Search results for: system accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20325

Search results for: system accuracy

19545 A Low Order Thermal Envelope Model for Heat Transfer Characteristics of Low-Rise Residential Buildings

Authors: Nadish Anand, Richard D. Gould

Abstract:

A simplistic model is introduced for determining the thermal characteristics of a Low-rise Residential (LRR) building and then predicts the energy usage by its Heating Ventilation & Air Conditioning (HVAC) system according to changes in weather conditions which are reflected in the Ambient Temperature (Outside Air Temperature). The LRR buildings are treated as a simple lump for solving the heat transfer problem and the model is derived using the lumped capacitance model of transient conduction heat transfer from bodies. Since most contemporary HVAC systems have a thermostat control which will have an offset temperature and user defined set point temperatures which define when the HVAC system will switch on and off. The aim is to predict without any error the Body Temperature (i.e. the Inside Air Temperature) which will estimate the switching on and off of the HVAC system. To validate the mathematical model derived from lumped capacitance we have used EnergyPlus simulation engine, which simulates Buildings with considerable accuracy. We have predicted through the low order model the Inside Air Temperature of a single house kept in three different climate zones (Detroit, Raleigh & Austin) and different orientations for summer and winter seasons. The prediction error from the model for the same day as that of model parameter calculation has showed an error of < 10% in winter for almost all the orientations and climate zones. Whereas the prediction error is only <10% for all the orientations in the summer season for climate zone at higher latitudes (Raleigh & Detroit). Possible factors responsible for the large variations are also noted in the work, paving way for future research.

Keywords: building energy, energy consumption, energy+, HVAC, low order model, lumped capacitance

Procedia PDF Downloads 268
19544 Study and Experimental Analysis of a Photovoltaic Pumping System under Three Operating Modes

Authors: Rekioua D., Mohammedi A., Rekioua T., Mehleb Z.

Abstract:

Photovoltaic water pumping systems is considered as one of the most promising areas in photovoltaic applications, the economy and reliability of solar electric power made it an excellent choice for remote water pumping. Two conventional techniques are currently in use; the first is the directly coupled technique and the second is the battery buffered photovoltaic pumping system. In this paper, we present different performances of a three operation modes of photovoltaic pumping system. The aim of this work is to determine the effect of different parameters influencing the photovoltaic pumping system performances, such as pumping head, System configuration and climatic conditions. The obtained results are presented and discussed.

Keywords: batteries charge mode, photovoltaic pumping system, pumping head, submersible pump

Procedia PDF Downloads 510
19543 A Low-Power Two-Stage Seismic Sensor Scheme for Earthquake Early Warning System

Authors: Arvind Srivastav, Tarun Kanti Bhattacharyya

Abstract:

The north-eastern, Himalayan, and Eastern Ghats Belt of India comprise of earthquake-prone, remote, and hilly terrains. Earthquakes have caused enormous damages in these regions in the past. A wireless sensor network based earthquake early warning system (EEWS) is being developed to mitigate the damages caused by earthquakes. It consists of sensor nodes, distributed over the region, that perform majority voting of the output of the seismic sensors in the vicinity, and relay a message to a base station to alert the residents when an earthquake is detected. At the heart of the EEWS is a low-power two-stage seismic sensor that continuously tracks seismic events from incoming three-axis accelerometer signal at the first-stage, and, in the presence of a seismic event, triggers the second-stage P-wave detector that detects the onset of P-wave in an earthquake event. The parameters of the P-wave detector have been optimized for minimizing detection time and maximizing the accuracy of detection.Working of the sensor scheme has been verified with seven earthquakes data retrieved from IRIS. In all test cases, the scheme detected the onset of P-wave accurately. Also, it has been established that the P-wave onset detection time reduces linearly with the sampling rate. It has been verified with test data; the detection time for data sampled at 10Hz was around 2 seconds which reduced to 0.3 second for the data sampled at 100Hz.

Keywords: earthquake early warning system, EEWS, STA/LTA, polarization, wavelet, event detector, P-wave detector

Procedia PDF Downloads 177
19542 Microwave Security System in Museums: Design and Implementation

Authors: Dalia Elsheakh, Hala Elsadek

Abstract:

The objective of this paper is to propose a competitive microwave security system that can be applied with reasonable price at museums in Egypt, considering the priceless elements in 23 Egyptian museums countrywide and the lack of good recent security systems even in big ones. The system main goal is to detect valuable targets to ensure their presence in the pre-defined positions in order to protect them from being stolen. The system is based on real time microwave scanning for the required space volume through transmitting RF waves at consecutive angles and detecting the back scattered waves from required objects to detect their existence at pre-specified locations.

Keywords: microwave security system, object locating system, real time locating system (RTLS), antenna array, array electronic scanning

Procedia PDF Downloads 349
19541 Designing of Induction Motor Efficiency Monitoring System

Authors: Ali Mamizadeh, Ires Iskender, Saeid Aghaei

Abstract:

Energy is one of the important issues with high priority property in the world. Energy demand is rapidly increasing depending on the growing population and industry. The useable energy sources in the world will be insufficient to meet the need for energy. Therefore, the efficient and economical usage of energy sources is getting more importance. In a survey conducted among electric consuming machines, the electrical machines are consuming about 40% of the total electrical energy consumed by electrical devices and 96% of this consumption belongs to induction motors. Induction motors are the workhorses of industry and have very large application areas in industry and urban systems like water pumping and distribution systems, steel and paper industries and etc. Monitoring and the control of the motors have an important effect on the operating performance of the motor, driver selection and replacement strategy management of electrical machines. The sensorless monitoring system for monitoring and calculating efficiency of induction motors are studied in this study. The equivalent circuit of IEEE is used in the design of this study. The terminal current and voltage of induction motor are used in this motor to measure the efficiency of induction motor. The motor nameplate information and the measured current and voltage are used in this system to calculate accurately the losses of induction motor to calculate its input and output power. The efficiency of the induction motor is monitored online in the proposed method without disconnecting the motor from the driver and without adding any additional connection at the motor terminal box. The proposed monitoring system measure accurately the efficiency by including all losses without using torque meter and speed sensor. The monitoring system uses embedded architecture and does not need to connect to a computer to measure and log measured data. The conclusion regarding the efficiency, the accuracy and technical and economical benefits of the proposed method are presented. The experimental verification has been obtained on a 3 phase 1.1 kW, 2-pole induction motor. The proposed method can be used for optimal control of induction motors, efficiency monitoring and motor replacement strategy.

Keywords: induction motor, efficiency, power losses, monitoring, embedded design

Procedia PDF Downloads 350
19540 Dynamical Systems and Fibonacci Numbers

Authors: Vandana N. Purav

Abstract:

The Dynamical systems concept is a mathematical formalization for any fixed rule that describes the time dependence of a points position in its ambient space. e.g. pendulum of a clock, the number of fish each spring in a lake, the number of rabbits spring in an enclosure, etc. The Dynamical system theory used to describe the complex nature that is dynamical systems with differential equations called continuous dynamical system or dynamical system with difference equations called discrete dynamical system. The concept of dynamical system has its origin in Newtonian mechanics.

Keywords: dynamical systems, Fibonacci numbers, Newtonian mechanics, discrete dynamical system

Procedia PDF Downloads 494
19539 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier

Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh

Abstract:

This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.

Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems

Procedia PDF Downloads 47
19538 RFID Based Student Attendance System

Authors: Aniket Tiwari, Ameya London

Abstract:

Web-based student attendance management system is required to assist the faculty and the lecturer for the time-consuming process. For this purpose, GSM/GPRS (Global System for Mobile Communication/General Packet Radio Service) based student’s attendance management system using RFID (Radio Frequency Identification) is a much convenient method to take the attendance. Student is provided with the RFID tags. When student comes near to the reader, it will sense the respective student and update attendance. The whole process is controlled using the microcontroller. The main advantage of this system is that it reduced the complexity comparison to student attendance system using RF technology. This system requires only one microcontroller for the operation, it is real time process. This paper reviews some of these monitoring systems and proposes a GPRS based student attendance system. The system can be easily accessed by the lecturers via the web and most importantly, the reports can be generated in real-time processing, thus, provides valuable information about the students’ commitments in attending the classes.

Keywords: RFID reader, RFID tags, student, attendance

Procedia PDF Downloads 512
19537 Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization

Authors: R. O. Osaseri, A. R. Usiobaifo

Abstract:

The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods.

Keywords: diagnostic model, gradient decent, machine learning, support vector machine (SVM), transformer fault

Procedia PDF Downloads 324
19536 Wideband Performance Analysis of C-FDTD Based Algorithms in the Discretization Impoverishment of a Curved Surface

Authors: Lucas L. L. Fortes, Sandro T. M. Gonçalves

Abstract:

In this work, it is analyzed the wideband performance with the mesh discretization impoverishment of the Conformal Finite Difference Time-Domain (C-FDTD) approaches developed by Raj Mittra, Supriyo Dey and Wenhua Yu for the Finite Difference Time-Domain (FDTD) method. These approaches are a simple and efficient way to optimize the scattering simulation of curved surfaces for Dielectric and Perfect Electric Conducting (PEC) structures in the FDTD method, since curved surfaces require dense meshes to reduce the error introduced due to the surface staircasing. Defined, on this work, as D-FDTD-Diel and D-FDTD-PEC, these approaches are well-known in the literature, but the improvement upon their application is not quantified broadly regarding wide frequency bands and poorly discretized meshes. Both approaches bring improvement of the accuracy of the simulation without requiring dense meshes, also making it possible to explore poorly discretized meshes which bring a reduction in simulation time and the computational expense while retaining a desired accuracy. However, their applications present limitations regarding the mesh impoverishment and the frequency range desired. Therefore, the goal of this work is to explore the approaches regarding both the wideband and mesh impoverishment performance to bring a wider insight over these aspects in FDTD applications. The D-FDTD-Diel approach consists in modifying the electric field update in the cells intersected by the dielectric surface, taking into account the amount of dielectric material within the mesh cells edges. By taking into account the intersections, the D-FDTD-Diel provides accuracy improvement at the cost of computational preprocessing, which is a fair trade-off, since the update modification is quite simple. Likewise, the D-FDTD-PEC approach consists in modifying the magnetic field update, taking into account the PEC curved surface intersections within the mesh cells and, considering a PEC structure in vacuum, the air portion that fills the intersected cells when updating the magnetic fields values. Also likewise to D-FDTD-Diel, the D-FDTD-PEC provides a better accuracy at the cost of computational preprocessing, although with a drawback of having to meet stability criterion requirements. The algorithms are formulated and applied to a PEC and a dielectric spherical scattering surface with meshes presenting different levels of discretization, with Polytetrafluoroethylene (PTFE) as the dielectric, being a very common material in coaxial cables and connectors for radiofrequency (RF) and wideband application. The accuracy of the algorithms is quantified, showing the approaches wideband performance drop along with the mesh impoverishment. The benefits in computational efficiency, simulation time and accuracy are also shown and discussed, according to the frequency range desired, showing that poorly discretized mesh FDTD simulations can be exploited more efficiently, retaining the desired accuracy. The results obtained provided a broader insight over the limitations in the application of the C-FDTD approaches in poorly discretized and wide frequency band simulations for Dielectric and PEC curved surfaces, which are not clearly defined or detailed in the literature and are, therefore, a novelty. These approaches are also expected to be applied in the modeling of curved RF components for wideband and high-speed communication devices in future works.

Keywords: accuracy, computational efficiency, finite difference time-domain, mesh impoverishment

Procedia PDF Downloads 135
19535 The Application and Relevance of Costing Techniques in Service Oriented Business Organisations: A Review of the Activity-Based Costing (ABC) Technique

Authors: Udeh Nneka Evelyn

Abstract:

The shortcomings of traditional costing system, in terms of validity, accuracy, consistency and relevance increased the need for modern management accounting system. ABC (Activity-Based Costing) can be used as a modern tool for planning, control and decision making for management. Past studies on activity-based costing (ABC) system have focused on manufacturing firms thereby making the studies on service firms scanty to some extent. This paper reviewed the application and relevance of activity-based costing techniques in service oriented business organisations by employing a qualitative research method which relied heavily on literature review of past and current relevant articles focusing on activity-based costing (ABC). Findings suggest that ABC is not only appropriate for use in a manufacturing environment; it is also most appropriate for service organizations such as financial institutions, the healthcare industry, and government organizations. In fact, some banking and financial institutions have been applying the concept for years under other names. One of them is unit costing, which is used to calculate the cost of banking services by determining the cost and consumption of each unit of output of functions required to deliver the service. ABC in very basic terms may provide very good payback for businesses. Some of the benefits that relate directly to the financial services industry are: Identification of the most profitable customers; more accurate product and service pricing; increase product profitability; well-organized process costs.

Keywords: profitability, activity-based costing (ABC), management accounting, manufacture

Procedia PDF Downloads 581
19534 The Two-Lane Rural Analysis and Comparison of Police Statistics and Results with the Help IHSDM

Authors: S. Amanpour, F. Mohamadian, S. A. Tabatabai

Abstract:

With the number of accidents and fatalities in recent years can be concluded that Iran is the status of road accidents, remains in a crisis. Investigate the causes of such incidents in all countries is a necessity. By doing this research, the results of the number and type of accidents and the location of the crash will be available. It is possible to prioritize economic and rational solutions to fix the flaws in the way of short-term the results are all the more strict rules about the desire to have black spots and cursory glance at the change of but results in long-term are desired to change the system or increase the width of the path or add extra track. In general, the relationship between the analysis of the accidents and near police statistics is the number of accidents in one year. This could prove the accuracy of the analysis done.

Keywords: traffic, IHSDM, crash, modeling, Khuzestan

Procedia PDF Downloads 285
19533 Optimal Location of the I/O Point in the Parking System

Authors: Jing Zhang, Jie Chen

Abstract:

In this paper, we deal with the optimal I/O point location in an automated parking system. In this system, the S/R machine (storage and retrieve machine) travels independently in vertical and horizontal directions. Based on the characteristics of the parking system and the basic principle of AS/RS system (Automated Storage and Retrieval System), we obtain the continuous model in units of time. For the single command cycle using the randomized storage policy, we calculate the probability density function for the system travel time and thus we develop the travel time model. And we confirm that the travel time model shows a good performance by comparing with discrete case. Finally in this part, we establish the optimal model by minimizing the expected travel time model and it is shown that the optimal location of the I/O point is located at the middle of the left-hand above corner.

Keywords: parking system, optimal location, response time, S/R machine

Procedia PDF Downloads 409
19532 Beyond the Beep: Optimizing Flight Controller Performance for Reliable Ultrasonic Sensing

Authors: Raunak Munjal, Mohammad Akif Ali, Prithiv Raj

Abstract:

This study investigates the relative effectiveness of various flight controllers for drone obstacle avoidance. To assess ultrasonic sensors' performance in real-time obstacle detection, they are integrated with ESP32 and Arduino Nano controllers. The study determines which controller is most effective for this particular application by analyzing important parameters such as accuracy (mean absolute error), standard deviation, and mean distance range. Furthermore, the study explores the possibility of incorporating state-driven algorithms into the Arduino Nano configuration to potentially improve obstacle detection performance. The results offer significant perspectives for enhancing sensor integration, choosing the best flight controller for obstacle avoidance, and maybe enhancing drones' general environmental navigation ability.

Keywords: ultrasonic distance measurement, accuracy and consistency, flight controller comparisons, ESP32 vs arduino nano

Procedia PDF Downloads 58
19531 Uniqueness of Fingerprint Biometrics to Human Dynasty: A Review

Authors: Siddharatha Sharma

Abstract:

With the advent of technology and machines, the role of biometrics in society is taking an important place for secured living. Security issues are the major concern in today’s world and continue to grow in intensity and complexity. Biometrics based recognition, which involves precise measurement of the characteristics of living beings, is not a new method. Fingerprints are being used for several years by law enforcement and forensic agencies to identify the culprits and apprehend them. Biometrics is based on four basic principles i.e. (i) uniqueness, (ii) accuracy, (iii) permanency and (iv) peculiarity. In today’s world fingerprints are the most popular and unique biometrics method claiming a social benefit in the government sponsored programs. A remarkable example of the same is UIDAI (Unique Identification Authority of India) in India. In case of fingerprint biometrics the matching accuracy is very high. It has been observed empirically that even the identical twins also do not have similar prints. With the passage of time there has been an immense progress in the techniques of sensing computational speed, operating environment and the storage capabilities and it has become more user convenient. Only a small fraction of the population may be unsuitable for automatic identification because of genetic factors, aging, environmental or occupational reasons for example workers who have cuts and bruises on their hands which keep fingerprints changing. Fingerprints are limited to human beings only because of the presence of volar skin with corrugated ridges which are unique to this species. Fingerprint biometrics has proved to be a high level authentication system for identification of the human beings. Though it has limitations, for example it may be inefficient and ineffective if ridges of finger(s) or palm are moist authentication becomes difficult. This paper would focus on uniqueness of fingerprints to the human beings in comparison to other living beings and review the advancement in emerging technologies and their limitations.

Keywords: fingerprinting, biometrics, human beings, authentication

Procedia PDF Downloads 325
19530 Cost-Effective, Accuracy Preserving Scalar Characterization for mmWave Transceivers

Authors: Mohammad Salah Abdullatif, Salam Hajjar, Paul Khanna

Abstract:

The development of instrument grade mmWave transceivers comes with many challenges. A general rule of thumb is that the performance of the instrument must be higher than the performance of the unit under test in terms of accuracy and stability. The calibration and characterizing of mmWave transceivers are important pillars for testing commercial products. Using a Vector Network Analyzer (VNA) with a mixer option has proven a high performance as an approach to calibrate mmWave transceivers. However, this approach comes with a high cost. In this work, a reduced-cost method to calibrate mmWave transceivers is proposed. A comparison between the proposed method and the VNA technology is provided. A demonstration of significant challenges is discussed, and an approach to meet the requirements is proposed.

Keywords: mmWave transceiver, scalar characterization, coupler connection, magic tee connection, calibration, VNA, vector network analyzer

Procedia PDF Downloads 108
19529 NSBS: Design of a Network Storage Backup System

Authors: Xinyan Zhang, Zhipeng Tan, Shan Fan

Abstract:

The first layer of defense against data loss is the backup data. This paper implements an agent-based network backup system used the backup, server-storage and server-backup agent these tripartite construction, and we realize the snapshot and hierarchical index in the NSBS. It realizes the control command and data flow separation, balances the system load, thereby improving the efficiency of the system backup and recovery. The test results show the agent-based network backup system can effectively improve the task-based concurrency, reasonably allocate network bandwidth, the system backup performance loss costs smaller and improves data recovery efficiency by 20%.

Keywords: agent, network backup system, three architecture model, NSBS

Procedia PDF Downloads 460
19528 Application of Adaptive Neuro Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel AASTM A516 Grade 70

Authors: Omar Al Denali, Abdelaziz Badi

Abstract:

The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of post-weld heat treatment (PWHT) experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556 %, which confirms the high accuracy of the model.

Keywords: prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, mean absolute percentage error

Procedia PDF Downloads 155
19527 The Circularity of Re-Refined Used Motor Oils: Measuring Impacts and Ensuring Responsible Procurement

Authors: Farah Kanani

Abstract:

Blue Tide Environmental is a company focused on developing a network of used motor oil recycling facilities across the U.S. They initiated the redesign of its recycling plant in Texas, and aimed to establish an updated carbon footprint of re-refined used motor oils compared to an equivalent product derived from virgin stock that is not re-refined. The aim was to quantify emissions savings of a circular alternative to conventional end-of-life combustion of used motor oil (UMO). To do so, they mandated an ISO-compliant carbon footprint, utilizing complex models requiring geographical and temporal accuracy to accommodate the U.S. refinery market. The quantification of linear and circular flows, proxies for fuel substitution and system expansion for multi-product outputs were all critical methodological choices and were tested through sensitivity analyses. The re-refined system consisted of continuous recycling of UMO and thus, end-of-life is considered non-existent. The unique perspective to this topic will be from a life cycle i.e. holistic one and essentially demonstrate using this example of how a cradle-to-cradle model can be used to quantify a comparative carbon footprint. The intended audience is lubricant manufacturers as the consumers, motor oil industry professionals and other industry members interested in performing a cradle-to-cradle modeling.

Keywords: circularity, used motor oil, re-refining, systems expansion

Procedia PDF Downloads 34
19526 On-Road Text Detection Platform for Driver Assistance Systems

Authors: Guezouli Larbi, Belkacem Soundes

Abstract:

The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.

Keywords: text detection, CNN, PZM, deep learning

Procedia PDF Downloads 84
19525 Real-Time Implementation of Self-Tuning Fuzzy-PID Controller for First Order Plus Dead Time System Base on Microcontroller STM32

Authors: Maitree Thamma, Witchupong Wiboonjaroen, Thanat Suknuan, Karan Homchat

Abstract:

First order plus dead time (FOPDT) is a high dynamic system. Therefore, the controller must be intelligent. This paper presents the development and implementation of self-tuning Fuzzy-PID controller for controlling the FOPDT system. The water level process used represented FOPDT system and the mathematical model of the system was approximated by using System Identification toolbox in Matlab. The control programming and Fuzzy-PID algorithm used Matlab/Simulink and run on Microcontroller STM32.

Keywords: real-time control, self-tuning fuzzy-PID, FOPDT system, the water lever process

Procedia PDF Downloads 294
19524 Applying Kinect on the Development of a Customized 3D Mannequin

Authors: Shih-Wen Hsiao, Rong-Qi Chen

Abstract:

In the field of fashion design, 3D Mannequin is a kind of assisting tool which could rapidly realize the design concepts. While the concept of 3D Mannequin is applied to the computer added fashion design, it will connect with the development and the application of design platform and system. Thus, the situation mentioned above revealed a truth that it is very critical to develop a module of 3D Mannequin which would correspond with the necessity of fashion design. This research proposes a concrete plan that developing and constructing a system of 3D Mannequin with Kinect. In the content, ergonomic measurements of objective human features could be attained real-time through the implement with depth camera of Kinect, and then the mesh morphing can be implemented through transformed the locations of the control-points on the model by inputting those ergonomic data to get an exclusive 3D mannequin model. In the proposed methodology, after the scanned points from the Kinect are revised for accuracy and smoothening, a complete human feature would be reconstructed by the ICP algorithm with the method of image processing. Also, the objective human feature could be recognized to analyze and get real measurements. Furthermore, the data of ergonomic measurements could be applied to shape morphing for the division of 3D Mannequin reconstructed by feature curves. Due to a standardized and customer-oriented 3D Mannequin would be generated by the implement of subdivision, the research could be applied to the fashion design or the presentation and display of 3D virtual clothes. In order to examine the practicality of research structure, a system of 3D Mannequin would be constructed with JAVA program in this study. Through the revision of experiments the practicability-contained research result would come out.

Keywords: 3D mannequin, kinect scanner, interactive closest point, shape morphing, subdivision

Procedia PDF Downloads 309
19523 Open Fields' Dosimetric Verification for a Commercially-Used 3D Treatment Planning System

Authors: Nashaat A. Deiab, Aida Radwan, Mohamed Elnagdy, Mohamed S. Yahiya, Rasha Moustafa

Abstract:

This study is to evaluate and investigate the dosimetric performance of our institution's 3D treatment planning system, Elekta PrecisePLAN, for open 6MV fields including square, rectangular, variation in SSD, centrally blocked, missing tissue, square MLC and MLC shaped fields guided by the recommended QA tests prescribed in AAPM TG53, NCS report 15 test packages, IAEA TRS 430 and ESTRO booklet no.7. The study was performed for Elekta Precise linear accelerator designed for clinical range of 4, 6 and 15 MV photon beams with asymmetric jaws and fully integrated multileaf collimator that enables high conformance to target with sharp field edges. Seven different tests were done applied on solid water equivalent phantom along with 2D array dose detection system, the calculated doses using 3D treatment planning system PrecisePLAN, compared with measured doses to make sure that the dose calculations are accurate for open fields including square, rectangular, variation in SSD, centrally blocked, missing tissue, square MLC and MLC shaped fields. The QA results showed dosimetric accuracy of the TPS for open fields within the specified tolerance limits. However large square (25cm x 25cm) and rectangular fields (20cm x 5cm) some points were out of tolerance in penumbra region (11.38 % and 10.9 %, respectively). For the test of SSD variation, the large field resulted from SSD 125 cm for 10cm x 10cm filed the results recorded an error of 0.2% at the central axis and 1.01% in penumbra. The results yielded differences within the accepted tolerance level as recommended. Large fields showed variations in penumbra. These differences between dose values predicted by the TPS and the measured values at the same point may result from limitations of the dose calculation, uncertainties in the measurement procedure, or fluctuations in the output of the accelerator.

Keywords: quality assurance, dose calculation, 3D treatment planning system, photon beam

Procedia PDF Downloads 517
19522 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening

Authors: Ksheeraj Sai Vepuri, Nada Attar

Abstract:

We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.

Keywords: facial expression recognittion, image preprocessing, deep learning, CNN

Procedia PDF Downloads 145
19521 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models

Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai

Abstract:

Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.

Keywords: plant identification, CNN, image processing, vision transformer, classification

Procedia PDF Downloads 105
19520 Bridging the Data Gap for Sexism Detection in Twitter: A Semi-Supervised Approach

Authors: Adeep Hande, Shubham Agarwal

Abstract:

This paper presents a study on identifying sexism in online texts using various state-of-the-art deep learning models based on BERT. We experimented with different feature sets and model architectures and evaluated their performance using precision, recall, F1 score, and accuracy metrics. We also explored the use of pseudolabeling technique to improve model performance. Our experiments show that the best-performing models were based on BERT, and their multilingual model achieved an F1 score of 0.83. Furthermore, the use of pseudolabeling significantly improved the performance of the BERT-based models, with the best results achieved using the pseudolabeling technique. Our findings suggest that BERT-based models with pseudolabeling hold great promise for identifying sexism in online texts with high accuracy.

Keywords: large language models, semi-supervised learning, sexism detection, data sparsity

Procedia PDF Downloads 70
19519 Comparing Accuracy of Semantic and Radiomics Features in Prognosis of Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer

Authors: Mahya Naghipoor

Abstract:

Purpose: Non-small cell lung cancer (NSCLC) is the most common lung cancer type. Epidermal growth factor receptor (EGFR) mutation is the main reason which causes NSCLC. Computed tomography (CT) is used for diagnosis and prognosis of lung cancers because of low price and little invasion. Semantic analyses of qualitative CT features are based on visual evaluation by radiologist. However, the naked eye ability may not assess all image features. On the other hand, radiomics provides the opportunity of quantitative analyses for CT images features. The aim of this review study was comparing accuracy of semantic and radiomics features in prognosis of EGFR mutation in NSCLC. Methods: For this purpose, the keywords including: non-small cell lung cancer, epidermal growth factor receptor mutation, semantic, radiomics, feature, receiver operating characteristics curve (ROC) and area under curve (AUC) were searched in PubMed and Google Scholar. Totally 29 papers were reviewed and the AUC of ROC analyses for semantic and radiomics features were compared. Results: The results showed that the reported AUC amounts for semantic features (ground glass opacity, shape, margins, lesion density and presence or absence of air bronchogram, emphysema and pleural effusion) were %41-%79. For radiomics features (kurtosis, skewness, entropy, texture, standard deviation (SD) and wavelet) the AUC values were found %50-%86. Conclusions: In conclusion, the accuracy of radiomics analysis is a little higher than semantic in prognosis of EGFR mutation in NSCLC.

Keywords: lung cancer, radiomics, computer tomography, mutation

Procedia PDF Downloads 167
19518 Engineering Optimization of Flexible Energy Absorbers

Authors: Reza Hedayati, Meysam Jahanbakhshi

Abstract:

Elastic energy absorbers which consist of a ring-liked plate and springs can be a good choice for increasing the impact duration during an accident. In the current project, an energy absorber system is optimized using four optimizing methods Kuhn-Tucker, Sequential Linear Programming (SLP), Concurrent Subspace Design (CSD), and Pshenichny-Lim-Belegundu-Arora (PLBA). Time solution, convergence, Programming Length and accuracy of the results were considered to find the best solution algorithm. Results showed the superiority of PLBA over the other algorithms.

Keywords: Concurrent Subspace Design (CSD), Kuhn-Tucker, Pshenichny-Lim-Belegundu-Arora (PLBA), Sequential Linear Programming (SLP)

Procedia PDF Downloads 400
19517 Conceptual Design of Suction Cup Lifting System

Authors: Mohammed Aijaz

Abstract:

In industries, to transfer fragile materials like glasses, a holding, lifting, and manipulation system are required. In this report, we designed and analysed a suction cup holding, lifting, and manipulation system that is attached to a head plate and must be able to grip/hold securely, the largest glass panel with 3m x 2.5m x 20mm thick with a mass of 115 kg. The system is able to rotate the panel through 180 degrees in the X, Y, and Z axis in any direction from the outer reach of the robotic arm. The structural analysis is performed to verify the structural strength of the suction cup’s head plate system.

Keywords: designing, mechanical, engineering, suction

Procedia PDF Downloads 97
19516 Management of Acute Appendicitis with Preference on Delayed Primary Suturing of Surgical Incision

Authors: N. A. D. P. Niwunhella, W. G. R. C. K. Sirisena

Abstract:

Appendicitis is one of the most encountered abdominal emergencies worldwide. Proper clinical diagnosis and appendicectomy with minimal post operative complications are therefore priorities. Aim of this study was to ascertain the overall management of acute appendicitis in Sri Lanka in special preference to delayed primary suturing of the surgical site, comparing other local and international treatment outcomes. Data were collected prospectively from 155 patients who underwent appendicectomy following clinical and radiological diagnosis with ultrasonography. Histological assessment was done for all the specimens. All perforated appendices were managed with delayed primary closure. Patients were followed up for 28 days to assess complications. Mean age of patient presentation was 27 years; mean pre-operative waiting time following admission was 24 hours; average hospital stay was 72 hours; accuracy of clinical diagnosis of appendicitis as confirmed by histology was 87.1%; post operative wound infection rate was 8.3%, and among them 5% had perforated appendices; 4 patients had post operative complications managed without re-opening. There was no fistula formation or mortality reported. Current study was compared with previously published data: a comparison on management of acute appendicitis in Sri Lanka vs. United Kingdom (UK). The diagnosis of current study was equally accurate, but post operative complications were significantly reduced - (current study-9.6%, compared Sri Lankan study-16.4%; compared UK study-14.1%). During the recent years, there has been an exponential rise in the use of Computerised Tomography (CT) imaging in the assessment of patients with acute appendicitis. Even though, the diagnostic accuracy without using CT, and treatment outcome of acute appendicitis in this study match other local studies as well as with data compared to UK. Therefore CT usage has not increased the diagnostic accuracy of acute appendicitis significantly. Especially, delayed primary closure may have reduced post operative wound infection rate for ruptured appendices, therefore suggest this approach for further evaluation as a safer and an effective practice in other hospitals worldwide as well.

Keywords: acute appendicitis, computerised tomography, diagnostic accuracy, delayed primary closure

Procedia PDF Downloads 167