enterprises were emphasized. With the e-transformation, which will be realized with the most efficient use of information technologies in Turkey. The synergy and efficiency of IT technology developments in avcoounting and finance should be revealed in the light of scientific data, from the smallest business to the largest economic enterprises.

Keywords: information technologies, E-invoice, E-Tax management, E-transformation, accounting programs

Procedia PDF Downloads 119
12265 Relationship between ISO 14001 and Market Performance of Firms in China: An Institutional and Market Learning Perspective

Authors: Hammad Riaz, Abubakr Saeed

Abstract:

Environmental Management System (EMS), i.e., ISO 14001 helps to build corporate reputation, legitimacy and can also be considered as firms’ strategic response to institutional pressure to reduce the impact of business activity on natural environment. The financial outcomes of certifying with ISO 14001 are still unclear and equivocal. Drawing on institutional and market learning theories, the impact of ISO 14001 on firms’ market performance is examined for Chinese firms. By employing rigorous event study approach, this paper compared ISO 14001 certified firms with non-certified counterpart firms based on different matching criteria that include size, return on assets and industry. The results indicate that the ISO 14001 has been negatively signed by the investors both in the short and long-run. This paper suggested implications for policy makers, managers, and other nonprofit organizations.

Keywords: ISO 14001, legitimacy, institutional forces, event study approach, emerging markets

Procedia PDF Downloads 161
12264 Deep Learning-Based Approach to Automatic Abstractive Summarization of Patent Documents

Authors: Sakshi V. Tantak, Vishap K. Malik, Neelanjney Pilarisetty

Abstract:

A patent is an exclusive right granted for an invention. It can be a product or a process that provides an innovative method of doing something, or offers a new technical perspective or solution to a problem. A patent can be obtained by making the technical information and details about the invention publicly available. The patent owner has exclusive rights to prevent or stop anyone from using the patented invention for commercial uses. Any commercial usage, distribution, import or export of a patented invention or product requires the patent owner’s consent. It has been observed that the central and important parts of patents are scripted in idiosyncratic and complex linguistic structures that can be difficult to read, comprehend or interpret for the masses. The abstracts of these patents tend to obfuscate the precise nature of the patent instead of clarifying it via direct and simple linguistic constructs. This makes it necessary to have an efficient access to this knowledge via concise and transparent summaries. However, as mentioned above, due to complex and repetitive linguistic constructs and extremely long sentences, common extraction-oriented automatic text summarization methods should not be expected to show a remarkable performance when applied to patent documents. Other, more content-oriented or abstractive summarization techniques are able to perform much better and generate more concise summaries. This paper proposes an efficient summarization system for patents using artificial intelligence, natural language processing and deep learning techniques to condense the knowledge and essential information from a patent document into a single summary that is easier to understand without any redundant formatting and difficult jargon.

Keywords: abstractive summarization, deep learning, natural language Processing, patent document

Procedia PDF Downloads 123
12263 Authentic Leadership, Task Performance, and Organizational Citizenship Behavior

Authors: C. V. Chen, Y. H. Jeng, S. J. Wang

Abstract:

Leadership is essential to enhancing followers’ psychological empowerment and has an effect on their willingness to take on extra-role behavior and aim for greater performance. Authentic leadership is confirmed to promote employees’ positive affect, psychological empowerment, well-being, and performance. Employees’ spontaneous undertaking of organizationally desired behaviors allows organizations’ gaining the edge in the fiercely competitive business environment. Apart from the contextual factor of leadership, individuals’ goal orientation is found to be highly related to his/her performance. To better understand the psychological process and potential moderation of personal goal orientation, this study investigates the effect of authentic leadership on employees’ task performance and organizational citizenship behavior by including psychological empowerment as the mediating factor and goal orientation as the moderating factor.

Keywords: authentic leadership, task performance, organizational citizenship behavior, goal orientation

Procedia PDF Downloads 791
12262 Combination of Unmanned Aerial Vehicle and Terrestrial Laser Scanner Data for Citrus Yield Estimation

Authors: Mohammed Hmimou, Khalid Amediaz, Imane Sebari, Nabil Bounajma

Abstract:

Annual crop production is one of the most important macroeconomic indicators for the majority of countries around the world. This information is valuable, especially for exporting countries which need a yield estimation before harvest in order to correctly plan the supply chain. When it comes to estimating agricultural yield, especially for arboriculture, conventional methods are mostly applied. In the case of the citrus industry, the sale before harvest is largely practiced, which requires an estimation of the production when the fruit is on the tree. However, conventional method based on the sampling surveys of some trees within the field is always used to perform yield estimation, and the success of this process mainly depends on the expertise of the ‘estimator agent’. The present study aims to propose a methodology based on the combination of unmanned aerial vehicle (UAV) images and terrestrial laser scanner (TLS) point cloud to estimate citrus production. During data acquisition, a fixed wing and rotatory drones, as well as a terrestrial laser scanner, were tested. After that, a pre-processing step was performed in order to generate point cloud and digital surface model. At the processing stage, a machine vision workflow was implemented to extract points corresponding to fruits from the whole tree point cloud, cluster them into fruits, and model them geometrically in a 3D space. By linking the resulting geometric properties to the fruit weight, the yield can be estimated, and the statistical distribution of fruits size can be generated. This later property, which is information required by importing countries of citrus, cannot be estimated before harvest using the conventional method. Since terrestrial laser scanner is static, data gathering using this technology can be performed over only some trees. So, integration of drone data was thought in order to estimate the yield over a whole orchard. To achieve that, features derived from drone digital surface model were linked to yield estimation by laser scanner of some trees to build a regression model that predicts the yield of a tree given its features. Several missions were carried out to collect drone and laser scanner data within citrus orchards of different varieties by testing several data acquisition parameters (fly height, images overlap, fly mission plan). The accuracy of the obtained results by the proposed methodology in comparison to the yield estimation results by the conventional method varies from 65% to 94% depending mainly on the phenological stage of the studied citrus variety during the data acquisition mission. The proposed approach demonstrates its strong potential for early estimation of citrus production and the possibility of its extension to other fruit trees.

Keywords: citrus, digital surface model, point cloud, terrestrial laser scanner, UAV, yield estimation, 3D modeling

Procedia PDF Downloads 142
12261 Operational Challenges of Marine Fiber Reinforced Polymer Composite Structures Coupled with Piezoelectric Transducers

Authors: H. Ucar, U. Aridogan

Abstract:

Composite structures become intriguing for the design of aerospace, automotive and marine applications due to weight reduction, corrosion resistance and radar signature reduction demands and requirements. Studies on piezoelectric ceramic transducers (PZT) for diagnostics and health monitoring have gained attention for their sensing capabilities, however PZT structures are prone to fail in case of heavy operational loads. In this paper, we develop a piezo-based Glass Fiber Reinforced Polymer (GFRP) composite finite element (FE) model, validate with experimental setup, and identify the applicability and limitations of PZTs for a marine application. A case study is conducted to assess the piezo-based sensing capabilities in a representative marine composite structure. A FE model of the composite structure combined with PZT patches is developed, afterwards the response and functionality are investigated according to the sea conditions. Results of this study clearly indicate the blockers and critical aspects towards industrialization and wide-range use of PZTs for marine composite applications.

Keywords: FRP composite, operational challenges, piezoelectric transducers, FE modeling

Procedia PDF Downloads 174
12260 Corporate Cash Holdings and the Effect of Chaebol Affiliated on the Implied Cost of Equity Capital: Evidence from Korea

Authors: Hongmin Chun

Abstract:

This paper examines corporate cash holdings and their effect on the cost of equity capital. In addition, this study examines the potentially different effects when the firm belongs to chaebol and non-chaebol groups. Chaebol is a South Korean form of business conglomerate. Chaebol is typically global multinationals and owns numerous international enterprises, controlled by a chairman with power over all the operations. The overall empirical result suggests that higher cash holdings are a risk increasing factor which holds for the chaebol group of firms. This result is valid in a battery of robustness tests and 2SLS regressions. In Korea, higher cash holdings represent a risk premium factor that is closely related to the overinvestment and agency problems between managers and shareholders.

Keywords: cash holdings, implied cost of equity capital, chaebol, agency problem

Procedia PDF Downloads 176
12259 Depth-Averaged Modelling of Erosion and Sediment Transport in Free-Surface Flows

Authors: Thomas Rowan, Mohammed Seaid

Abstract:

A fast finite volume solver for multi-layered shallow water flows with mass exchange and an erodible bed is developed. This enables the user to solve a number of complex sediment-based problems including (but not limited to), dam-break over an erodible bed, recirculation currents and bed evolution as well as levy and dyke failure. This research develops methodologies crucial to the under-standing of multi-sediment fluvial mechanics and waterway design. In this model mass exchange between the layers is allowed and, in contrast to previous models, sediment and fluid are able to transfer between layers. In the current study we use a two-step finite volume method to avoid the solution of the Riemann problem. Entrainment and deposition rates are calculated for the first time in a model of this nature. In the first step the governing equations are rewritten in a non-conservative form and the intermediate solutions are calculated using the method of characteristics. In the second stage, the numerical fluxes are reconstructed in conservative form and are used to calculate a solution that satisfies the conservation property. This method is found to be considerably faster than other comparative finite volume methods, it also exhibits good shock capturing. For most entrainment and deposition equations a bed level concentration factor is used. This leads to inaccuracies in both near bed level concentration and total scour. To account for diffusion, as no vertical velocities are calculated, a capacity limited diffusion coefficient is used. The additional advantage of this multilayer approach is that there is a variation (from single layer models) in bottom layer fluid velocity: this dramatically reduces erosion, which is often overestimated in simulations of this nature using single layer flows. The model is used to simulate a standard dam break. In the dam break simulation, as expected, the number of fluid layers utilised creates variation in the resultant bed profile, with more layers offering a higher deviation in fluid velocity . These results showed a marked variation in erosion profiles from standard models. The overall the model provides new insight into the problems presented at minimal computational cost.

Keywords: erosion, finite volume method, sediment transport, shallow water equations

Procedia PDF Downloads 217
12258 Tokyo Skyscrapers: Technologically Advanced Structures in Seismic Areas

Authors: J. Szolomicki, H. Golasz-Szolomicka

Abstract:

The architectural and structural analysis of selected high-rise buildings in Tokyo is presented in this paper. The capital of Japan is the most densely populated city in the world and moreover is located in one of the most active seismic zones. The combination of these factors has resulted in the creation of sophisticated designs and innovative engineering solutions, especially in the field of design and construction of high-rise buildings. The foreign architectural studios (as, for Jean Nouvel, Kohn Pedesen Associates, Skidmore, Owings & Merill) which specialize in the designing of skyscrapers, played a major role in the development of technological ideas and architectural forms for such extraordinary engineering structures. Among the projects completed by them, there are examples of high-rise buildings that set precedents for future development. An essential aspect which influences the design of high-rise buildings is the necessity to take into consideration their dynamic reaction to earthquakes and counteracting wind vortices. The need to control motions of these buildings, induced by the force coming from earthquakes and wind, led to the development of various methods and devices for dissipating energy which occur during such phenomena. Currently, Japan is a global leader in seismic technologies which safeguard seismic influence on high-rise structures. Due to these achievements the most modern skyscrapers in Tokyo are able to withstand earthquakes with a magnitude of over seven degrees at the Richter scale. Damping devices applied are of a passive, which do not require additional power supply or active one which suppresses the reaction with the input of extra energy. In recent years also hybrid dampers were used, with an additional active element to improve the efficiency of passive damping.

Keywords: core structures, damping system, high-rise building, seismic zone

Procedia PDF Downloads 175
12257 A Double Ended AC Series Arc Fault Location Algorithm Based on Currents Estimation and a Fault Map Trace Generation

Authors: Edwin Calderon-Mendoza, Patrick Schweitzer, Serge Weber

Abstract:

Series arc faults appear frequently and unpredictably in low voltage distribution systems. Many methods have been developed to detect this type of faults and commercial protection systems such AFCI (arc fault circuit interrupter) have been used successfully in electrical networks to prevent damage and catastrophic incidents like fires. However, these devices do not allow series arc faults to be located on the line in operating mode. This paper presents a location algorithm for series arc fault in a low-voltage indoor power line in an AC 230 V-50Hz home network. The method is validated through simulations using the MATLAB software. The fault location method uses electrical parameters (resistance, inductance, capacitance, and conductance) of a 49 m indoor power line. The mathematical model of a series arc fault is based on the analysis of the V-I characteristics of the arc and consists basically of two antiparallel diodes and DC voltage sources. In a first step, the arc fault model is inserted at some different positions across the line which is modeled using lumped parameters. At both ends of the line, currents and voltages are recorded for each arc fault generation at different distances. In the second step, a fault map trace is created by using signature coefficients obtained from Kirchhoff equations which allow a virtual decoupling of the line’s mutual capacitance. Each signature coefficient obtained from the subtraction of estimated currents is calculated taking into account the Discrete Fast Fourier Transform of currents and voltages and also the fault distance value. These parameters are then substituted into Kirchhoff equations. In a third step, the same procedure described previously to calculate signature coefficients is employed but this time by considering hypothetical fault distances where the fault can appear. In this step the fault distance is unknown. The iterative calculus from Kirchhoff equations considering stepped variations of the fault distance entails the obtaining of a curve with a linear trend. Finally, the fault distance location is estimated at the intersection of two curves obtained in steps 2 and 3. The series arc fault model is validated by comparing current registered from simulation with real recorded currents. The model of the complete circuit is obtained for a 49m line with a resistive load. Also, 11 different arc fault positions are considered for the map trace generation. By carrying out the complete simulation, the performance of the method and the perspectives of the work will be presented.

Keywords: indoor power line, fault location, fault map trace, series arc fault

Procedia PDF Downloads 137
12256 A Comparison of Methods for Estimating Dichotomous Treatment Effects: A Simulation Study

Authors: Jacqueline Y. Thompson, Sam Watson, Lee Middleton, Karla Hemming

Abstract:

Introduction: The odds ratio (estimated via logistic regression) is a well-established and common approach for estimating covariate-adjusted binary treatment effects when comparing a treatment and control group with dichotomous outcomes. Its popularity is primarily because of its stability and robustness to model misspecification. However, the situation is different for the relative risk and risk difference, which are arguably easier to interpret and better suited to specific designs such as non-inferiority studies. So far, there is no equivalent, widely acceptable approach to estimate an adjusted relative risk and risk difference when conducting clinical trials. This is partly due to the lack of a comprehensive evaluation of available candidate methods. Methods/Approach: A simulation study is designed to evaluate the performance of relevant candidate methods to estimate relative risks to represent conditional and marginal estimation approaches. We consider the log-binomial, generalised linear models (GLM) with iteratively weighted least-squares (IWLS) and model-based standard errors (SE); log-binomial GLM with convex optimisation and model-based SEs; log-binomial GLM with convex optimisation and permutation tests; modified-Poisson GLM IWLS and robust SEs; log-binomial generalised estimation equations (GEE) and robust SEs; marginal standardisation and delta method SEs; and marginal standardisation and permutation test SEs. Independent and identically distributed datasets are simulated from a randomised controlled trial to evaluate these candidate methods. Simulations are replicated 10000 times for each scenario across all possible combinations of sample sizes (200, 1000, and 5000), outcomes (10%, 50%, and 80%), and covariates (ranging from -0.05 to 0.7) representing weak, moderate or strong relationships. Treatment effects (ranging from 0, -0.5, 1; on the log-scale) will consider null (H0) and alternative (H1) hypotheses to evaluate coverage and power in realistic scenarios. Performance measures (bias, mean square error (MSE), relative efficiency, and convergence rates) are evaluated across scenarios covering a range of sample sizes, event rates, covariate prognostic strength, and model misspecifications. Potential Results, Relevance & Impact: There are several methods for estimating unadjusted and adjusted relative risks. However, it is unclear which method(s) is the most efficient, preserves type-I error rate, is robust to model misspecification, or is the most powerful when adjusting for non-prognostic and prognostic covariates. GEE estimations may be biased when the outcome distributions are not from marginal binary data. Also, it seems that marginal standardisation and convex optimisation may perform better than GLM IWLS log-binomial.

Keywords: binary outcomes, statistical methods, clinical trials, simulation study

Procedia PDF Downloads 115
12255 The Relationship Between Cyberbullying Victimization, Parent and Peer Attachment and Unconditional Self-Acceptance

Authors: Florina Magdalena Anichitoae, Anca Dobrean, Ionut Stelian Florean

Abstract:

Due to the fact that cyberbullying victimization is an increasing problem nowadays, affecting more and more children and adolescents around the world, we wanted to take a step forward analyzing this phenomenon. So, we took a look at some variables which haven't been studied together before, trying to develop another way to view cyberbullying victimization. We wanted to test the effects of the mother, father, and peer attachment on adolescent involvement in cyberbullying as victims through unconditional self acceptance. Furthermore, we analyzed each subscale of the IPPA-R, the instrument we have used for parents and peer attachment measurement, in regards to cyberbullying victimization through unconditional self acceptance. We have also analyzed if gender and age could be taken into consideration as moderators in this model. The analysis has been performed on 653 adolescents aged 11-17 years old from Romania. We used structural equation modeling, working in R program. For the fidelity analysis of the IPPA-R subscales, USAQ, and Cyberbullying Test, we have calculated the internal consistency index, which varies between .68-.91. We have created 2 models: the first model including peer alienation, peer trust, peer communication, self acceptance and cyberbullying victimization, having CFI=0.97, RMSEA=0.02, 90%CI [0.02, 0.03] and SRMR=0.07, and the second model including parental alienation, parental trust, parental communication, self acceptance and cyberbullying victimization and had CFI=0.97, RMSEA=0.02, 90%CI [0.02, 0.03] and SRMR=0.07. Our results were interesting: on one hand, cyberbullying victimization is predicted by peer alienation and peer communication through unconditional self acceptance. Peer trust directly, significantly, and negatively predicted the implication in cyberbullying. In this regard, considering gender and age as moderators, we found that the relationship between unconditional self acceptance and cyberbullying victimization is stronger in girls, but age does not moderate the relationship between unconditional self acceptance and cyberbullying victimization. On the other hand, regarding the degree of cyberbullying victimization as being predicted through unconditional self acceptance by parental alienation, parental communication, and parental trust, this hypothesis was not supported. Still, we could identify a direct path to positively predict victimization through parental alienation and negatively through parental trust. There are also some limitations to this study, which we've discussed in the end.

Keywords: adolescent, attachment, cyberbullying victimization, parents, peers, unconditional self-acceptance

Procedia PDF Downloads 204
12254 Machine Learning-Based Techniques for Detecting and Mitigating Cyber-attacks on Automatic Generation Control in Smart Grids

Authors: Sami M. Alshareef

Abstract:

The rapid growth of smart grid technology has brought significant advancements to the power industry. However, with the increasing interconnectivity and reliance on information and communication technologies, smart grids have become vulnerable to cyber-attacks, posing significant threats to the reliable operation of power systems. Among the critical components of smart grids, the Automatic Generation Control (AGC) system plays a vital role in maintaining the balance between generation and load demand. Therefore, protecting the AGC system from cyber threats is of paramount importance to maintain grid stability and prevent disruptions. Traditional security measures often fall short in addressing sophisticated and evolving cyber threats, necessitating the exploration of innovative approaches. Machine learning, with its ability to analyze vast amounts of data and learn patterns, has emerged as a promising solution to enhance AGC system security. Therefore, this research proposal aims to address the challenges associated with detecting and mitigating cyber-attacks on AGC in smart grids by leveraging machine learning techniques on automatic generation control of two-area power systems. By utilizing historical data, the proposed system will learn the normal behavior patterns of AGC and identify deviations caused by cyber-attacks. Once an attack is detected, appropriate mitigation strategies will be employed to safeguard the AGC system. The outcomes of this research will provide power system operators and administrators with valuable insights into the vulnerabilities of AGC systems in smart grids and offer practical solutions to enhance their cyber resilience.

Keywords: machine learning, cyber-attacks, automatic generation control, smart grid

Procedia PDF Downloads 85
12253 N-Heptane as Model Molecule for Cracking Catalyst Evaluation to Improve the Yield of Ethylene and Propylene

Authors: Tony K. Joseph, Balasubramanian Vathilingam, Stephane Morin

Abstract:

Currently, the refiners around the world are more focused on improving the yield of light olefins (propylene and ethylene) as both of them are very prominent raw materials to produce wide spectrum of polymeric materials such as polyethylene and polypropylene. Henceforth, it is desirable to increase the yield of light olefins via selective cracking of heavy oil fractions. In this study, zeolite grown on SiC was used as the catalyst to do model cracking reaction of n-heptane. The catalytic cracking of n-heptane was performed in a fixed bed reactor (12 mm i.d.) at three different temperatures (425, 450 and 475 °C) and at atmospheric pressure. A carrier gas (N₂) was mixed with n-heptane with ratio of 90:10 (N₂:n-heptane), and the gaseous mixture was introduced into the fixed bed reactor. Various flow rate of reactants was tested to increase the yield of ethylene and propylene. For the comparison purpose, commercial zeolite was also tested in addition to Zeolite on SiC. The products were analyzed using an Agilent gas chromatograph (GC-9860) equipped with flame ionization detector (FID). The GC is connected online with the reactor and all the cracking tests were successfully reproduced. The entire catalytic evaluation results will be presented during the conference.

Keywords: cracking, catalyst, evaluation, ethylene, heptane, propylene

Procedia PDF Downloads 136
12252 Policy of Tourism and Opportunities of Development of Wellness Industry in Georgia

Authors: G. Erkomaishvili, R. Gvelesiani, E. Kharaishvili, M. Chavleishvili

Abstract:

The topic reviews the situation existing currently in Georgia in the field of tourism in conditions of globalization: Touristic resources, the paces of development of the tourism infrastructure, tourism policy, possibilities of development of the Wellness industry in Georgia that is the newest direction of the medical tourism. The factors impeding the development of the industry of tourism, namely-existence of the conflict zones, high rates of the bank credits, deficiencies associated with the tax laws, a level of infrastructural development, quality of services, deficit in the competitive staff, increase of prices in the peak seasons, insufficient promotion of the touristic opportunities of Georgia on the international markets are studied and analyzed. Besides, the levels of development of tourism in Georgia according to the World Economic Forum, aspects of cooperation with the European Union etc. are reviewed. As a result of these studies, a strategy of development of tourism and one of its directions-Wellness industries in Georgia is introduced with the relevant conclusions, on which basis the recommendations are provided.

Keywords: about tourism, tourism policy, wellness industry, business, innovation, technology

Procedia PDF Downloads 517
12251 On the Dwindling Supply of the Observable Cosmic Microwave Background Radiation

Authors: Jia-Chao Wang

Abstract:

The cosmic microwave background radiation (CMB) freed during the recombination era can be considered as a photon source of small duration; a one-time event happened everywhere in the universe simultaneously. If space is divided into concentric shells centered at an observer’s location, one can imagine that the CMB photons originated from the nearby shells would reach and pass the observer first, and those in shells farther away would follow as time goes forward. In the Big Bang model, space expands rapidly in a time-dependent manner as described by the scale factor. This expansion results in an event horizon coincident with one of the shells, and its radius can be calculated using cosmological calculators available online. Using Planck 2015 results, its value during the recombination era at cosmological time t = 0.379 million years (My) is calculated to be Revent = 56.95 million light-years (Mly). The event horizon sets a boundary beyond which the freed CMB photons will never reach the observer. The photons within the event horizon also exhibit a peculiar behavior. Calculated results show that the CMB observed today was freed in a shell located at 41.8 Mly away (inside the boundary set by Revent) at t = 0.379 My. These photons traveled 13.8 billion years (Gy) to reach here. Similarly, the CMB reaching the observer at t = 1, 5, 10, 20, 40, 60, 80, 100 and 120 Gy are calculated to be originated at shells of R = 16.98, 29.96, 37.79, 46.47, 53.66, 55.91, 56.62, 56.85 and 56.92 Mly, respectively. The results show that as time goes by, the R value approaches Revent = 56.95 Mly but never exceeds it, consistent with the earlier statement that beyond Revent the freed CMB photons will never reach the observer. The difference Revert - R can be used as a measure of the remaining observable CMB photons. Its value becomes smaller and smaller as R approaching Revent, indicating a dwindling supply of the observable CMB radiation. In this paper, detailed dwindling effects near the event horizon are analyzed with the help of online cosmological calculators based on the lambda cold dark matter (ΛCDM) model. It is demonstrated in the literature that assuming the CMB to be a blackbody at recombination (about 3000 K), then it will remain so over time under cosmological redshift and homogeneous expansion of space, but with the temperature lowered (2.725 K now). The present result suggests that the observable CMB photon density, besides changing with space expansion, can also be affected by the dwindling supply associated with the event horizon. This raises the question of whether the blackbody of CMB at recombination can remain so over time. Being able to explain the blackbody nature of the observed CMB is an import part of the success of the Big Bang model. The present results cast some doubts on that and suggest that the model may have an additional challenge to deal with.

Keywords: blackbody of CMB, CMB radiation, dwindling supply of CMB, event horizon

Procedia PDF Downloads 119
12250 Development of a Context Specific Planning Model for Achieving a Sustainable Urban City

Authors: Jothilakshmy Nagammal

Abstract:

This research paper deals with the different case studies, where the Form-Based Codes are adopted in general and the different implementation methods in particular are discussed to develop a method for formulating a new planning model. The organizing principle of the Form-Based Codes, the transect is used to zone the city into various context specific transects. An approach is adopted to develop the new planning model, city Specific Planning Model (CSPM), as a tool to achieve sustainability for any city in general. A case study comparison method in terms of the planning tools used, the code process adopted and the various control regulations implemented in thirty two different cities are done. The analysis shows that there are a variety of ways to implement form-based zoning concepts: Specific plans, a parallel or optional form-based code, transect-based code /smart code, required form-based standards or design guidelines. The case studies describe the positive and negative results from based zoning, Where it is implemented. From the different case studies on the method of the FBC, it is understood that the scale for formulating the Form-Based Code varies from parts of the city to the whole city. The regulating plan is prepared with the organizing principle as the transect in most of the cases. The various implementation methods adopted in these case studies for the formulation of Form-Based Codes are special districts like the Transit Oriented Development (TOD), traditional Neighbourhood Development (TND), specific plan and Street based. The implementation methods vary from mandatory, integrated and floating. To attain sustainability the research takes the approach of developing a regulating plan, using the transect as the organizing principle for the entire area of the city in general in formulating the Form-Based Codes for the selected Special Districts in the study area in specific, street based. Planning is most powerful when it is embedded in the broader context of systemic change and improvement. Systemic is best thought of as holistic, contextualized and stake holder-owned, While systematic can be thought of more as linear, generalisable, and typically top-down or expert driven. The systemic approach is a process that is based on the system theory and system design principles, which are too often ill understood by the general population and policy makers. The system theory embraces the importance of a global perspective, multiple components, interdependencies and interconnections in any system. In addition, the recognition that a change in one part of a system necessarily alters the rest of the system is a cornerstone of the system theory. The proposed regulating plan taking the transect as an organizing principle and Form-Based Codes to achieve sustainability of the city has to be a hybrid code, which is to be integrated within the existing system - A Systemic Approach with a Systematic Process. This approach of introducing a few form based zones into a conventional code could be effective in the phased replacement of an existing code. It could also be an effective way of responding to the near-term pressure of physical change in “sensitive” areas of the community. With this approach and method the new Context Specific Planning Model is created towards achieving sustainability is explained in detail this research paper.

Keywords: context based planning model, form based code, transect, systemic approach

Procedia PDF Downloads 338
12249 Rheological Assessment of Oil Well Cement Paste Dosed with Cellulose Nanocrystal (CNC)

Authors: Mohammad Reza Dousti, Yaman Boluk, Vivek Bindiganavile

Abstract:

During the past few decades, oil and natural gas consumption have increased significantly. The limited amount of hydrocarbon resources on earth has led to a stronger desire towards efficient drilling, well completion and extracting, with the least time, energy and money wasted. Well cementing is one of the most crucial and important steps in any well completion, to fill the annulus between the casing string and the well bore. However, since it takes place at the end of the drilling process, a satisfying and acceptable job is rarely done. Hence, a large and significant amount of time and energy is then spent in order to do the required corrections or retrofitting the well in some cases. Oil well cement paste needs to be pumped during the cementing process, therefore the rheological and flow behavior of the paste is of great importance. This study examines the use of innovative cellulose-based nanomaterials on the flow properties of the resulting cementitious system. The cementitious paste developed in this research is composed of water, class G oil well cement, bentonite and cellulose nanocrystals (CNC). Bentonite is used as a cross contamination component. Initially, the influence of CNC on the flow and rheological behavior of CNC and bentonite suspensions was assessed. Furthermore, the rheological behavior of oil well cement pastes dosed with CNC was studied using a steady shear parallel-plate rheometer and the results were compared to the rheological behavior of a neat oil well cement paste with no CNC. The parameters assessed were the yield shear stress and the viscosity. Significant changes in yield shear stress and viscosity were observed due to the addition of the CNC. Based on the findings in this study, the addition of a very small dosage of CNC to the oil well cement paste results in a more viscous cement slurry with a higher yield stress, demonstrating a shear thinning behavior.

Keywords: cellulose nanocrystal, flow behavior, oil well cement, rheology

Procedia PDF Downloads 230
12248 Investigating (Im)Politeness Strategies in Email Communication: The Case Algerian PhD Supervisees and Irish Supervisors

Authors: Zehor Ktitni

Abstract:

In pragmatics, politeness is regarded as a feature of paramount importance to successful interpersonal relationships. On the other hand, emails have recently become one of the indispensable means of communication in educational settings. This research puts email communication at the core of the study and analyses it from a politeness perspective. More specifically, it endeavours to look closely at how the concept of (im)politeness is reflected through students’ emails. To this end, a corpus of Algerian supervisees’ email threads, exchanged with their Irish supervisors, was compiled. Leech’s model of politeness (2014) was selected as the main theoretical framework of this study, in addition to making reference to Brown and Levinson’s model (1987) as it is one of the most influential models in the area of pragmatic politeness. Further, some follow-up interviews are to be conducted with Algerian students to reinforce the results derived from the corpus. Initial findings suggest that Algerian Ph.D. students’ emails tend to include more politeness markers than impoliteness ones, they heavily make use of academic titles when addressing their supervisors (Dr. or Prof.), and they rely on hedging devices in order to sound polite.

Keywords: politeness, email communication, corpus pragmatics, Algerian PhD supervisees, Irish supervisors

Procedia PDF Downloads 70