Search results for: ground truth for supervised learning
8658 Teachers’ Awareness of the Significance of Lifelong Learning: A Case Study of Secondary School Teachers of Batna - Algeria
Authors: Bahloul Amel
Abstract:
This study is an attempt to raise the awareness of the stakeholders and the authorities on the sensitivity of Algerian secondary school teachers of English as a Foreign Language about the students’ loss of English language skills learned during formal schooling with effort and at expense and the supposed measures to arrest that loss. Data was collected from secondary school teachers of EFL and analyzed quantitatively using a questionnaire containing open-ended and close-ended questions. The results advocate a consensus about the need for actions to be adopted to make assessment techniques outcome-oriented. Most of the participants were in favor of including curricular activities involving contextualized learning, problem-solving learning critical self-awareness, self and peer-assisted learning, use of computers and internet so as to make learners autonomous.Keywords: lifelong learning, EFL, contextualized learning, Algeria
Procedia PDF Downloads 3488657 Active Learning Management for Teacher's Professional Courses in Curriculum and Instruction, Faculty of Education Thaksin University
Authors: Chuanphit Chumkhong
Abstract:
This research aimed 1) to study the effects of the management of Active Learning among 3rd year students enrolled in teacher’s profession courses and 2) to assess the satisfaction of the students with courses using the Active Learning approach. The population for the study consisted of 442 3rd year undergraduate students enrolled in two teacher education courses in 2015: Curriculum Development and Learning Process Management. They were 442 from 11 education programs. Respondents for evaluation of satisfaction with Active Learning management comprised 432 students. The instruments used in research included a detailed course description and rating scale questionnaire on Active Learning. The data were analyzed using arithmetic mean and standard deviation. The results of the study reveal the following: 1. Overall, students gain a better understanding of the Active Learning due to their actual practice on the activity of course. Students have the opportunity to exchange learning knowledge and skills. The AL teaching activities make students interested in the contents and they seek to search for knowledge on their own. 2. Overall, 3rd year students are satisfied with the Active Learning management at a ‘high’ level with a mean score (μ) of 4.12 and standard deviation (σ) of. 51. By individual items, students are satisfied with the 10 elements in the two courses at a ‘high’ level with the mean score (μ) between 3.79 to 4.41 and a standard deviation (σ) between to 68. 79.Keywords: active learning teaching model, teacher’s professional courses, professional courses, curriculum and instruction teacher's
Procedia PDF Downloads 2498656 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images
Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn
Abstract:
The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper.Keywords: 2D, binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation
Procedia PDF Downloads 3578655 A Method for Consensus Building between Teachers and Learners in a Value Co-Creative Learning Service
Authors: Ryota Sugino, Satoshi Mizoguchi, Koji Kimita, Keiichi Muramatsu, Tatsunori Matsui, Yoshiki Shimomura
Abstract:
Improving added value and productivity of services entails improving both value-in-exchange and value-in-use. Value-in-use is realized by value co-creation, where providers and receivers create value together. In higher education services, value-in-use comes from learners achieving learning outcomes (e.g., knowledge and skills) that are consistent with their learning goals. To enhance the learning outcomes of a learner, it is necessary to enhance and utilize the abilities of the teacher along with the abilities of the learner. To do this, however, the learner and the teacher need to build a consensus about their respective roles. Teachers need to provide effective learning content; learners need to choose the appropriate learning strategies by using the learning content through consensus building. This makes consensus building an important factor in value co-creation. However, methods to build a consensus about their respective roles may not be clearly established, making such consensus difficult. In this paper, we propose some strategies for consensus building between a teacher and a learner in value co-creation. We focus on a teacher and learner co-design and propose an analysis method to clarify a collaborative design process to realize value co-creation. We then analyze some counseling data obtained from a university class. This counseling aimed to build a consensus for value-in-use, learning outcomes, and learning strategies between the teacher and the learner.Keywords: consensus building, value co-creation, higher education, learning service
Procedia PDF Downloads 3038654 Machine Learning in Gravity Models: An Application to International Recycling Trade Flow
Authors: Shan Zhang, Peter Suechting
Abstract:
Predicting trade patterns is critical to decision-making in public and private domains, especially in the current context of trade disputes among major economies. In the past, U.S. recycling has relied heavily on strong demand for recyclable materials overseas. However, starting in 2017, a series of new recycling policies (bans and higher inspection standards) was enacted by multiple countries that were the primary importers of recyclables from the U.S. prior to that point. As the global trade flow of recycling shifts, some new importers, mostly developing countries in South and Southeast Asia, have been overwhelmed by the sheer quantities of scrap materials they have received. As the leading exporter of recyclable materials, the U.S. now has a pressing need to build its recycling industry domestically. With respect to the global trade in scrap materials used for recycling, the interest in this paper is (1) predicting how the export of recyclable materials from the U.S. might vary over time, and (2) predicting how international trade flows for recyclables might change in the future. Focusing on three major recyclable materials with a history of trade, this study uses data-driven and machine learning (ML) algorithms---supervised (shrinkage and tree methods) and unsupervised (neural network method)---to decipher the international trade pattern of recycling. Forecasting the potential trade values of recyclables in the future could help importing countries, to which those materials will shift next, to prepare related trade policies. Such policies can assist policymakers in minimizing negative environmental externalities and in finding the optimal amount of recyclables needed by each country. Such forecasts can also help exporting countries, like the U.S understand the importance of healthy domestic recycling industry. The preliminary result suggests that gravity models---in addition to particular selection macroeconomic predictor variables--are appropriate predictors of the total export value of recyclables. With the inclusion of variables measuring aspects of the political conditions (trade tariffs and bans), predictions show that recyclable materials are shifting from more policy-restricted countries to less policy-restricted countries in international recycling trade. Those countries also tend to have high manufacturing activities as a percentage of their GDP.Keywords: environmental economics, machine learning, recycling, international trade
Procedia PDF Downloads 1688653 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features
Authors: Bushra Zafar, Usman Qamar
Abstract:
Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection
Procedia PDF Downloads 3168652 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits
Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.
Abstract:
With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme
Procedia PDF Downloads 1348651 The Challenges of Hyper-Textual Learning Approach for Religious Education
Authors: Elham Shirvani–Ghadikolaei, Seyed Mahdi Sajjadi
Abstract:
State of the art technology has the tremendous impact on our life, in this situation education system have been influenced as well as. In this paper, tried to compare two space of learning text and hypertext with each other, and some challenges of using hypertext in religious education. Regarding the fact that, hypertext is an undeniable part of learning in this world and it has highly beneficial for the education process from class to office and home. In this paper tried to solve this question: the consequences and challenges of applying hypertext in religious education. Also, the consequences of this survey demonstrate the role of curriculum designer and planner of education to solve this problem.Keywords: Hyper-textual, learning, religious education, learning text
Procedia PDF Downloads 3128650 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images
Authors: Afaf Alharbi, Qianni Zhang
Abstract:
The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification
Procedia PDF Downloads 1108649 Program Level Learning Outcomes in Music and Technology: Toward Improved Assessment and Better Communication
Authors: Susan Lewis
Abstract:
The assessment of learning outcomes at the program level has attracted much international interest from the perspectives of quality assurance and ongoing curricular redesign and renewal. This paper examines program-level learning outcomes in the field of music and technology, an area of study that has seen an explosion in program development over the past fifteen years. The Audio Engineering Society (AES) maintains an online directory of educational institutions worldwide, yielding the most comprehensive inventory of programs and courses in music and technology. The inventory includes courses, programs, and degrees in music and technology, music and computer science, music production, and the music industry. This paper focuses on published student learning outcomes for undergraduate degrees in music and technology and analyses commonalities at institutions in North America, the United Kingdom, and Europe. The results of a survey of student learning outcomes at twenty institutions indicates a focus on three distinct student learning outcomes: (1) cross-disciplinary knowledge in the fields of music and technology; (2) the practical application of training through the professional industry; and (3) the acquisition of skills in communication and collaboration. The paper then analyses assessment mechanisms for tracking student learning and achievement of learning outcomes at these institutions. The results indicate highly variable assessment practices. Conclusions offer recommendations for enhancing assessment techniques and better communicating learning outcomes to students.Keywords: quality assurance, student learning; learning outcomes, music and technology
Procedia PDF Downloads 1858648 Students' Statistical Reasoning and Attitudes towards Statistics in Blended Learning, E-Learning and On-Campus Learning
Authors: Petros Roussos
Abstract:
The present study focused on students' statistical reasoning related to Null Hypothesis Statistical Testing and p-values. Its objective was to test the hypothesis that neither the place (classroom, at a distance, online) nor the medium that actually supports the learning (ICT, internet, books) has an effect on understanding of statistical concepts. In addition, it was expected that students' attitudes towards statistics would not predict understanding of statistical concepts. The sample consisted of 385 undergraduate and postgraduate students from six state and private universities (five in Greece and one in Cyprus). Students were administered two questionnaires: a) the Greek version of the Survey of Attitudes Toward Statistics, and b) a short instrument which measures students' understanding of statistical significance and p-values. Results suggest that attitudes towards statistics do not predict students' understanding of statistical concepts, whereas the medium did not have an effect.Keywords: attitudes towards statistics, blended learning, e-learning, statistical reasoning
Procedia PDF Downloads 3108647 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa
Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam
Abstract:
Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines
Procedia PDF Downloads 5158646 Implementation of Computer-Based Technologies into Foreign Language Teaching Process
Authors: Golovchun Aleftina, Dabyltayeva Raikhan
Abstract:
Nowadays, in the world of widely developing cross-cultural interactions and rapidly changing demands of the global labor market, foreign language teaching and learning has taken a special role not only in school education but also in everyday life. Cognitive Lingua-Cultural Methodology of Foreign Language Teaching originated in Kazakhstan brings a communicative approach to the forefront in foreign language teaching that gives raise a variety of techniques to make the language learning a real communication. One of these techniques is Computer Assisted Language Learning. In our article, we aim to: demonstrate what learning benefits students are likely to get by teachers having implemented computer-based technologies into foreign language teaching process; prove that technology-based classroom serves as the best tool for interactive and efficient language learning; give examples of classroom sufficient organization with computer-based activities.Keywords: computer assisted language learning, learning benefits, foreign language teaching process, implementation, communicative approach
Procedia PDF Downloads 4738645 Effects of GRF on CMJ in Different Wooden Surface Systems
Authors: Yi-cheng Chen, Ming-jum Guo, Yang-ru Chen
Abstract:
Background and Objective: For safety and fair during basketball competition, FIBA proposes the definite level of physical functions in wooden surface system (WSS). There are existing various between different systems in indoor-stadium, so the aim of this study want to know how many effects in different WSS, especially for effects of ground reaction force(GRF) when player jumped. Materials and Methods: 12 participants acted counter-movement jump (CMJ) on 7 different surfaces, include 6 WSSs by 3 types rubber shock absorber pad (SAP) on cross or parallel fixed, and 1 rigid ground. GRFs of takeoff and landing had been recorded from an AMTI force platform when all participants acted vertical CMJs by counter-balance design. All data were analyzed using the one-way ANOVA to evaluate whether the test variable differed significantly between surfaces. The significance level was set at α=0.05. Results: There were non-significance in GRF between surfaces when participants taken off. For GRF of landing, we found WSS with cross fixed SAP are harder than parallel fixed. Although there were also non-significance when participant was landing on cross or parallel fixed surfaces, but there have test variable differed significantly between WSS with parallel fixed to rigid ground. In the study, landing to WSS with the hardest SAP, the GRF also have test variable differed significantly to other WSS. Conclusion: Although official basketball competition is in the WSS certificated by FIBA, there are also exist the various in GRF under takeoff or landing, any player must to warm-up before game starting. Especially, there is unsafe situation when play basketball on uncertificated WSS.Keywords: wooden surface system, counter-movement jump, ground reaction force, shock absorber pad
Procedia PDF Downloads 4468644 Reduction of Process of Evidence in Specific Forms of Criminal Proceeding: Problems and Risks
Authors: Filip Ščerba, Veronika Pochylá
Abstract:
Performing of the acts within criminal proceedings usually takes too long and thus this phenomenon can be regarded as one of the most burning problems which have plagued the criminal justice not only in the Czech Republic but at least all over Europe for the last few decades. This problem obviously has to be dealt with and thus the need to tackle this issue has resulted in the trend which is sometimes called Criminal Justice Rationalization, i.e. introducing and enforcing methods supporting the increase in efficiency of the criminal justice in order to make the criminal proceedings shorter and administrative procedure easier. This resulted in the introduction of institutes such as e.g. diversions in criminal proceedings or other forms of shortened pre-trial proceedings, which may be used primarily for dealing with less serious crimes. But also the institute, which was originally mentioned in connection with the system of criminal law in the countries belonging to the Anglo-Saxon legal order where it is frequently called of plea bargaining, has been introduced into the criminal law of many European countries, and it may be applied also in cases of serious crimes. All these special and shortened forms of criminal proceedings are connected with limited extent of process of evidence; in fact, some of these specific forms of criminal proceedings are designed for the purpose to simplify the process of evidence. That is also the reason, why some of these procedures are conditioned with the defendant’s confession. Main hypothesis: Limited process of evidence represents also a potential conflict with certain fundamental principles upon which the criminal proceeding in the Continental legal system is based. (A conflict with principle of material truth may be considered as the most important problem. This principle states that the bodies in criminal proceedings must clarify the facts of the case beyond reasonable doubt to such extent that a decision can be made; the defendant’s confession does not mean that these bodies are freed from the duty to review all the circumstances and facts of the case. Such principle is typical for criminal law in Central European region.) Basic methodologies: The paper is going to analyze such a problem of weakening of the principle of material truth in modern criminal law. Such analysis will be provided primarily on the base of the Czech criminal law, but also other legal regulations will be taken into consideration, and its result may have some relevance for all legal regulations belonging to the Continental legal system, so the paper offers also a comparison with legal systems of other Central European countries.Keywords: burden of proof, central European countries, criminal justice rationalization, criminal proceeding, Czech legislation, Czech republic, defendant, diversions, evidence, fundamental principles, plea bargaining, pre-trial proceedings, principle of material truth, process of evidence, process of evidence
Procedia PDF Downloads 2878643 Effect of Coffee Grounds on Physical and Heating Value Properties of Sugarcane Bagasse Pellets
Authors: K. Rattawan, W. Intagun, W. Kanoksilapatham
Abstract:
Objective of this research is to study effect of coffee grounds on physical and heating value properties of sugarcane bagasse pellets. The coffee grounds were tested as an additive for pelletizing process of bagasse pellets. Pelletizing was performed using a Flat–die pellet mill machine. Moisture content of raw materials was controlled at 10-13%. Die temperature range during the process was 75-80 oC. Physical characteristics (bulk density and durability) of the bagasse pellet and pellets with 1-5% coffee ground were determined following the standard assigned by the Pellet Fuel Institute (PFI). The results revealed increasing values of 648±3.4, 659 ± 3.1, 679 ± 3.3 and 685 ± 3.1 kg/m3 (for pellet bulk density); and 98.7 ± 0.11, 99.2 ± 0.26, 99.3 ± 0.19 and 99.4 ± 0.07% (for pellet durability), respectively. In addition, the heating values of the coffee ground supplemented pellets (15.9 ± 1.16, 17.0 ± 1.23 and 18.8 ± 1.34 MJ/kg) were improved comparing to the non-supplemented control (14.9 ± 1.14 MJ/kg), respectively. The results indicated that both the bulk density and durability values of the bagasse pellets were increased with the increasing proportion of the coffee ground additive.Keywords: bagasse, coffee grounds, pelletizing, heating value, sugar cane bagasse
Procedia PDF Downloads 1678642 Flipped Learning Application on the Development of Capabilities for Civil Engineering Education in Labs
Authors: Hector Barrios-Piña, Georgia García-Arellano, Salvador García-Rodríguez, Gerardo Bocanegra-García, Shashi Kant
Abstract:
This work shows the methodology of application and the effectiveness of the Flipped Learning technique for Civil Engineering laboratory classes. It was experimented by some of the professors of the Department of Civil Engineering at Tecnológico de Monterrey while teaching their laboratory classes. A total of 28 videos were created. The videos primarily demonstrate instructions of the experimental practices other than the usage of tools and materials. The technique allowed the students to prepare for their classes in advance. A survey was conducted on the participating professors and students (semester of August-December 2019) to quantify the effectiveness of the Flipped Learning technique. The students reported it as an excellent way of improving their learning aptitude, including self-learning whereas, the professors felt it as an efficient technique for optimizing their class session, which also provided an extra slot for class-interaction. A comparison of grades was analyzed between the students of the traditional classes and with Flipped Learning. It did not distinguish the benefits of Flipped Learning. However, the positive responses from the students and the professors provide an impetus for continuing and promoting the Flipped Learning technique in future classes.Keywords: flipped learning, laboratory classes, civil engineering, competences development
Procedia PDF Downloads 1618641 Ground Motion Modeling Using the Least Absolute Shrinkage and Selection Operator
Authors: Yildiz Stella Dak, Jale Tezcan
Abstract:
Ground motion models that relate a strong motion parameter of interest to a set of predictive seismological variables describing the earthquake source, the propagation path of the seismic wave, and the local site conditions constitute a critical component of seismic hazard analyses. When a sufficient number of strong motion records are available, ground motion relations are developed using statistical analysis of the recorded ground motion data. In regions lacking a sufficient number of recordings, a synthetic database is developed using stochastic, theoretical or hybrid approaches. Regardless of the manner the database was developed, ground motion relations are developed using regression analysis. Development of a ground motion relation is a challenging process which inevitably requires the modeler to make subjective decisions regarding the inclusion criteria of the recordings, the functional form of the model and the set of seismological variables to be included in the model. Because these decisions are critically important to the validity and the applicability of the model, there is a continuous interest on procedures that will facilitate the development of ground motion models. This paper proposes the use of the Least Absolute Shrinkage and Selection Operator (LASSO) in selecting the set predictive seismological variables to be used in developing a ground motion relation. The LASSO can be described as a penalized regression technique with a built-in capability of variable selection. Similar to the ridge regression, the LASSO is based on the idea of shrinking the regression coefficients to reduce the variance of the model. Unlike ridge regression, where the coefficients are shrunk but never set equal to zero, the LASSO sets some of the coefficients exactly to zero, effectively performing variable selection. Given a set of candidate input variables and the output variable of interest, LASSO allows ranking the input variables in terms of their relative importance, thereby facilitating the selection of the set of variables to be included in the model. Because the risk of overfitting increases as the ratio of the number of predictors to the number of recordings increases, selection of a compact set of variables is important in cases where a small number of recordings are available. In addition, identification of a small set of variables can improve the interpretability of the resulting model, especially when there is a large number of candidate predictors. A practical application of the proposed approach is presented, using more than 600 recordings from the National Geospatial-Intelligence Agency (NGA) database, where the effect of a set of seismological predictors on the 5% damped maximum direction spectral acceleration is investigated. The set of candidate predictors considered are Magnitude, Rrup, Vs30. Using LASSO, the relative importance of the candidate predictors has been ranked. Regression models with increasing levels of complexity were constructed using one, two, three, and four best predictors, and the models’ ability to explain the observed variance in the target variable have been compared. The bias-variance trade-off in the context of model selection is discussed.Keywords: ground motion modeling, least absolute shrinkage and selection operator, penalized regression, variable selection
Procedia PDF Downloads 3308640 The Development Learning Module Physics based on Guided Inquiry Approach on Model Cooperative Learning Type STAD (Student Team Achievement Division) in the Main Subject of Temperature and Heat
Authors: Fani Firmahandari
Abstract:
The development learning module physics based on guided inquiry approach on model cooperative learning type STAD (Student Team Achievement Division) in the main subject of temperature and heat. The research development aimed to produce physics learning module based on guided cooperative learning type STAD (Student Team Achievement Division) in the main subject of temperature and heat to the student in X class. The research method used Research and Development approach. The development procedure of this module includes potential problems, data collection to meet the need, product design, and feasibility of this module. The impact of learning can be seen or observed clearly when the learning process takes place, the teachers or the students already implemented measures cooperative learning model type STAD, so that the learning process goes well, the interaction of teachers and students, students with student looks good, besides that students can interact and work together in group.Keywords: cooperative learning type STAD (student team achievement division), development, inquiry, interaction students
Procedia PDF Downloads 3608639 Learning Styles Difference in Difficulties of Generating Idea
Authors: M. H. Yee, J. Md Yunos, W. Othman, R. Hassan, T. K. Tee, M. M. Mohamad
Abstract:
The generation of an idea that goes through several phases is affected by individual factors, interests, preferences and motivation. The purpose of this research was to analyze the difference in difficulties of generating ideas according to individual learning styles. A total of 375 technical students from four technical universities in Malaysia were randomly selected as samples. The Kolb Learning Styles Inventory and a set of developed questionnaires were used in this research. The results showed that the most dominant learning style is among technical students is Doer. A total of 319 (85.1%) technical students faced difficulties in solving individual assignments. Most of the problem faced by technical students is the difficulty of generating ideas for solving individual assignments. There was no significant difference in difficulties of generating ideas according to students’ learning styles. Therefore, students need to learn higher order thinking skills enabling students to generate ideas and consequently complete assignments.Keywords: difference, difficulties, generating idea, learning styles, Kolb Learning Styles Inventory
Procedia PDF Downloads 4488638 Language Learning Strategies to Improve English Speaking Skills among High School Students: A Case Study at Vo Minh Duc High School in Binh Duong Province, Viet Nam
Authors: Du T. Tran, Quyen T. L. Hoang
Abstract:
The role of language learning strategies in second language acquisition has received increased attention across several disciplines in recent years. Language learning strategies have been shown to occur in many studies over the passing years with the aim of improving the efficiency of language learning. Following previous studies, this study endeavors to scrutinize language learning strategies employed by the students at Vo Minh Duc high school and the effect of motivation on students’ learning strategy choices. The responses are examined quantitatively and qualitatively to enhance their validity and reliability. Data are collected from 342 students’ responses to the questionnaire, interviews with ten teachers and fifteen students, and classroom observations. The findings reveal that students’ motivation has an enormous impact on the choice of language learning strategies. The results simultaneously show that students use many language learning strategies to enhance their communicative competence, but the most frequently used ones are cognitive and affective ones. Significant correlations among types of learning strategies and the influence of motivation on the choices of language learning strategies were consistent with previous studies. The study’s results are expected to be beneficial to teachers of English and students in terms of narrowing the gap between the students' language learning strategies and their teaching methodologies preferences and sketching out the best strategies to enhance students’ speaking skills. The implications of these findings and the importance of viewing learners holistically are discussed, and recommendations are made for ongoing research.Keywords: learning strategies, speaking skills, memorization strategies, cognitive strategies, affective strategies
Procedia PDF Downloads 1058637 Examining the Significance of Service Learning in Driving the Purpose of a Rural-Based University in South Africa
Authors: C. Maphosa, Ndileleni Mudzielwana, Lufuno Phillip Netshifhefhe
Abstract:
In line with established mission and vision, a university articulates its focus and purpose of existence. The conduct of business in a university should be for the furtherance of the mission and vision. Teaching and learning should play a pivotal role in driving the purpose of a university. In this paper, the researchers examine how service learning could be significant in driving the purpose of a rural-based university whose focus is to promote rural development. The importance of institutions’ vision and mission statement is explored and the vision and mission of the said university examined closely. The concept rural development and the contribution of a university in its promotion is discussed. Service learning as a teaching and learning approach is examined and its significance in driving the purpose of a rural-based university explained.Keywords: relevance, differentiation, purpose, teaching, learning
Procedia PDF Downloads 3188636 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach
Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta
Abstract:
Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.Keywords: support vector machines, decision tree, random forest
Procedia PDF Downloads 408635 Design and Modeling of Light Duty Trencher
Authors: Yegetaneh T. Dejenu, Delesa Kejela, Abdulak Alemu
Abstract:
From the earliest time of humankind, the trenches were used for water to flow along and for soldiers to hide in during enemy attacks. Now a day due to civilization, the needs of the human being become endless, and the living condition becomes sophisticated. The unbalance between the needs and resource obligates them to find the way to manage this condition. The attempt to use the scares resource in very efficient and effective way makes the trench an endeavor practice in the world in all countries. A trencher is a construction equipment used to dig trenches, especially for laying pipes or cables, installing drainage, irrigation, installing fencing, and in preparation for trench warfare. It is a machine used to make a ditch by cutting the soil ground and effectively used in agricultural irrigation. The most common types of trencher are wheel trencher, chain trencher, micro trencher, portable trencher. In Ethiopia people have been trenching the ditch for many purposes and the tools they are using are Pickaxe, Shovel and some are using Micro Excavators. The adverse effect of using traditional equipment is, time and energy consuming, less productive, difficult and more man power is required. Hence it is necessary to design and produce low price, and simple machine to narrow this gap. Our objective is to design and model a light duty trencher that is used for trenching the ground or soil for making ditch and used for agricultural, ground cabling, ground piping, and drainage system. The designed machine trenches, maximum of 1-meter depth, 30 cm width, and the required length. The working mechanism is fully hydraulic, and the engine with 12.7 hp will provide suitable power for the pump that delivers 23 l/min at 1500 rpm to drive hydraulic motors and actuators.Keywords: hydraulics, modelling, trenching, ditch
Procedia PDF Downloads 2158634 Stock Movement Prediction Using Price Factor and Deep Learning
Abstract:
The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.Keywords: classification, machine learning, time representation, stock prediction
Procedia PDF Downloads 1478633 Quantum Kernel Based Regressor for Prediction of Non-Markovianity of Open Quantum Systems
Authors: Diego Tancara, Raul Coto, Ariel Norambuena, Hoseein T. Dinani, Felipe Fanchini
Abstract:
Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlapping between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum dataset. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlapping between quantum states. We observe a good performance of the models.Keywords: quantum, machine learning, kernel, non-markovianity
Procedia PDF Downloads 1818632 Determining the Information Technologies Usage and Learning Preferences of Construction
Authors: Naci Büyükkaracığan, Yıldırım Akyol
Abstract:
Information technology is called the technology which provides transmission of information elsewhere regardless of time, location, distance. Today, information technology is providing the occurrence of ground breaking changes in all areas of our daily lives. Information can be reached quickly to millions of people with help of information technology. In this Study, effects of information technology on students for educations and their learning preferences were demonstrated with using data obtained from questionnaires administered to students of 2015-2016 academic year at Selcuk University Kadınhanı Faik İçil Vocational School Construction Department. The data was obtained by questionnaire consisting of 30 questions that was prepared by the researchers. SPSS 21.00 package programme was used for statistical analysis of data. Chi-square tests, Mann-Whitney U test, Kruskal-Wallis and Kolmogorov-Smirnov tests were used in the data analysis for Descriptiving statistics. In a study conducted with the participation of 61 students, 93.4% of students' reputation of their own information communication device (computer, smart phone, etc.) That have been shown to be at the same rate and to the internet. These are just a computer of itself, then 45.90% of the students. The main reasons for the students' use of the Internet, social networking sites are 85.24%, 13.11% following the news of the site, as seen. All student assignments in information technology, have stated that they use in the preparation of the project. When students acquire scientific knowledge in the profession regarding their preferred sources evaluated were seen exactly when their preferred internet. Male students showed that daily use of information technology while compared to female students was statistically significantly less. Construction Package program where students are eager to learn about the reputation of 72.13% and 91.80% identified in the well which they agreed that an indispensable element in the professional advancement of information technology.Keywords: information technologies, computer, construction, internet, learning systems
Procedia PDF Downloads 2988631 Unmanned Systems in Urban Areas
Authors: Abdullah Beyazkurk, Onur Ozdemir
Abstract:
The evolution of warfare has been affected from technological developments to a large extent. Another important factor that affected the evolution of warfare is the space. Technological developments became cornerstones for the organization of the forces on the field, while space of the battlefield gained importance with the introduction of urban areas as 'battlefields'. The use of urban areas as battlefields increased the casualty, while technological developments began to play a remedial role. Thus, the unmanned systems drew attention as the remedy. Today's widely used unmanned aerial vehicles have great effects on the operations. On the other hand, with the increasing urbanization, and the wide use of urban areas as battlefields make it a necessity to benefit from unmanned systems on the ground as well. This study focuses on the use of unmanned aerial systems as well as unmanned ground systems in urban warfare, with regards to their performance and cost affectivity. The study defends that the use of unmanned vehicles will be remedial for increasing casualty rates, while their precision and superhuman capacity will manifest the performance advantage. The findings of this study will help modern armies focus on unmanned systems, especially for the urban, anti-terror, or counter insurgency operations.Keywords: technology, warfare, urban warfare, unmanned systems, unmanned ground vehicles, unmanned aerial vehicles
Procedia PDF Downloads 3548630 Flipped Classroom in Bioethics Education: A Blended and Interactive Online Learning Courseware That Enhances Active Learning and Student Engagement
Authors: Molly Pui Man Wong
Abstract:
In this study, a blended and interactive e-learning Courseware that our team developed will be introduced, and our team’s experiences on how the e-learning Courseware and the flipped classroom benefit student learning in bioethics in the medical program will be shared. This study is a continuation of the previously established study, which provides a summary of the well-developed e-learning Courseware in a blended learning approach and an update on its efficiency and efficacy. First, a collection of animated videos capturing selected topics of bioethics and related ethical issues and dilemma will be introduced. Next, a selection of problem-based learning videos (“simulated doctor-patient role play”) with pop-up questions and discussions will be further discussed. Our recent findings demonstrated that these activities launched by the Courseware strongly engaged students in bioethics education and enhanced students’ critical thinking and creativity, which were consistent with the previous data in the preliminary studies. Moreover, the educational benefits of the online art exhibition, art jamming, and competition will be discussed, through which students could express bioethics through arts and enrich their learning in medical research in an interactive, fun, and entertaining way, strengthening their interests in bioethics. Furthermore, online survey questionnaires and focus group interviews were conducted. Consistent with the preliminary studies, our results indicated that implementing the e-learning Courseware with a flipped classroom in bioethics education enhanced both active learning and student engagement. In conclusion, our Courseware not only reinforces education in art, bioethics, and medicine but also benefits students in understanding and critical thinking in socio-ethical issues and serves as a valuable learning tool in bioethics teaching and learning.Keywords: bioethics, courseware, e-learning, flipped classroom
Procedia PDF Downloads 1278629 Students and Teachers Perceptions about Interactive Learning in Teaching Health Promotion Course: Implication for Nursing Education and Practice
Authors: Ahlam Alnatour
Abstract:
Background: To our knowledge, there is lack of studies that describe the experience of studying health promotion courses using an interactive approach, and compare students’ and teachers perceptions about this method of teaching. The purpose of this study is to provide a comparison between student and teacher experiences and perspectives in learning health promotion course using interactive learning. Design: A descriptive qualitative design was used to provide an in-depth description and understanding of students’ and teachers experiences and perceptions of learning health promotion courses using an interactive learning. Study Participants: About 14 fourteen students (seven male, seven female) and eight teachers at governmental university in northern Jordan participated in this study. Data Analysis: Conventional content analysis approach was used for participants’ scripts to gain an in-depth description for both students' and teacher’s experiences. Results: The main themes emerged from the data analysis describing the students’ and teachers perceptions of the interactive health promotion class: teachers’ and students positive experience in adopting interactive learning, advantages and benefits of interactive teaching, barriers to interactive teaching, and suggestions for improvement. Conclusion: Both teachers and students reflected positive attitudes toward interactive learning. Interactive learning helped to engage in learning process physically and cognitively. Interactive learning enhanced learning process, promote student attention, enhanced final performance, and satisfied teachers and students accordingly. Interactive learning approach should be adopted in teaching graduate and undergraduate courses using updated and contemporary strategies. Nursing scholars and educators should be motivated to integrate interactive learning in teaching different nursing courses.Keywords: interactive learning, nursing, health promotion, qualitative study
Procedia PDF Downloads 250