Search results for: robust estimators
774 Meteorological Risk Assessment for Ships with Fuzzy Logic Designer
Authors: Ismail Karaca, Ridvan Saracoglu, Omer Soner
Abstract:
Fuzzy Logic, an advanced method to support decision-making, is used by various scientists in many disciplines. Fuzzy programming is a product of fuzzy logic, fuzzy rules, and implication. In marine science, fuzzy programming for ships is dramatically increasing together with autonomous ship studies. In this paper, a program to support the decision-making process for ship navigation has been designed. The program is produced in fuzzy logic and rules, by taking the marine accidents and expert opinions into account. After the program was designed, the program was tested by 46 ship accidents reported by the Transportation Safety Investigation Center of Turkey. Wind speed, sea condition, visibility, day/night ratio have been used as input data. They have been converted into a risk factor within the Fuzzy Logic Designer application and fuzzy rules set by marine experts. Finally, the expert's meteorological risk factor for each accident is compared with the program's risk factor, and the error rate was calculated. The main objective of this study is to improve the navigational safety of ships, by using the advance decision support model. According to the study result, fuzzy programming is a robust model that supports safe navigation.Keywords: calculation of risk factor, fuzzy logic, fuzzy programming for ship, safety navigation of ships
Procedia PDF Downloads 189773 Improving Decision-Making in Multi-Project Environments within Organizational Information Systems Using Blockchain Technology
Authors: Seyed Hossein Iranmanesh, Hassan Nouri, Seyed Reza Iranmanesh
Abstract:
In the dynamic and complex landscape of today’s business, organizations often face challenges in impactful decision-making across multi-project settings. To efficiently allocate resources, coordinate tasks, and optimize project outcomes, establishing robust decision-making processes is essential. Furthermore, the increasing importance of information systems and their integration within organizational workflows introduces an additional layer of complexity. This research proposes the use of blockchain technology as a suitable solution to enhance decision-making in multi-project environments, particularly within the realm of information systems. The conceptual framework in this study comprises four independent variables and one dependent variable. The identified independent variables for the targeted research include: Blockchain Layer in Integrated Systems, Quality of Generated Information ,User Satisfaction with Integrated Systems and Utilization of Integrated Systems. The project’s performance, considered as the dependent variable and moderated by organizational policies and procedures, reflects the impact of blockchain technology adoption on organizational effectiveness1. The results highlight the significant influence of blockchain implementation on organizational performance.Keywords: multi-project environments, decision support systems, information systems, blockchain technology, decentralized systems.
Procedia PDF Downloads 58772 Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm
Authors: Tahseen Saad, Halim Ceylan, Jonathan Weaver, Osman Nuri Çelik, Onur Gungor Sahin
Abstract:
A new concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. To control the coordination problem, which depends on offset selection and to estimate uniform delay based on the offset choice in a traffic signal network. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and are compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show new model minimizes the total uniform delay to almost half compared to conventional models. The mathematical objective function is robust. The algorithm convergence time is fast.Keywords: area traffic control, traffic flow, differential evolution, sinusoidal periodic function, uniform delay, offset variable
Procedia PDF Downloads 276771 Comprehensive Review of Adversarial Machine Learning in PDF Malware
Authors: Preston Nabors, Nasseh Tabrizi
Abstract:
Portable Document Format (PDF) files have gained significant popularity for sharing and distributing documents due to their universal compatibility. However, the widespread use of PDF files has made them attractive targets for cybercriminals, who exploit vulnerabilities to deliver malware and compromise the security of end-user systems. This paper reviews notable contributions in PDF malware detection, including static, dynamic, signature-based, and hybrid analysis. It presents a comprehensive examination of PDF malware detection techniques, focusing on the emerging threat of adversarial sampling and the need for robust defense mechanisms. The paper highlights the vulnerability of machine learning classifiers to evasion attacks. It explores adversarial sampling techniques in PDF malware detection to produce mimicry and reverse mimicry evasion attacks, which aim to bypass detection systems. Improvements for future research are identified, including accessible methods, applying adversarial sampling techniques to malicious payloads, evaluating other models, evaluating the importance of features to malware, implementing adversarial defense techniques, and conducting comprehensive examination across various scenarios. By addressing these opportunities, researchers can enhance PDF malware detection and develop more resilient defense mechanisms against adversarial attacks.Keywords: adversarial attacks, adversarial defense, adversarial machine learning, intrusion detection, PDF malware, malware detection, malware detection evasion
Procedia PDF Downloads 39770 Potential Determinants of Research Output: Comparing Economics and Business
Authors: Osiris Jorge Parcero, Néstor Gandelman, Flavia Roldán, Josef Montag
Abstract:
This paper uses cross-country unbalanced panel data of up to 146 countries over the period 1996 to 2015 to be the first study to identify potential determinants of a country’s relative research output in Economics versus Business. More generally, it is also one of the first studies comparing Economics and Business. The results show that better policy-related data availability, higher income inequality, and lower ethnic fractionalization relatively favor economics. The findings are robust to two alternative fixed effects specifications, three alternative definitions of economics and business, two alternative measures of research output (publications and citations), and the inclusion of meaningful control variables. To the best of our knowledge, our paper is also the first to demonstrate the importance of policy-related data as drivers of economic research. Our regressions show that the availability of this type of data is the single most important factor associated with the prevalence of economics over business as a research domain. Thus, our work has policy implications, as the availability of policy-related data is partially under policy control. Moreover, it has implications for students, professionals, universities, university departments, and research-funding agencies that face choices between profiles oriented toward economics and those oriented toward business. Finally, the conclusions show potential lines for further research.Keywords: research output, publication performance, bibliometrics, economics, business, policy-related data
Procedia PDF Downloads 134769 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX Through Fusion of Vision and 3+1D Millimeter Wave Radar
Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma
Abstract:
Unmanned Surface Vehicles (USVs) are valuable due to their ability to perform dangerous and time-consuming tasks on the water. Object detection tasks are significant in these applications. However, inherent challenges, such as the complex distribution of obstacles, reflections from shore structures, water surface fog, etc., hinder the performance of object detection of USVs. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. MMW radar is complementary to vision sensors, providing robust environmental information. The radar 3D point cloud is transferred to 2D radar pseudo image to unify radar and vision information format by utilizing the point transformer. We propose a multi-source object detection network (RV-YOLOX )based on radar-vision fusion for inland waterways environment. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.Keywords: inland waterways, YOLO, sensor fusion, self-attention
Procedia PDF Downloads 124768 Formulation of a Stress Management Program for Human Error Prevention in Nuclear Power Plants
Authors: Hyeon-Kyo Lim, Tong-il Jang, Yong-Hee Lee
Abstract:
As for any nuclear power plant, human error is one of the most dreaded factors that may result in unexpected accidents. Thus, for accident prevention, it is quite indispensable to analyze and to manage the influence of any factor which may raise the possibility of human errors. Among lots factors, stress has been reported to have significant influence on human performance. Stress level of a person may fluctuate over time. To handle the possibility over time, robust stress management program is required, especially in nuclear power plants. Therefore, to overcome the possibility of human errors, this study aimed to develop a stress management program as a part of Fitness-for-Duty (FFD) Program for the workers in nuclear power plants. The meaning of FFD might be somewhat different by research objectives, appropriate definition of FFD was accomplished in this study with special reference to human error prevention, and diverse stress factors were elicited for management of human error susceptibility. In addition, with consideration of conventional FFD management programs, appropriate tests and interventions were introduced over the whole employment cycle including selection and screening of workers, job allocation, job rotation, and disemployment as well as Employee-Assistance-Program (EAP). The results showed that most tools mainly concentrated their weights on common organizational factors such as Demands, Supports, and Relationships in sequence, which were referred as major stress factors.Keywords: human error, accident prevention, work performance, stress, fatigue
Procedia PDF Downloads 326767 Comparative Sustainability Performance Analysis of Australian Companies Using Composite Measures
Authors: Ramona Zharfpeykan, Paul Rouse
Abstract:
Organizational sustainability is important to both organizations themselves and their stakeholders. Despite its increasing popularity and increasing numbers of organizations reporting sustainability, research on evaluating and comparing the sustainability performance of companies is limited. The aim of this study was to develop models to measure sustainability performance for both cross-sectional and longitudinal comparisons across companies in the same or different industries. A secondary aim was to see if sustainability reports can be used to evaluate sustainability performance. The study used both a content analysis of Australian sustainability reports in mining and metals and financial services for 2011-2014 and a survey of Australian and New Zealand organizations. Two methods ranging from a composite index using uniform weights to data envelopment analysis (DEA) were employed to analyze the data and develop the models. The results show strong statistically significant relationships between the developed models, which suggests that each model provides a consistent, systematic and reasonably robust analysis. The results of the models show that for both industries, companies that had sustainability scores above or below the industry average stayed almost the same during the study period. These indices and models can be used by companies to evaluate their sustainability performance and compare it with previous years, or with other companies in the same or different industries. These methods can also be used by various stakeholders and sustainability ranking companies such as the Global Reporting Initiative (GRI).Keywords: data envelopment analysis, sustainability, sustainability performance measurement system, sustainability performance index, global reporting initiative
Procedia PDF Downloads 181766 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors
Authors: Duc V. Nguyen
Abstract:
Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest benet based on their requirements. These are the key requirements of a robust prognostics and health management system.Keywords: fault detection, FFT, induction motor, predictive maintenance
Procedia PDF Downloads 170765 Tailoring Polythiophene Nanocomposites with MnS/CoS Nanoparticles for Enhanced Surface-Enhanced Raman Spectroscopy (SERS) Detection of Mercury Ions in Water
Authors: Temesgen Geremew
Abstract:
The excessive emission of heavy metal ions from industrial processes poses a serious threat to both the environment and human health. This study presents a distinct approach utilizing (PTh-MnS/CoS NPs) for the highly selective and sensitive detection of Hg²⁺ ions in water. Such detection is crucial for safeguarding human health, protecting the environment, and accurately assessing toxicity. The fabrication method employs a simple and efficient chemical precipitation technique, harmoniously combining polythiophene, MnS, and CoS NPs to create highly active substrates for SERS. The MnS@Hg²⁺ exhibits a distinct Raman shift at 1666 cm⁻¹, enabling specific identification and demonstrating the highest responsiveness among the studied semiconductor substrates with a detection limit of only 1 nM. This investigation demonstrates reliable and practical SERS detection for Hg²⁺ ions. Relative standard deviation (RSD) ranged from 0.49% to 9.8%, and recovery rates varied from 96% to 102%, indicating selective adsorption of Hg²⁺ ions on the synthesized substrate. Furthermore, this research led to the development of a remarkable set of substrates, including (MnS, CoS, MnS/CoS, and PTh-MnS/CoS) nanoparticles were created right there on SiO₂/Si substrate, all exhibiting sensitive, robust, and selective SERS for Hg²⁺ ion detection. These platforms effectively monitor Hg²⁺ concentrations in real environmental samples.Keywords: surface-enhanced raman spectroscopy (SERS), sensor, mercury ions, nanoparticles, and polythiophene.
Procedia PDF Downloads 78764 A Design Decision Framework for Net-Zero Carbon Buildings in Hot Climates: A Modeled Approach and Expert’s Feedback
Authors: Eric Ohene, Albert P. C. Chan, Shu-Chien HSU
Abstract:
The rising building energy consumption and related carbon emissions make it necessary to construct net-zero carbon buildings (NZCBs). The objective of net-zero buildings has raised the benchmark for building performance and will alter how buildings are designed and constructed. However, there have been growing concerns about uncertainty in net-zero building design and cost implications in decision-making. Lessons from practice have shown that a robust net-zero building design is complex, expensive, and time-consuming. Moreover, climate conditions have an enormous implication for choosing the best-optimal passive and active solutions to ensure building energy performance while ensuring the indoor comfort performance of occupants. It is observed that 20% of the design decisions made in the initial design phase influence 80% of all design decisions. To design and construct NZCBs, it is crucial to ensure adequate decision-making during the early design phases. Therefore, this study aims to explore practical strategies to design NZCBs and to offer a design framework that could help decision-making during the design stage of net-zero buildings. A parametric simulation approach was employed, and experts (i.e., architects, building designers) perspectives on the decision framework were solicited. The study could be helpful to building designers and architects to guide their decision-making during the design stage of NZCBs.Keywords: net-zero, net-zero carbon building, energy efficiency, parametric simulation, hot climate
Procedia PDF Downloads 106763 Empowering Certificate Management with Blockchain Technology
Authors: Yash Ambekar, Kapil Vhatkar, Prathamesh Swami, Kartikey Singh, Yashovardhan Kaware
Abstract:
The rise of online courses and certifications has created new opportunities for individuals to enhance their skills. However, this digital transformation has also given rise to coun- terfeit certificates. To address this multifaceted issue, we present a comprehensive certificate management system founded on blockchain technology and strengthened by smart contracts. Our system comprises three pivotal components: certificate generation, authenticity verification, and a user-centric digital locker for certificate storage. Blockchain technology underpins the entire system, ensuring the immutability and integrity of each certificate. The inclusion of a cryptographic hash for each certificate is a fundamental aspect of our design. Any alteration in the certificate’s data will yield a distinct hash, a powerful indicator of potential tampering. Furthermore, our system includes a secure digital locker based on cloud storage that empowers users to efficiently manage and access all their certificates in one place. Moreover, our project is committed to providing features for certificate revocation and updating, thereby enhancing the system’s flexibility and security. Hence, the blockchain and smart contract-based certificate management system offers a robust and one-stop solution to the escalating problem of counterfeit certificates in the digital era.Keywords: blockchain technology, smart contracts, counterfeit certificates, authenticity verification, cryptographic hash, digital locker
Procedia PDF Downloads 46762 A Framework for Security Risk Level Measures Using CVSS for Vulnerability Categories
Authors: Umesh Kumar Singh, Chanchala Joshi
Abstract:
With increasing dependency on IT infrastructure, the main objective of a system administrator is to maintain a stable and secure network, with ensuring that the network is robust enough against malicious network users like attackers and intruders. Security risk management provides a way to manage the growing threats to infrastructures or system. This paper proposes a framework for risk level estimation which uses vulnerability database National Institute of Standards and Technology (NIST) National Vulnerability Database (NVD) and the Common Vulnerability Scoring System (CVSS). The proposed framework measures the frequency of vulnerability exploitation; converges this measured frequency with standard CVSS score and estimates the security risk level which helps in automated and reasonable security management. In this paper equation for the Temporal score calculation with respect to availability of remediation plan is derived and further, frequency of exploitation is calculated with determined temporal score. The frequency of exploitation along with CVSS score is used to calculate the security risk level of the system. The proposed framework uses the CVSS vectors for risk level estimation and measures the security level of specific network environment, which assists system administrator for assessment of security risks and making decision related to mitigation of security risks.Keywords: CVSS score, risk level, security measurement, vulnerability category
Procedia PDF Downloads 321761 Application of the Total Least Squares Estimation Method for an Aircraft Aerodynamic Model Identification
Authors: Zaouche Mohamed, Amini Mohamed, Foughali Khaled, Aitkaid Souhila, Bouchiha Nihad Sarah
Abstract:
The aerodynamic coefficients are important in the evaluation of an aircraft performance and stability-control characteristics. These coefficients also can be used in the automatic flight control systems and mathematical model of flight simulator. The study of the aerodynamic aspect of flying systems is a reserved domain and inaccessible for the developers. Doing tests in a wind tunnel to extract aerodynamic forces and moments requires a specific and expensive means. Besides, the glaring lack of published documentation in this field of study makes the aerodynamic coefficients determination complicated. This work is devoted to the identification of an aerodynamic model, by using an aircraft in virtual simulated environment. We deal with the identification of the system, we present an environment framework based on Software In the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. We propose The Total Least Squares Estimation technique (TLSE) to identify the aerodynamic parameters, which are unknown, variable, classified and used in the expression of the piloting law. In this paper, we define each aerodynamic coefficient as the mean of its numerical values. All other variations are considered as modeling uncertainties that will be compensated by the robustness of the piloting control.Keywords: aircraft aerodynamic model, total least squares estimation, piloting the aircraft, robust control, Microsoft Flight Simulator, MQ-1 predator
Procedia PDF Downloads 287760 Image Processing techniques for Surveillance in Outdoor Environment
Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.
Abstract:
This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management
Procedia PDF Downloads 26759 Template-less Self-Assembled Morphologically Cubic BiFeO₃ for Improved Electrical Properties
Authors: Jenna Metera, Olivia Graeve
Abstract:
Ceramic capacitor technologies using lead based materials is being phased out for its environmental and handling hazards. Bismuth ferrite (BiFeO₃) is the next best replacement for those lead-based technologies. Unfortunately, the electrical properties in bismuth systems are not as robust as the lead alternatives. The improvement of electrical properties such as charge density, charge anisotropy, relative permittivity, and dielectric loss are the parameters that will make BiFeO₃ a competitive alternative to lead-based ceramic materials. In order to maximize the utility of these properties, we propose the ordering and an evaporation-induced self-assembly of a cubic morphology powder. Evaporation-induced self-assembly is a template-less, bottom-up, self-assembly option. The capillary forces move the particles closer together when the solvent evaporates, promoting organized agglomeration at the particle faces. The assembly of particles into organized structures can lead to enhanced properties compared to unorganized structures or single particles themselves. The interactions between the particles can be controlled based on the long-range order in the organized structure. The cubic particle morphology is produced through a hydrothermal synthesis with changes in the concentration of potassium hydroxide, which changes the morphology of the powder. Once the assembly materializes, the powder is fabricated into workable substrates for electrical testing after consolidation.Keywords: evaporation, lead-free, morphology, self-assembly
Procedia PDF Downloads 124758 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course
Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu
Abstract:
This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN
Procedia PDF Downloads 44757 Starch Valorization: Biorefinery Concept for the Circular Bioeconomy
Authors: Maider Gómez Palmero, Ana Carrasco Pérez, Paula de la Sen de la Cruz, Francisco Javier Royo Herrer, Sonia Ascaso Malo
Abstract:
The production of bio-based products for different purposes is one of the strategies that has grown the most at European and even global levels, seeking to contribute to mitigating the impacts associated with climate change and to achieve the ambitious objectives set in this regard. However, the substitution of fossil-based products for bio-based products requires a challenging and deep transformation and adaptation of the secondary and primary sectors and, more specifically, in the latter, the agro-industries. The first step to developing a bio-based value chain focuses on the availability of a resource with the right characteristics for the substitution sought. This, in turn, requires a significant reshaping of the forestry/agricultural sector but also of the agro-industry, which has a relevant potential to be deployed as a supplier and develop a robust logistical supply chain and to market a biobased raw material at a competitive price. However, this transformation may involve a profound restructuring of its traditional business model to incorporate biorefinery concepts. In this sense, agro-industries that generate by-products in their processes that are currently not valorized, such as potato processing rejects or the starch found in washing water, constitute a potential raw material that can be used for different bio-applications. This article aims to explore this potential to evaluate the most suitable bio applications to target and identify opportunities and challenges.Keywords: starch valorisation, biorefinery, bio-based raw materials, bio-applications
Procedia PDF Downloads 51756 Managerial Overconfidence, Payout Policy, and Corporate Governance: Evidence from UK Companies
Authors: Abdullah AlGhazali, Richard Fairchild, Yilmaz Guney
Abstract:
We examine the effect of managerial overconfidence on UK firms’ payout policy for the period 2000 to 2012. The analysis incorporates, in addition to common firm-specific factors, a wide range of corporate governance factors and managerial characteristics that have been documented to affect the relationship between overconfidence and payout policy. Our results are robust to several estimation considerations. The findings show that the influence of overconfident CEOs on the amount of, and the propensity to pay, dividends is significant within the UK context. Specifically, we detect that there is a reduction in dividend payments in firms managed by overconfident managers compared to their non-overconfident counterparts. Moreover, we affirm that cash flows, firm size and profitability are positively correlated, while leverage, firm growth and investment are negatively correlated with the amount of and propensity to pay dividends. Interestingly, we demonstrate that firms with the potential for undervaluation reduce dividend payments. Some of the corporate governance factors are shown to motivate firms to pay more dividends while these factors seem to have no influence on the propensity to pay dividends. The results also show that in general higher overconfidence leads to more share repurchases but the lower total payout. Overall, managerial overconfidence should be considered as an important factor influencing payout policy in addition to other known factors.Keywords: dividends, repurchases, UK firms, overconfidence, corporate governance, undervaluation
Procedia PDF Downloads 270755 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network
Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui
Abstract:
Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN
Procedia PDF Downloads 131754 Corporate Governance Reforms in a Developing Economy: Making a Case for Upstream and Downstream Interventions
Authors: Franklin Nakpodia, Femi Olan
Abstract:
A blend of internal factors (firm performance, internal stakeholders) and external pressures (globalisation, technology, corporate scandals) have intensified calls for corporate governance reforms. While several countries and their governments have responded to these calls, the effect of such reforms on corporate governance systems across countries remains mixed. In particular, the literature reports that the effectiveness of corporate governance interventions in many developing economies is limited. Relying on the corporate governance system in Africa’s largest economy (Nigeria), this research addresses two issues. First, this study explores why previous corporate governance reforms have failed and second, the article investigates what reforms could improve corporate governance practices in the country. In addressing the above objectives, this study adopts a qualitative approach that permits data collection via semi-structured interviews with 21 corporate executives. The data supports the articulation of two sequential levels of reforms (i.e., the upstream and downstream reforms). The upstream reforms focus on two crucial but often overlooked areas that undermine reform effectiveness, i.e., the extent of government commitment and an enabling environment. The downstream reforms combine awareness and regulatory elements to proffer a path to robust corporate governance in the country. Furthermore, findings from this study stress the need to consider the use of a bottom-up approach to corporate governance practice and policymaking in place of the dominant top-down strategy.Keywords: bottom-up approach, corporate governance, reforms, regulation
Procedia PDF Downloads 202753 Preventing Violent Extremism through Augmenting Community Resilience and Empowering Community Members in Swat
Authors: Dr. Muhammad Idris Idris, Dr. Said Saeed Saeed
Abstract:
Terrorism is the chronic issue of the hour. It is the disciplined practice of vicious activities like assassinating, slaughtering, mutilating, and frightening of the innocents to attain religious, fiscal, and political goals and to question the authority of the government. Leaders of the world promised to transform the planet by empowering community members and building community resilience (CR) against terrorism. This study concentrates to explore building community resilience against terrorism and empowering community members and implement strategies for strengthening community resilience. For data collection a mixed methods methodology will be used. Means, STD deviation, Pearson correlation, and thematic analysis will be employed to analyze the gathered data. The findings of the study will be interpreted and recommendations will be furnished accordingly. Study results will be disseminated to all concerned through conferences and seminar sessions. It is predicted that after the completion, the project team will be in a robust position to start writing the report that concentrates on strengthening community resilience, which is the crucial goal of this project. The publication will contribute effectively to all stakeholders and society, particularly to the lower rungs of social order. Moreover, it is expected that this project will contribute to future research in the domain of community resilience. This project will also reveal the remarkable potential of archival research on community resilience.Keywords: Violent Extremism, community Role, community resilience, community empowerment, Leadership role
Procedia PDF Downloads 145752 Neural Network Based Fluctuation Frequency Control in PV-Diesel Hybrid Power System
Authors: Heri Suryoatmojo, Adi Kurniawan, Feby A. Pamuji, Nursalim, Syaffaruddin, Herbert Innah
Abstract:
Photovoltaic (PV) system hybrid with diesel system is utilized widely for electrification in remote area. PV output power fluctuates due to uncertainty condition of temperature and sun irradiance. When the penetration of PV power is large, the reliability of the power utility will be disturbed and seriously impact the unstable frequency of system. Therefore, designing a robust frequency controller in PV-diesel hybrid power system is very important. This paper proposes new method of frequency control application in hybrid PV-diesel system based on artificial neural network (ANN). This method can minimize the frequency deviation without smoothing PV output power that controlled by maximum power point tracking (MPPT) method. The neural network algorithm controller considers average irradiance, change of irradiance and frequency deviation. In order the show the effectiveness of proposed algorithm, the addition of battery as energy storage system is also presented. To validate the proposed method, the results of proposed system are compared with the results of similar system using MPPT only. The simulation results show that the proposed method able to suppress frequency deviation smaller compared to the results of system using MPPT only.Keywords: energy storage system, frequency deviation, hybrid power generation, neural network algorithm
Procedia PDF Downloads 503751 Seismic Directionality Effects on In-Structure Response Spectra in Seismic Probabilistic Risk Assessment
Authors: Sittipong Jarernprasert, Enrique Bazan-Zurita, Paul C. Rizzo
Abstract:
Currently, seismic probabilistic risk assessments (SPRA) for nuclear facilities use In-Structure Response Spectra (ISRS) in the calculation of fragilities for systems and components. ISRS are calculated via dynamic analyses of the host building subjected to two orthogonal components of horizontal ground motion. Each component is defined as the median motion in any horizontal direction. Structural engineers applied the components along selected X and Y Cartesian axes. The ISRS at different locations in the building are also calculated in the X and Y directions. The choice of the directions of X and Y are not specified by the ground motion model with respect to geographic coordinates, and are rather arbitrarily selected by the structural engineer. Normally, X and Y coincide with the “principal” axes of the building, in the understanding that this practice is generally conservative. For SPRA purposes, however, it is desirable to remove any conservatism in the estimates of median ISRS. This paper examines the effects of the direction of horizontal seismic motion on the ISRS on typical nuclear structure. We also evaluate the variability of ISRS calculated along different horizontal directions. Our results indicate that some central measures of the ISRS provide robust estimates that are practically independent of the selection of the directions of the horizontal Cartesian axes.Keywords: seismic, directionality, in-structure response spectra, probabilistic risk assessment
Procedia PDF Downloads 410750 Dietary Pattern and Risk of Breast Cancer Among Women:a Case Control Study
Authors: Huma Naqeeb
Abstract:
Epidemiological studies have shown the robust link between breast cancer and dietary pattern. There has been no previous study conducted in Pakistan, which specifically focuses on dietary patterns among breast cancer women. This study aims to examine the association of breast cancer with dietary patterns among Pakistani women. This case-control research was carried in multiple tertiary care facilities. Newly diagnosed primary breast cancer patients were recruited as cases (n = 408); age matched controls (n = 408) were randomly selected from the general population. Data on required parameters were systematically collected using subjective and objective tools. Factor and Principal Component Analysis (PCA) techniques were used to extract women’s dietary patterns. Four dietary patterns were identified based on eigenvalue >1; (i) veg-ovo-fish, (ii) meat-fat-sweet, (iii) mix (milk and its products, and gourds vegetables) and (iv) lentils - spices. Results of the multiple regressions were displayed as adjusted odds ratio (Adj. OR) and their respective confidence intervals (95% CI). After adjusted for potential confounders, veg-ovo-fish dietary pattern was found to be robustly associated with a lower risk of breast cancer among women (Adj. OR: 0.68, 95%CI: (0.46-0.99, p<0.01). The study findings concluded that attachment to the diets majorly composed of fresh vegetables, and high quality protein sources may contribute in lowering the risk of breast cancer among women.Keywords: breast cancer, dietary pattern, women, principal component analysis
Procedia PDF Downloads 123749 Phillips Curve Estimation in an Emerging Economy: Evidence from Sub-National Data of Indonesia
Authors: Harry Aginta
Abstract:
Using Phillips curve framework, this paper seeks for new empirical evidence on the relationship between inflation and output in a major emerging economy. By exploiting sub-national data, the contribution of this paper is threefold. First, it resolves the issue of using on-target national inflation rates that potentially causes weakening inflation-output nexus. This is very relevant for Indonesia as its central bank has been adopting inflation targeting framework based on national consumer price index (CPI) inflation. Second, the study tests the relevance of mining sector in output gap estimation. The test for mining sector is important to control for the effects of mining regulation and nominal effects of coal prices on real economic activities. Third, the paper applies panel econometric method by incorporating regional variation that help to improve model estimation. The results from this paper confirm the strong presence of Phillips curve in Indonesia. Positive output gap that reflects excess demand condition gives rise to the inflation rates. In addition, the elasticity of output gap is higher if the mining sector is excluded from output gap estimation. In addition to inflation adaptation, the dynamics of exchange rate and international commodity price are also found to affect inflation significantly. The results are robust to the alternative measurement of output gapKeywords: Phillips curve, inflation, Indonesia, panel data
Procedia PDF Downloads 122748 Analyzing the Performance of Machine Learning Models to Predict Alzheimer's Disease and its Stages Addressing Missing Value Problem
Authors: Carlos Theran, Yohn Parra Bautista, Victor Adankai, Richard Alo, Jimwi Liu, Clement G. Yedjou
Abstract:
Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by deteriorating cognitive functions. AD has gained relevant attention in the last decade. An estimated 24 million people worldwide suffered from this disease by 2011. In 2016 an estimated 40 million were diagnosed with AD, and for 2050 is expected to reach 131 million people affected by AD. Therefore, detecting and confirming AD at its different stages is a priority for medical practices to provide adequate and accurate treatments. Recently, Machine Learning (ML) models have been used to study AD's stages handling missing values in multiclass, focusing on the delineation of Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and normal cognitive (CN). But, to our best knowledge, robust performance information of these models and the missing data analysis has not been presented in the literature. In this paper, we propose studying the performance of five different machine learning models for AD's stages multiclass prediction in terms of accuracy, precision, and F1-score. Also, the analysis of three imputation methods to handle the missing value problem is presented. A framework that integrates ML model for AD's stages multiclass prediction is proposed, performing an average accuracy of 84%.Keywords: alzheimer's disease, missing value, machine learning, performance evaluation
Procedia PDF Downloads 252747 Optimization of a Flux Switching Permanent Magnet Machine Using Laminated Segmented Rotor
Authors: Seyedmilad Kazemisangdehi, Seyedmehdi Kazemisangdehi
Abstract:
Flux switching permanent magnet machines are considered for wide range of applications because of their outstanding merits including high torque/power densities, high efficiency, simple and robust rotor structure. Therefore, several topologies have been proposed like the PM exited flux switching machine, hybrid excited flux switching type, and so on. Recently, a novel laminated segmented rotor flux switching permanent magnet machine was introduced. It features flux barriers on rotor structure to enhance the performances of machine including torque ripple reduction and also torque and efficiency improvements at the same time. This is while, the design of barriers was not optimized by the authors. Therefore, in this paper three coefficients regarding the position of the barriers are considered for optimization. The effect of each coefficient on the performance of this machine is investigated by finite element method and finally an optimized design of flux barriers based on these three coefficients is proposed from different points of view including electromagnetic torque maximization and cogging torque/torque ripple minimization. At optimum design from maximum developed torque aspect, this machine generates 0.65 Nm torque higher than that of the not-optimized design with an almost 0.4 % improvement in efficiency.Keywords: finite element analysis, FSPM, laminated segmented rotor flux switching permanent magnet machine, optimization
Procedia PDF Downloads 230746 Frequency Analysis of Minimum Ecological Flow and Gage Height in Indus River Using Maximum Likelihood Estimation
Authors: Tasir Khan, Yejuan Wan, Kalim Ullah
Abstract:
Hydrological frequency analysis has been conducted to estimate the minimum flow elevation of the Indus River in Pakistan to protect the ecosystem. The Maximum likelihood estimation (MLE) technique is used to estimate the best-fitted distribution for Minimum Ecological Flows at nine stations of the Indus River in Pakistan. The four selected distributions, Generalized Extreme Value (GEV) distribution, Generalized Logistics (GLO) distribution, Generalized Pareto (GPA) distribution, and Pearson type 3 (PE3) are fitted in all sites, usually used in hydro frequency analysis. Compare the performance of these distributions by using the goodness of fit tests, such as the Kolmogorov Smirnov test, Anderson darling test, and chi-square test. The study concludes that the Maximum Likelihood Estimation (MLE) method recommended that GEV and GPA are the most suitable distributions which can be effectively applied to all the proposed sites. The quantiles are estimated for the return periods from 5 to 1000 years by using MLE, estimations methods. The MLE is the robust method for larger sample sizes. The results of these analyses can be used for water resources research, including water quality management, designing irrigation systems, determining downstream flow requirements for hydropower, and the impact of long-term drought on the country's aquatic system.Keywords: minimum ecological flow, frequency distribution, indus river, maximum likelihood estimation
Procedia PDF Downloads 77745 Techno-Economic Comparative Analysis of Grid Connected Solar Photovoltaic (PV) to Solar Concentrated Solar Power (CSP) for Developing Countries: A Case Study of Kenya and Zimbabwe
Authors: Kathy Mwende Kiema, Remember Samu, Murat Fahrioglu
Abstract:
The potential of power generation from solar resources has been established as being robust in sub Saharan Africa. Consequently many governments in the region have encouraged the exploitation of this resource through, inter alia direct funding, subsidies and legislation (such as feed in tariffs). Through a case study of Kenya and Zimbabwe it is illustrated that a good deal of proposed grid connected solar power projects and related feed in tariffs have failed to take into account key economic and technical considerations in the selection of solar technologies to be implemented. This paper therefore presents a comparison between concentrated solar power (CSP) and solar photovoltaic (PV) to assess which technology is better suited to meet the energy demand for a given set of prevailing conditions. The evaluation criteria employed is levelized cost of electricity (LCOE), net present value (NPV) and plant capacity factor. The outcome is therefore a guide to aid policy makers and project developers in choosing between CSP and PV given certain solar irradiance values, planned nominal plant capacity, availability of water resource and a consideration of whether or not the power plant is intended to compete with existing technologies, primarily fossil fuel powered, in meeting the peak load.load.Keywords: capacity factor, peak load, solar PV, solar CSP
Procedia PDF Downloads 287