Search results for: social network ming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13865

Search results for: social network ming

5735 Reflections on Opportunities and Challenges for Systems Engineering

Authors: Ali E. Abbas

Abstract:

This paper summarizes some of the discussions that occurred in a workshop in West Virginia, U.S.A which was sponsored by the National Science Foundation (NSF) in February 2016. The goal of the workshop was to explore the opportunities and challenges for applying systems engineering in large enterprises, and some of the issues that still persist. The main topics of the discussion included challenges with elaboration and abstraction in large systems, interfacing physical and social systems, and the need for axiomatic frameworks for large enterprises. We summarize these main points of discussion drawing parallels with decision making in organizations to instigate research in these discussion areas.

Keywords: decision analysis, systems engineering, framing, value creation

Procedia PDF Downloads 329
5734 DWDM Network Implementation in the Honduran Telecommunications Company "Hondutel"

Authors: Tannia Vindel, Carlos Mejia, Damaris Araujo, Carlos Velasquez, Darlin Trejo

Abstract:

The DWDM (Dense Wavelenght Division Multiplexing) is in constant growth around the world by consumer demand to meet their needs. Since its inception in this operation arises the need for a system which enable us to expand the communication of an entire nation to improve the computing trends of their societies according to their customs and geographical location. The Honduran Company of Telecommunications (HONDUTEL), provides the internet services and data transport technology with a PDH and SDH, which represents in the Republic of Honduras C. A., the option of viability for the consumer in terms of purchase value and its ease of acquisition; but does not have the efficiency in terms of technological advance and represents an obstacle that limits the long-term socio-economic development in comparison with other countries in the region and to be able to establish a competition between telecommunications companies that are engaged in this heading. For that reason we propose to establish a new technological trend implemented in Europe and that is applied in our country that allows us to provide a data transfer in broadband as it is DWDM, in this way we will have a stable service and quality that will allow us to compete in this globalized world, and that must be replaced by one that would provide a better service and which must be in the forefront. Once implemented the DWDM is build upon the existing resources, such as the equipment used, and you will be given life to a new stage providing a business image to the Republic of Honduras C,A, as a nation, to ensure the data transport and broadband internet to a meaningful relationship. Same benefits in the first instance to existing customers and to all the institutions were bidden to these public and private need of such services.

Keywords: demultiplexers, light detectors, multiplexers, optical amplifiers, optical fibers, PDH, SDH

Procedia PDF Downloads 263
5733 Becoming Academic in the Entrepreneurial University: Researcher Identities and Research Impact Development

Authors: Victoria G. Mountford-Brown

Abstract:

The concept of the Entrepreneurial University and emphasis on higher education institutions as both hives of innovation and as producers of future innovators accord special significance to the role of academic researchers in future economic and social prosperity. Researcher development in the UK has embedded an emphasis or ‘enterprise lens’ on developing the capabilities of researchers to support a stable economy whilst providing solutions to societal challenges. However, the notion of the ‘entrepreneurial university’ and what that represents to many academics is met with tension and (dis)engagement in the premises of the ‘knowledge economy’ or ‘academic capitalism.’ Set in a landscape of UK higher education wherein the increasing emphasis on research impact, coupled with increasing competition for scarce funding, has created a ‘climate of performativity’. This research seeks to better understand the ways in which academic identities are (re)constructed in the everyday experiences of doctoral (PGR) and early career researchers (ECRs) as they navigate what is referred to by some as the ‘academic hunger games’. These daily pressures and high expectations of success are part of the identity work PGRs/ECRs undergo. This is often fraught with tension and struggles to adapt to the research environment suggesting a reason for imposter phenomenon to be rife in academia – particularly (but not exclusively) in the early stages of development. This pilot study involves qualitative semi-structured exploratory interviews with a mixed gendered sample of participants from a variety of subject disciplines who have taken part in an intensive 3-day innovation and enterprise program for PGR and ECRs premised on developing personal and research impact. The research seeks to better understand the processes of identity formation of becoming academic and offers a commentary on the notions of ‘imposter phenomenon’ and the exchange and development of resources or capital needed to ‘play the game’ in academia in the context of the ‘entrepreneurial university’. It explores ongoing (re)constructions of what it means to be an academic and the different ways in which social identities may embody and challenge the development of entrepreneurial academic identities. As such, it aims to contribute to our understanding of the innovation ecosystem of academia and the prosperity of academic researchers.

Keywords: entreprenruial development, higher education, identities, researcher development

Procedia PDF Downloads 96
5732 Closing the Front Door of Child Protection: Rethinking Mandated Reporting

Authors: Miriam Itzkowitz, Katie Olson

Abstract:

Through an interdisciplinary and trauma-responsive lens, this article reviews the legal and social history of mandated reporting laws and family separation, examines the ethical conundrum of mandated reporting as it relates to evidence-based practice, and discusses alternatives to mandated reporting as a primary prevention strategy. Using existing and emerging data, the authors argue that mandated reporting as a universal strategy contributes to racial disproportionality in the child welfare system and that anti-racist practices should begin with an examination of our reliance on mandated reporting.

Keywords: child welfare, education, mandated reporting, racial disproportionality, trauma

Procedia PDF Downloads 353
5731 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection

Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada

Abstract:

With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.

Keywords: machine learning, imbalanced data, data mining, big data

Procedia PDF Downloads 130
5730 A Factor-Analytical Approach on Identities in Environmentally Significant Behavior

Authors: Alina M. Udall, Judith de Groot, Simon de Jong, Avi Shankar

Abstract:

There are many ways in which environmentally significant behavior can be explained. Dominant psychological theories, namely, the theory of planned behavior, the norm-activation theory, its extension, the value-belief-norm theory, and the theory of habit do not explain large parts of environmentally significant behaviors. A new and rapidly growing approach is to focus on how consumer’s identities predict environmentally significant behavior. Identity may be relevant because consumers have many identities that are assumed to guide their behavior. Therefore, we assume that many identities will guide environmentally significant behavior. Many identities can be relevant for environmentally significant behavior. In reviewing the literature, over 200 identities have been studied making it difficult to establish the key identities for explaining environmentally significant behavior. Therefore, this paper first aims to establish the key identities previously used for explaining environmentally significant behavior. Second, the aim is to test which key identities explain environmentally significant behavior. To address the aims, an online survey study (n = 578) is conducted. First, the exploratory factor analysis reveals 15 identity factors. The identity factors are namely, environmentally concerned identity, anti-environmental self-identity, environmental place identity, connectedness with nature identity, green space visitor identity, active ethical identity, carbon off-setter identity, thoughtful self-identity, close community identity, anti-carbon off-setter identity, environmental group member identity, national identity, identification with developed countries, cyclist identity, and thoughtful organisation identity. Furthermore, to help researchers understand and operationalize the identities, the article provides theoretical definitions for each of the identities, in line with identity theory, social identity theory, and place identity theory. Second, the hierarchical regression shows only 10 factors significantly uniquely explain the variance in environmentally significant behavior. In order of predictive power the identities are namely, environmentally concerned identity, anti-environmental self-identity, thoughtful self-identity, environmental group member identity, anti-carbon off-setter identity, carbon off-setter identity, connectedness with nature identity, national identity, and green space visitor identity. The identities explain over 60% of the variance in environmentally significant behavior, a large effect size. Based on this finding, the article reveals a new, theoretical framework showing the key identities explaining environmentally significant behavior, to help improve and align the field.

Keywords: environmentally significant behavior, factor analysis, place identity, social identity

Procedia PDF Downloads 451
5729 Optimization of Multi Commodities Consumer Supply Chain: Part 1-Modelling

Authors: Zeinab Haji Abolhasani, Romeo Marian, Lee Luong

Abstract:

This paper and its companions (Part II, Part III) will concentrate on optimizing a class of supply chain problems known as Multi- Commodities Consumer Supply Chain (MCCSC) problem. MCCSC problem belongs to production-distribution (P-D) planning category. It aims to determine facilities location, consumers’ allocation, and facilities configuration to minimize total cost (CT) of the entire network. These facilities can be manufacturer units (MUs), distribution centres (DCs), and retailers/end-users (REs) but not limited to them. To address this problem, three major tasks should be undertaken. At the first place, a mixed integer non-linear programming (MINP) mathematical model is developed. Then, system’s behaviors under different conditions will be observed using a simulation modeling tool. Finally, the most optimum solution (minimum CT) of the system will be obtained using a multi-objective optimization technique. Due to the large size of the problem, and the uncertainties in finding the most optimum solution, integration of modeling and simulation methodologies is proposed followed by developing new approach known as GASG. It is a genetic algorithm on the basis of granular simulation which is the subject of the methodology of this research. In part II, MCCSC is simulated using discrete-event simulation (DES) device within an integrated environment of SimEvents and Simulink of MATLAB® software package followed by a comprehensive case study to examine the given strategy. Also, the effect of genetic operators on the obtained optimal/near optimal solution by the simulation model will be discussed in part III.

Keywords: supply chain, genetic algorithm, optimization, simulation, discrete event system

Procedia PDF Downloads 316
5728 Surface Modified Quantum Dots for Nanophotonics, Stereolithography and Hybrid Systems for Biomedical Studies

Authors: Redouane Krini, Lutz Nuhn, Hicham El Mard Cheol Woo Ha, Yoondeok Han, Kwang-Sup Lee, Dong-Yol Yang, Jinsoo Joo, Rudolf Zentel

Abstract:

To use Quantum Dots (QDs) in the two photon initiated polymerization technique (TPIP) for 3D patternings, QDs were modified on the surface with photosensitive end groups which are able to undergo a photopolymerization. We were able to fabricate fluorescent 3D lattice structures using photopatternable QDs by TPIP for photonic devices such as photonic crystals and metamaterials. The QDs in different diameter have different emission colors and through mixing of RGB QDs white light fluorescent from the polymeric structures has been created. Metamaterials are capable for unique interaction with the electrical and magnetic components of the electromagnetic radiation and for manipulating light it is crucial to have a negative refractive index. In combination with QDs via TPIP technique polymeric structures can be designed with properties which cannot be found in nature. This makes these artificial materials gaining a huge importance for real-life applications in photonic and optoelectronic. Understanding of interactions between nanoparticles and biological systems is of a huge interest in the biomedical research field. We developed a synthetic strategy of polymer functionalized nanoparticles for biomedical studies to obtain hybrid systems of QDs and copolymers with a strong binding network in an inner shell and which can be modified in the end through their poly(ethylene glycol) functionalized outer shell. These hybrid systems can be used as models for investigation of cell penetration and drug delivery by using measurements combination between CryoTEM and fluorescence studies.

Keywords: biomedical study models, lithography, photo induced polymerization, quantum dots

Procedia PDF Downloads 526
5727 Impact of Implementation of Right to Education in Pakistan

Authors: Rukhsar Ahmed, Jawed Aziz Masudi

Abstract:

In the present study, an attempt has been made about the right to an education in Pakistan. The research is the focus in respect of International Law Article 26 of the Universal Declaration of Human Rights. The main motivation behind getting great training is, as a rule, decent resident and afterward being effective in close to home and expert life. We are fragmented without decent instruction since training makes us the right mastermind and right chief. In such a focused world, instruction has turned into a need for people after sustenance, dress and haven. It can give answers for all issues; it advances great propensities and mindfulness about defilement, fear-mongering, and other social issues among us.

Keywords: education, right to education, human right, universal declaration, law

Procedia PDF Downloads 162
5726 An Intelligent Transportation System for Safety and Integrated Management of Railway Crossings

Authors: M. Magrini, D. Moroni, G. Palazzese, G. Pieri, D. Azzarelli, A. Spada, L. Fanucci, O. Salvetti

Abstract:

Railway crossings are complex entities whose optimal management cannot be addressed unless with the help of an intelligent transportation system integrating information both on train and vehicular flows. In this paper, we propose an integrated system named SIMPLE (Railway Safety and Infrastructure for Mobility applied at level crossings) that, while providing unparalleled safety in railway level crossings, collects data on rail and road traffic and provides value-added services to citizens and commuters. Such services include for example alerts, via variable message signs to drivers and suggestions for alternative routes, towards a more sustainable, eco-friendly and efficient urban mobility. To achieve these goals, SIMPLE is organized as a System of Systems (SoS), with a modular architecture whose components range from specially-designed radar sensors for obstacle detection to smart ETSI M2M-compliant camera networks for urban traffic monitoring. Computational unit for performing forecast according to adaptive models of train and vehicular traffic are also included. The proposed system has been tested and validated during an extensive trial held in the mid-sized Italian town of Montecatini, a paradigmatic case where the rail network is inextricably linked with the fabric of the city. Results of the tests are reported and discussed.

Keywords: Intelligent Transportation Systems (ITS), railway, railroad crossing, smart camera networks, radar obstacle detection, real-time traffic optimization, IoT, ETSI M2M, transport safety

Procedia PDF Downloads 497
5725 Extraction of Cellulose Nanofibrils from Pulp Using Enzymatic Pretreatment and Evaluation of Their Papermaking Potential

Authors: Ajay Kumar Singh, Arvind Kumar, S. P. Singh

Abstract:

Cellulose nanofibrils (CNF) have shown potential of their extensive use in various fields, including papermaking, due to their unique characteristics. In this study, CNF’s were prepared by fibrillating the pulp obtained from raw materials e.g. bagasse, hardwood and softwood using enzymatic pretreatment followed by mechanical refining. These nanofibrils, when examined under FE-SEM, show that partial fibrillation on fiber surface has resulted in production of nanofibers. Mixing these nanofibers with the unrefined and normally refined fibers show their reinforcing effect. This effect is manifested in observing the improvement in the physical and mechanical properties e.g. tensile index and burst index of paper. Tear index, however, was observed to decrease on blending with nanofibers. The optical properties of paper sheets made from blended fibers showed no significant change in comparison to those made from only mechanically refined pulp. Mixing of normal pulp fibers with nanofibers show increase in ºSR and consequent decrease in drainage rate. These changes observed in mechanical, optical and other physical properties of the paper sheets made from nanofibrils blended pulp have been tried to explain considering the distribution of the nanofibrils alongside microfibrils in the fibrous network. Since usually, paper/boards with higher strength are observed to have diminished optical properties which is a drawback in their quality, the present work has the potential for developing paper/boards having improved strength alongwith undiminished optical properties utilising the concepts of nanoscience and nanotechnology.

Keywords: enzymatic pretreatment, mechanical refining, nanofibrils, paper properties

Procedia PDF Downloads 353
5724 Ethnic Minority, Oil Theft and Insecurity in the North: Where the Gap and the Compromise are

Authors: Elaiho Osaruwense, Ajuzie Godson Chidiebere

Abstract:

Nigeria of at least 250 ethnic group a have suffered a lot of social, economic and political setback especially in the regime of oil and gas, that are exploited from the minority region of the Niger south -south areas. The rate of insecurity in the north gives a lot of questioning and concern, with the series of killings by the Boko Haram in some part of the north etc. the fact still remains on how the gap and the compromise will be reconciling especially with the incoming president of Muhammadu Buhari with all the problems which was not resolve by the past administration (President Ebele Jonathan), considering the configuration and the character of the Nigerian state. This paper tends to critically evaluate all this problems, assertion, proffering possible solution.

Keywords: ethnic minority, oil theft, insecurity, the gap and the compromise

Procedia PDF Downloads 347
5723 Leveraging Community Partnerships for Social Impact

Authors: T. Moody, E. Mitchell, T. Dang, A. Barry, T. Proshan, S. Andrisse, V. Odero-Marah

Abstract:

Women’s prison and reentry programs are focused primarily on reducing recidivism but neglect how an individual’s intersecting identities influence their risk of violence and ways that histories of gender-based violence (GBV) must be addressed for these women to recover from traumas. Light To Life (LTL) and From Prison Cells to Ph.D. (P2P) Womxn’s Cohort program recognizes this need; providing national gender-responsive programming (GRP), and trauma-informed programming to justice-impacted survivors through digital resources, leadership opportunities, educational workshops, and healing justice approaches for positive health outcomes. Through the support of a community-university partnership (CUP), a comparative evaluation study is being conducted among intimate-partner violence (IPV) survivors with histories of incarceration who have or have not participated in the cohort. The objectives of the partnership are to provide mutually beneficial training and consultation for evaluating GRP through a rigorously tested research methodology. This collaborative applies a rigorous methodology of semi-structured interviews with an intervention and control group to evaluate the impact of LTL’s programming in the P2P Womxn’s Cohort. The CUP is essential to achieve the expected results of the project. It will measure primary outcomes, including participants' level of engagement and satisfaction with programming, reduction in attitudes that accept violence in relationships, and increase in interpersonal and intrapersonal skills that lead to healthy relationships. This community-based approach will provide opportunities to evaluate the effectiveness of the program. The results addressed in the hypothesis will provide learning lessons to improve this program, to scale it up, and apply it to other similarly affected populations. The partnership experience and anticipated outcomes contribute to the knowledge in women’s health and criminal justice by fostering public awareness on the importance of developing new partnerships and fostering CUP to establish a framework to the leveraging of partnerships for social impact available to academic institutions.

Keywords: Community-university partnership, gender-responsive programming, incarceration, intimate-partner violence, POC, women

Procedia PDF Downloads 65
5722 Creation of a Realistic Railway Simulator Developed on a 3D Graphic Game Engine Using a Numerical Computing Programming Environment

Authors: Kshitij Ansingkar, Yohei Hoshino, Liangliang Yang

Abstract:

Advances in algorithms related to autonomous systems have made it possible to research on improving the accuracy of a train’s location. This has the capability of increasing the throughput of a railway network without the need for the creation of additional infrastructure. To develop such a system, the railway industry requires data to test sensor fusion theories or implement simultaneous localization and mapping (SLAM) algorithms. Though such simulation data and ground truth datasets are available for testing automation algorithms of vehicles, however, due to regulations and economic considerations, there is a dearth of such datasets in the railway industry. Thus, there is a need for the creation of a simulation environment that can generate realistic synthetic datasets. This paper proposes (1) to leverage the capabilities of open-source 3D graphic rendering software to create a visualization of the environment. (2) to utilize open-source 3D geospatial data for accurate visualization and (3) to integrate the graphic rendering software with a programming language and numerical computing platform. To develop such an integrated platform, this paper utilizes the computing platform’s advanced sensor models like LIDAR, camera, IMU or GPS and merges it with the 3D rendering of the game engine to generate high-quality synthetic data. Further, these datasets can be used to train Railway models and improve the accuracy of a train’s location.

Keywords: 3D game engine, 3D geospatial data, dataset generation, railway simulator, sensor fusion, SLAM

Procedia PDF Downloads 1
5721 Time Series Analysis the Case of China and USA Trade Examining during Covid-19 Trade Enormity of Abnormal Pricing with the Exchange rate

Authors: Md. Mahadi Hasan Sany, Mumenunnessa Keya, Sharun Khushbu, Sheikh Abujar

Abstract:

Since the beginning of China's economic reform, trade between the U.S. and China has grown rapidly, and has increased since China's accession to the World Trade Organization in 2001. The US imports more than it exports from China, reducing the trade war between China and the U.S. for the 2019 trade deficit, but in 2020, the opposite happens. In international and U.S. trade, Washington launched a full-scale trade war against China in March 2016, which occurred a catastrophic epidemic. The main goal of our study is to measure and predict trade relations between China and the U.S., before and after the arrival of the COVID epidemic. The ML model uses different data as input but has no time dimension that is present in the time series models and is only able to predict the future from previously observed data. The LSTM (a well-known Recurrent Neural Network) model is applied as the best time series model for trading forecasting. We have been able to create a sustainable forecasting system in trade between China and the US by closely monitoring a dataset published by the State Website NZ Tatauranga Aotearoa from January 1, 2015, to April 30, 2021. Throughout the survey, we provided a 180-day forecast that outlined what would happen to trade between China and the US during COVID-19. In addition, we have illustrated that the LSTM model provides outstanding outcome in time series data analysis rather than RFR and SVR (e.g., both ML models). The study looks at how the current Covid outbreak affects China-US trade. As a comparative study, RMSE transmission rate is calculated for LSTM, RFR and SVR. From our time series analysis, it can be said that the LSTM model has given very favorable thoughts in terms of China-US trade on the future export situation.

Keywords: RFR, China-U.S. trade war, SVR, LSTM, deep learning, Covid-19, export value, forecasting, time series analysis

Procedia PDF Downloads 198
5720 Self-Organizing Maps for Credit Card Fraud Detection

Authors: ChunYi Peng, Wei Hsuan CHeng, Shyh Kuang Ueng

Abstract:

This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.

Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies

Procedia PDF Downloads 57
5719 Living or Surviving in an Intercultural Context: A Study on Transformative Learning of UK Students in China and Chinese Students in the UK

Authors: Yiran Wang

Abstract:

As international education continues to expand countries providing such opportunities not only benefit but also face challenges. For traditional destinations, including the United States and the United Kingdom, the number of international students has been falling. At the same time emerging economies, such as China, are witnessing a rapid increase in the number of international students enrolled in their universities. China is, therefore, beginning to play an important role in the competitive global market for higher education. This study analyses and compares the experiences of international students in the UK and China using Transformative Learning theory. While there is an extensive literature on both international higher education and also Transformative Learning theory there are currently three contributions this study makes. First, this research applies the theory to two international student groups: UK students in Chinese universities and Chinese students in UK universities.Second, this study includes a focus on the intercultural learning of Chinese doctoral students in the UK filling a gap in current research. Finally, this investigation has extended the very limited number of current research projects on UK students in China. It is generally acknowledged that international students will experience various challenges when they are in a culturally different context. Little research has focused on how, why, and why not learners are transformed through exposure to their new environment. This study applies Transformative Learning theory to address two research questions: first, do UK international students in Chinese universities and Chinese international students in UK universities experience transformational learning in/during their overseas studies? Second, what factors foster or impede international students’ experience of transformative learning? To answer the above questions, semi-structured interviews were used to investigate international students’ academic and social experiences. Based on the insights provided by Mezirow,Taylor,and previous studies on international students, this study argues that international students’ intercultural experience is a complex process.Transformation can occur in various ways and social and personal perspectives underpin the transformative learning of the students studied. Contributing factors include culture shock, educational conventions,the student’s motivation, expectations, personality, gender and previous work experience.The results reflect the significance of differences in teaching styles in the UK and China and the impact this can have on the student teaching and learning process when they move to a new university.

Keywords: intercultural learning, international higher education, transformative learning, UK and Chinese international students

Procedia PDF Downloads 411
5718 A Quinary Coding and Matrix Structure Based Channel Hopping Algorithm for Blind Rendezvous in Cognitive Radio Networks

Authors: Qinglin Liu, Zhiyong Lin, Zongheng Wei, Jianfeng Wen, Congming Yi, Hai Liu

Abstract:

The multi-channel blind rendezvous problem in distributed cognitive radio networks (DCRNs) refers to how users in the network can hop to the same channel at the same time slot without any prior knowledge (i.e., each user is unaware of other users' information). The channel hopping (CH) technique is a typical solution to this blind rendezvous problem. In this paper, we propose a quinary coding and matrix structure-based CH algorithm called QCMS-CH. The QCMS-CH algorithm can guarantee the rendezvous of users using only one cognitive radio in the scenario of the asynchronous clock (i.e., arbitrary time drift between the users), heterogeneous channels (i.e., the available channel sets of users are distinct), and symmetric role (i.e., all users play a same role). The QCMS-CH algorithm first represents a randomly selected channel (denoted by R) as a fixed-length quaternary number. Then it encodes the quaternary number into a quinary bootstrapping sequence according to a carefully designed quaternary-quinary coding table with the prefix "R00". Finally, it builds a CH matrix column by column according to the bootstrapping sequence and six different types of elaborately generated subsequences. The user can access the CH matrix row by row and accordingly perform its channel, hoping to attempt rendezvous with other users. We prove the correctness of QCMS-CH and derive an upper bound on its Maximum Time-to-Rendezvous (MTTR). Simulation results show that the QCMS-CH algorithm outperforms the state-of-the-art in terms of the MTTR and the Expected Time-to-Rendezvous (ETTR).

Keywords: channel hopping, blind rendezvous, cognitive radio networks, quaternary-quinary coding

Procedia PDF Downloads 91
5717 Copper Price Prediction Model for Various Economic Situations

Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin

Abstract:

Copper is an essential raw material used in the construction industry. During the year 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war, which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two ANN-LSTM price prediction models, using Python, that can forecast the average monthly copper prices traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022, and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices and economic indicators of the three major exporting countries of copper, depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-Month prediction model is better than the 1-Month prediction model, but still, both models can act as predicting tools for diverse economic situations.

Keywords: copper prices, prediction model, neural network, time series forecasting

Procedia PDF Downloads 113
5716 Maximizing Profit Using Optimal Control by Exploiting the Flexibility in Thermal Power Plants

Authors: Daud Mustafa Minhas, Raja Rehan Khalid, Georg Frey

Abstract:

The next generation power systems are equipped with abundantly available free renewable energy resources (RES). During their low-cost operations, the price of electricity significantly reduces to a lower value, and sometimes it becomes negative. Therefore, it is recommended not to operate the traditional power plants (e.g. coal power plants) and to reduce the losses. In fact, it is not a cost-effective solution, because these power plants exhibit some shutdown and startup costs. Moreover, they require certain time for shutdown and also need enough pause before starting up again, increasing inefficiency in the whole power network. Hence, there is always a trade-off between avoiding negative electricity prices, and the startup costs of power plants. To exploit this trade-off and to increase the profit of a power plant, two main contributions are made: 1) introducing retrofit technology for state of art coal power plant; 2) proposing optimal control strategy for a power plant by exploiting different flexibility features. These flexibility features include: improving ramp rate of power plant, reducing startup time and lowering minimum load. While, the control strategy is solved as mixed integer linear programming (MILP), ensuring optimal solution for the profit maximization problem. Extensive comparisons are made considering pre and post-retrofit coal power plant having the same efficiencies under different electricity price scenarios. It concludes that if the power plant must remain in the market (providing services), more flexibility reflects direct economic advantage to the plant operator.

Keywords: discrete optimization, power plant flexibility, profit maximization, unit commitment model

Procedia PDF Downloads 143
5715 Harmonic Distortion Analysis in Low Voltage Grid with Grid-Connected Photovoltaic

Authors: Hedi Dghim, Ahmed El-Naggar, Istvan Erlich

Abstract:

Power electronic converters are being introduced in low voltage (LV) grids at an increasingly rapid rate due to the growing adoption of power electronic-based home appliances in residential grid. Photovoltaic (PV) systems are considered one of the potential installed renewable energy sources in distribution power systems. This trend has led to high distortion in the supply voltage which consequently produces harmonic currents in the network and causes an inherent voltage unbalance. In order to investigate the effect of harmonic distortions, a case study of a typical LV grid configuration with high penetration of 3-phase and 1-phase rooftop mounted PV from southern Germany was first considered. Electromagnetic transient (EMT) simulations were then carried out under the MATLAB/Simulink environment which contain detailed models for power electronic-based loads, ohmic-based loads as well as 1- and 3-phase PV. Note that, the switching patterns of the power electronic circuits were considered in this study. Measurements were eventually performed to analyze the distortion levels when PV operating under different solar irradiance. The characteristics of the load-side harmonic impedances were analyzed, and their harmonic contributions were evaluated for different distortion levels. The effect of the high penetration of PV on the harmonic distortion of both positive and negative sequences was also investigated. The simulation results are presented based on case studies. The current distortion levels are in agreement with relevant standards, otherwise the Total Harmonic Distortion (THD) increases under low PV power generation due to its inverse relation with the fundamental current.

Keywords: harmonic distortion analysis, power quality, PV systems, residential distribution system

Procedia PDF Downloads 267
5714 Codifying the Creative Self: Conflicts of Theory and Content in Creative Writing

Authors: Danielle L. Iamarino

Abstract:

This paper explores the embattled territory of academic creative writing—and most focally, the use of critical theory in the teaching and structuring of creative practice. It places creative writing in contemporary social, cultural, and otherwise anthropological contexts, and evaluates conventional creative writing pedagogies based on how well they serve the updated needs of increasingly diverse student congregations. With continued emphasis on student-centered learning, this paper compares theoretical to practical applications of discipline-specific knowledge, examining and critiquing theory in terms of its relevance, accessibility, and whether or not it is both actionable and beneficial in the creative writing classroom.

Keywords: creative writing, literary theory, content, pedagogy, workshop, teaching

Procedia PDF Downloads 337
5713 Design, Research and Culture Change in the Age of Transformation

Authors: Maya Jaber

Abstract:

Climate change is one of the biggest challenges that require immediate attention and mitigation for the continued prosperity of human existence. The transformation will need to occur that is top-down and bottom-up on holistic scales. A new way of thinking will need to be adopted that is innovative, human-centric, and global. Designers and researchers are vital leaders in this movement that can help guide other practitioners in the strategy development, critical thinking process, and alignment of transformative solutions. Holistic critical thinking strategies will be essential to change behaviors and cultures for future generations' survival. This paper will discuss these topics associated with Dr. Jaber's research.

Keywords: environmental social governance (ESG), integral design thinking (IDT), organizational transformation, sustainability management

Procedia PDF Downloads 175
5712 Computational Investigation of V599 Mutations of BRAF Protein and Its Control over the Therapeutic Outcome under the Malignant Condition

Authors: Mayank, Navneet Kaur, Narinder Singh

Abstract:

The V599 mutations in the BRAF protein are extremely oncogenic, responsible for countless of malignant conditions. Along with wild type, V599E, V599D, and V599R are the important mutated variants of the BRAF proteins. The BRAF inhibitory anticancer agents are continuously developing, and sorafenib is a BRAF inhibitor that is under clinical use. The crystal structure of sorafenib bounded to wild type, and V599 is known, showing a similar interaction pattern in both the case. The mutated 599th residue, in both the case, is also found not interacting directly with the co-crystallized sorafenib molecule. However, the IC50 value of sorafenib was found extremely different in both the case, i.e., 22 nmol/L for wild and 38 nmol/L for V599E protein. Molecular docking study and MMGBSA binding energy results also revealed a significant difference in the binding pattern of sorafenib in both the case. Therefore, to explore the role of distinctively situated 599th residue, we have further conducted comprehensive computational studies. The molecular dynamics simulation, residue interaction network (RIN) analysis, and residue correlation study results revealed the importance of the 599th residue on the therapeutic outcome and overall dynamic of the BRAF protein. Therefore, although the position of 599th residue is very much distinctive from the ligand-binding cavity of BRAF, still it has exceptional control over the overall functional outcome of the protein. The insight obtained here may seem extremely important and guide us while designing ideal BRAF inhibitory anticancer molecules.

Keywords: BRAF, oncogenic, sorafenib, computational studies

Procedia PDF Downloads 115
5711 The Anatomy and Characteristics of Online Romance Scams

Authors: Danuvasin Charoen

Abstract:

Online romance scams are conducted by criminals using social networks and dating sites. These criminals use love to deceive the victims to send them money. The victims not only lose money to the criminals, but they are also heartbroken. This study investigates how online romance scams work and why people become victims to them. The researcher also identifies the characteristics of the perpetrators and victims. The data were collected from in-depth interviews with former victims and police officers responsible for the cases. By studying the methods and characteristics of the online romance scam, we can develop effective methods and policies to reduce the rates of such crimes.

Keywords: romance scam, online scam, phishing, cybercrime

Procedia PDF Downloads 157
5710 Prospective Museum Visitor Management Based on Prospect Theory: A Pragmatic Approach

Authors: Athina Thanou, Eirini Eleni Tsiropoulou, Symeon Papavassiliou

Abstract:

The problem of museum visitor experience and congestion management – in various forms - has come increasingly under the spotlight over the last few years, since overcrowding can significantly decrease the quality of visitors’ experience. Evidence suggests that on busy days the amount of time a visitor spends inside a crowded house museum can fall by up to 60% compared to a quiet mid-week day. In this paper we consider the aforementioned problem, by treating museums as evolving social systems that induce constraints. However, in a cultural heritage space, as opposed to the majority of social environments, the momentum of the experience is primarily controlled by the visitor himself. Visitors typically behave selfishly regarding the maximization of their own Quality of Experience (QoE) - commonly expressed through a utility function that takes several parameters into consideration, with crowd density and waiting/visiting time being among the key ones. In such a setting, congestion occurs when either the utility of one visitor decreases due to the behavior of other persons, or when costs of undertaking an activity rise due to the presence of other persons. We initially investigate how visitors’ behavioral risk attitudes, as captured and represented by prospect theory, affect their decisions in resource sharing settings, where visitors’ decisions and experiences are strongly interdependent. Different from the majority of existing studies and literature, we highlight that visitors are not risk neutral utility maximizers, but they demonstrate risk-aware behavior according to their personal risk characteristics. In our work, exhibits are organized into two groups: a) “safe exhibits” that correspond to less congested ones, where the visitors receive guaranteed satisfaction in accordance with the visiting time invested, and b) common pool of resources (CPR) exhibits, which are the most popular exhibits with possibly increased congestion and uncertain outcome in terms of visitor satisfaction. A key difference is that the visitor satisfaction due to CPR strongly depends not only on the invested time decision of a specific visitor, but also on that of the rest of the visitors. In the latter case, the over-investment in time, or equivalently the increased congestion potentially leads to “exhibit failure”, interpreted as the visitors gain no satisfaction from their observation of this exhibit due to high congestion. We present a framework where each visitor in a distributed manner determines his time investment in safe or CPR exhibits to optimize his QoE. Based on this framework, we analyze and evaluate how visitors, acting as prospect-theoretic decision-makers, respond and react to the various pricing policies imposed by the museum curators. Based on detailed evaluation results and experiments, we present interesting observations, regarding the impact of several parameters and characteristics such as visitor heterogeneity and use of alternative pricing policies, on scalability, user satisfaction, museum capacity, resource fragility, and operation point stability. Furthermore, we study and present the effectiveness of alternative pricing mechanisms, when used as implicit tools, to deal with the congestion management problem in the museums, and potentially decrease the exhibit failure probability (fragility), while considering the visitor risk preferences.

Keywords: museum resource and visitor management, congestion management, propsect theory, cyber physical social systems

Procedia PDF Downloads 184
5709 A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images

Authors: Sophia Shi

Abstract:

Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage.

Keywords: Acute kidney injury, Convolutional neural network, Hybrid deep learning, Patient record data, ResNet, Ultrasound kidney images, VGG

Procedia PDF Downloads 131
5708 A Case for Strategic Landscape Infrastructure: South Essex Estuary Park

Authors: Alexandra Steed

Abstract:

Alexandra Steed URBAN was commissioned to undertake the South Essex Green and Blue Infrastructure Study (SEGBI) on behalf of the Association of South Essex Local Authorities (ASELA): a partnership of seven neighboring councils within the Thames Estuary. Located on London’s doorstep, the 70,000-hectare region is under extraordinary pressure for regeneration, further development, and economic expansion, yet faces extreme challenges: sea-level rise and inadequate flood defenses, stormwater flooding and threatened infrastructure, loss of internationally important habitats, significant existing community deprivation, and lack of connectivity and access to green space. The brief was to embrace these challenges in the creation of a document that would form a key part of ASELA’s Joint Strategic Framework and feed into local plans and master plans. Thus, helping to tackle climate change, ecological collapse, and social inequity at a regional scale whilst creating a relationship and awareness between urban communities and the surrounding landscapes and nature. The SEGBI project applied a ‘land-based’ methodology, combined with a co-design approach involving numerous stakeholders, to explore how living infrastructure can address these significant issues, reshape future planning and development, and create thriving places for the whole community of life. It comprised three key stages, including Baseline Review; Green and Blue Infrastructure Assessment; and the final Green and Blue Infrastructure Report. The resulting proposals frame an ambitious vision for the delivery of a new regional South Essex Estuary (SEE) Park – 24,000 hectares of protected and connected landscapes. This unified parkland system will drive effective place-shaping and “leveling up” for the most deprived communities while providing large-scale nature recovery and biodiversity net gain. Comprehensive analysis and policy recommendations ensure best practices will be embedded within planning documents and decisions guiding future development. Furthermore, a Natural Capital Account was undertaken as part of the strategy showing the tremendous economic value of the natural assets. This strategy sets a pioneering precedent that demonstrates how the prioritisation of living infrastructure has the capacity to address climate change and ecological collapse, while also supporting sustainable housing, healthier communities, and resilient infrastructures. It was only achievable through a collaborative and cross-boundary approach to strategic planning and growth, with a shared vision of place, and a strong commitment to delivery. With joined-up thinking and a joined-up region, a more impactful plan for South Essex was developed that will lead to numerous environmental, social, and economic benefits across the region, and enhancing the landscape and natural environs on the periphery of one of the largest cities in the world.

Keywords: climate change, green and blue infrastructure, landscape architecture, master planning, regional planning, social equity

Procedia PDF Downloads 97
5707 Counselling Families with Special Needs Children: Problems and Prospect: A Case Study of Calabar Metropolis in Cross River State

Authors: Anthonia Emmanuel Inaja

Abstract:

The role of the counseling services by Special Educators, Guidance Counsellors and psychologists alike to Families and Parents of children with special needs cannot be over-emphasized. This paper examined the vital role of counseling services and its impact on the emotional and physical readiness of parents to initiate and support the education and rehabilitation needs of their children. The paper considered the importance of counseling, when counseling services are best required preparing the mindset of parents and family members as well as the immediate community of the social needs child.

Keywords: counseling, families, special, needs, children, problems, prospect

Procedia PDF Downloads 514
5706 Self-Organizing Maps for Credit Card Fraud Detection and Visualization

Authors: Peng Chun-Yi, Chen Wei-Hsuan, Ueng Shyh-Kuang

Abstract:

This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.

Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies

Procedia PDF Downloads 59