Search results for: directional earth fault
1083 Defects Estimation of Embedded Systems Components by a Bond Graph Approach
Authors: I. Gahlouz, A. Chellil
Abstract:
The paper concerns the estimation of system components faults by using an unknown inputs observer. To reach this goal, we used the Bond Graph approach to physical modelling. We showed that this graphical tool is allowing the representation of system components faults as unknown inputs within the state representation of the considered physical system. The study of the causal and structural features of the system (controllability, observability, finite structure, and infinite structure) based on the Bond Graph approach was hence fulfilled in order to design an unknown inputs observer which is used for the system component fault estimation.Keywords: estimation, bond graph, controllability, observability
Procedia PDF Downloads 4141082 Cooperative CDD Scheme Based On Hierarchical Modulation in OFDM System
Authors: Seung-Jun Yu, Yeong-Seop Ahn, Young-Min Ko, Hyoung-Kyu Song
Abstract:
In order to achieve high data rate and increase the spectral efficiency, multiple input multiple output (MIMO) system has been proposed. However, multiple antennas are limited by size and cost. Therefore, recently developed cooperative diversity scheme, which profits the transmit diversity only with the existing hardware by constituting a virtual antenna array, can be a solution. However, most of the introduced cooperative techniques have a common fault of decreased transmission rate because the destination should receive the decodable compositions of symbols from the source and the relay. In this paper, we propose a cooperative cyclic delay diversity (CDD) scheme that uses hierarchical modulation. This scheme is free from the rate loss and allows seamless cooperative communication.Keywords: MIMO, cooperative communication, CDD, hierarchical modulation
Procedia PDF Downloads 5501081 Wave Energy: Efficient Conversion of the Big Waves
Authors: Md. Moniruzzaman
Abstract:
The energy of ocean waves across a large part of the earth is inexhaustible. The whole world will benefit if this endless energy can be used in an easy way. The coastal countries will easily be able to meet their own energy needs. The purpose of this article is to use the infinite energy of the ocean wave in a simple way. i.e. a method of efficient use of wave energy. The paper starts by discussing various forces acting on a floating object and, afterward, about the method. And then a calculation for a 73.39MW hydropower from the tidal wave. Used some sketches/pictures. Finally, the conclusion states the possibilities and advantages.Keywords: anchor, electricity, floating object, pump, ship city, wave energy
Procedia PDF Downloads 861080 Processing and Characterization of Glass-Epoxy Composites Filled with Linz-Donawitz (LD) Slag
Authors: Pravat Ranjan Pati, Alok Satapathy
Abstract:
Linz-Donawitz (LD) slag a major solid waste generated in huge quantities during steel making. It comes from slag formers such as burned lime/dolomite and from oxidizing of silica, iron etc. while refining the iron into steel in the LD furnace. Although a number of ways for its utilization have been suggested, its potential as a filler material in polymeric matrices has not yet been explored. The present work reports the possible use of this waste in glass fiber reinforced epoxy composites as a filler material. Hybrid composites consisting of bi-directional e-glass-fiber reinforced epoxy filled with different LD slag content (0, 7.5, 15, 22.5 wt%) are prepared by simple hand lay-up technique. The composites are characterized in regard to their density, porosity, micro-hardness and strength properties. X-ray diffractography is carried out in order to ascertain the various phases present in LDS. This work shows that LD slag, in spite of being a waste, possesses fairly good filler characteristics as it modifies the strength properties and improves the composite micro-hardness of the polymeric resin.Keywords: characterization, glass-epoxy composites, LD slag, waste utilization
Procedia PDF Downloads 3931079 Flood Simulation and Forecasting for Sustainable Planning of Response in Municipalities
Authors: Mariana Damova, Stanko Stankov, Emil Stoyanov, Hristo Hristov, Hermand Pessek, Plamen Chernev
Abstract:
We will present one of the first use cases on the DestinE platform, a joint initiative of the European Commission, European Space Agency and EUMETSAT, providing access to global earth observation, meteorological and statistical data, and emphasize the good practice of intergovernmental agencies acting in concert. Further, we will discuss the importance of space-bound disruptive solutions for improving the balance between the ever-increasing water-related disasters coming from climate change and minimizing their economic and societal impact. The use case focuses on forecasting floods and estimating the impact of flood events on the urban environment and the ecosystems in the affected areas with the purpose of helping municipal decision-makers to analyze and plan resource needs and to forge human-environment relationships by providing farmers with insightful information for improving their agricultural productivity. For the forecast, we will adopt an EO4AI method of our platform ISME-HYDRO, in which we employ a pipeline of neural networks applied to in-situ measurements and satellite data of meteorological factors influencing the hydrological and hydrodynamic status of rivers and dams, such as precipitations, soil moisture, vegetation index, snow cover to model flood events and their span. ISME-HYDRO platform is an e-infrastructure for water resources management based on linked data, extended with further intelligence that generates forecasts with the method described above, throws alerts, formulates queries, provides superior interactivity and drives communication with the users. It provides synchronized visualization of table views, graphviews and interactive maps. It will be federated with the DestinE platform.Keywords: flood simulation, AI, Earth observation, e-Infrastructure, flood forecasting, flood areas localization, response planning, resource estimation
Procedia PDF Downloads 231078 Geological Characteristics and Hydrocarbon Potential of M’Rar Formation Within NC-210, Atshan Saddle Ghadamis-Murzuq Basins, Libya
Authors: Sadeg M. Ghnia, Mahmud Alghattawi
Abstract:
The NC-210 study area is located in Atshan Saddle between both Ghadamis and Murzuq basins, west Libya. The preserved Palaeozoic successions are predominantly clastics reaching thickness of more than 20,000 ft in northern Ghadamis Basin depocenter. The Carboniferous series consist of interbedded sandstone, siltstone, shale, claystone and minor limestone deposited in a fluctuating shallow marine to brackish lacustrine/fluviatile environment which attain maximum thickness of over 5,000ft in the area of Atshan Saddle and recorded 3,500 ft. in outcrops of Murzuq Basin flanks. The Carboniferous strata was uplifted and eroded during Late Paleozoic and early Mesozoic time in northern Ghadamis Basin and Atshan Saddle. The M'rar Formation age is Tournaisian to Late Serpukhovian based on palynological markers and contains about 12 cycles of sandstone and shale deposited in shallow to outer neritic deltaic settings. The hydrocarbons in the M'rar reservoirs possibly sourced from the Lower Silurian and possibly Frasinian radioactive hot shales. The M'rar Formation lateral, vertical and thickness distribution is possibly influenced by the reactivation of Tumarline Strik-Slip fault and its conjugate faults. A pronounced structural paleohighs and paleolows, trending SE & NW through the Gargaf Saddle, is possibly indicative of the present of two sub-basins in the area of Atshan Saddle. A number of identified seismic reflectors from existing 2D seismic covering Atshan Saddle reflect M’rar deltaic 12 sandstone cycles. M’rar7, M’rar9, M’rar10 and M’rar12 are characterized by high amplitude reflectors, while M’rar2 and M’rar6 are characterized by medium amplitude reflectors. These horizons are productive reservoirs in the study area. Available seismic data in the study area contributed significantly to the identification of M’rar potential traps, which are prominently 3- way dip closure against fault zone. Also seismic data indicates the presence of a significant strikeslip component with the development of flower-structure. The M'rar Formation hydrocarbon discoveries are concentrated mainly in the Atshan Saddle located in southern Ghadamis Basin, Libya and Illizi Basin in southeast of Algeria. Significant additional hydrocarbons may be present in areas adjacent to the Gargaf Uplift, along structural highs and fringing the Hoggar Uplift, providing suitable migration pathways.Keywords: hydrocarbon potential, stratigraphy, Ghadamis basin, seismic, well data integration
Procedia PDF Downloads 741077 Corellation between Soil Electrical Resistivity and Metal Corrosion Based on Soil Types for Structure Designs
Authors: L. O. A. Oyinkanola, J.A. Fajemiroye
Abstract:
Soil resistivity measurements are an important parameter employed in the designing earthing installations. Thus, The knowledge of soil resistivity with respect to how it varies with related parameters such as moisture content, Temperature and depth at the intended site is very vital to determine how the desired earth resistance value can be attained and sustained over the life of the installation with the lowest cost and effort. The relationship between corrosion and soil resistivity has been investigated in this work. Varios soil samples: Sand, Gravel, Loam, Clay and Silt were collected from different spot within the vicinity.Keywords: Corrosion, resistivity, clay, hydraulic conductivity
Procedia PDF Downloads 5661076 Spatial Mapping and Change Detection of a Coastal Woodland Mangrove Habitat in Fiji
Authors: Ashneel Ajay Singh, Anish Maharaj, Havish Naidu, Michelle Kumar
Abstract:
Mangrove patches are the foundation species located in the estuarine land areas. These patches provide a nursery, food source and protection for numerous aquatic, intertidal and well as land-based organisms. Mangroves also help in coastal protection, maintain water clarity and are one of the biggest sinks for blue carbon sequestration. In the Pacific Island countries, numerous coastal communities have a heavy socioeconomic dependence on coastal resources and mangroves play a key ecological and economical role in structuring the availability of these resources. Fiji has a large mangrove patch located in the Votua area of the Ba province. Globally, mangrove population continues to decline with the changes in climatic conditions and anthropogenic activities. Baseline information through wetland maps and time series change are essential references for development of effective mangrove management plans. These maps reveal the status of the resource and the effects arising from anthropogenic activities and climate change. In this study, we used remote sensing and GIS tools for mapping and temporal change detection over a period of >20 years in Votua, Fiji using Landsat imagery. Landsat program started in 1972 initially as Earth Resources Technology Satellite. Since then it has acquired millions of images of Earth. This archive allows mapping of temporal changes in mangrove forests. Mangrove plants consisted of the species Rhizophora stylosa, Rhizophora samoensis, Bruguiera gymnorrhiza, Lumnitzera littorea, Heritiera littoralis, Excoecaria agallocha and Xylocarpus granatum. Change detection analysis revealed significant reduction in the mangrove patch over the years. This information serves as a baseline for the development and implementation of effective management plans for one of Fiji’s biggest mangrove patches.Keywords: climate change, GIS, Landsat, mangrove, temporal change
Procedia PDF Downloads 1801075 Assessment for the Backfill Using the Run of the Mine Tailings and Portland Cement
Authors: Javad Someehneshin, Weizhou Quan, Abdelsalam Abugharara, Stephen Butt
Abstract:
Narrow vein mining (NVM) is exploiting very thin but valuable ore bodies that are uneconomical to extract by conventional mining methods. NVM applies the technique of Sustainable Mining by Drilling (SMD). The SMD method is used to mine stranded, steeply dipping ore veins, which are too small or isolated to mine economically using conventional methods since the dilution is minimized. This novel mining technique uses drilling rigs to extract the ore through directional drilling surgically. This paper is focusing on utilizing the run of the mine tailings and Portland cement as backfill material to support the hanging wall for providing safe mine operation. Cemented paste backfill (CPB) is designed by mixing waste tailings, water, and cement of the precise percentage for optimal outcomes. It is a non-homogenous material that contains 70-85% solids. Usually, a hydraulic binder is added to the mixture to increase the strength of the CPB. The binder fraction mostly accounts for 2–10% of the total weight. In the mining industry, CPB has been improved and expanded gradually because it provides safety and support for the mines. Furthermore, CPB helps manage the waste tailings in an economical method and plays a significant role in environmental protection.Keywords: backfilling, cement backfill, tailings, Portland cement
Procedia PDF Downloads 1391074 The Urgenda and Juliana Cases: Redefining the Notion of Environmental Democracy
Authors: Valentina Dotto
Abstract:
Climate change cases used to take the form of statutory disputes rather than constitutional or common law disputes. This changed in 2015, with the Urgenda Climate case in the Netherlands (Urgenda Foundation v. The State of the Netherlands, C/09/456689/HAZA 13-1396) and, the Juliana case in the U.S. (United States v. U.S. District Court for District of Oregon, 17-71692, 9th Cir.). The two cases represent a new type of climate litigation, the claims brought against the federal government were in fact grounded in constitutional rights. The complaints used the Doctrine of Public Trust as a cornerstone for the lawsuits asserting that government's actions against climate change failed to protect essential public trust resources; thus, violating a generation's constitutional rights to life, liberty, and property. The Public Trust Doctrine –a quintessentially American legal concept-, reserved to the States by virtue of the 9th and 10th amendment of the federal Constitution, gives them considerable jurisdiction over natural resources and has been refined by a number of Supreme Court rulings. The Juliana case exemplifies the Doctrine’s evolutionary nature because it attempts to apply it to the federal government, and establish a right to a climate system capable of sustaining human life as a fundamental right protected by a substantive due process. Furthermore, the flexibility of the Doctrine makes it permissible to be applied to a variety of different legal systems as in the Urgenda case. At the very heart of the lawsuits stands the question of who owns the Earth resources and, to what extent the general public can claim the services that the Earth provides as common property. By employing the widest possible definition of the Doctrine of Public Trust these lawsuits tried to redefine environmental resources as a collective right of all people. By doing case analysis, the paper explores how these cases can contribute to widening the public access to information and broadening the public voice in decision making as well as providing a precedent to equal access in seeking justice and redress from environmental failures.Keywords: climate change, doctrine of public trust, environmental democracy, Juliana case, Urgenda climate case
Procedia PDF Downloads 1751073 Development of Star Tracker for Satellite
Authors: S. Yelubayev, V. Ten, B. Albazarov, E. Sarsenbayev, К. Аlipbayev, A. Shamro, Т. Bopeyev, А. Sukhenko
Abstract:
Currently in Kazakhstan much attention is paid to the development of space branch. Successful launch of two Earth remote sensing satellite is carried out, projects on development of components for satellite are being carried out. In particular, the project on development of star tracker experimental model is completed. In the future it is planned to use this experimental model for development of star tracker prototype. Main stages of star tracker experimental model development are considered in this article.Keywords: development, prototype, satellite, star tracker
Procedia PDF Downloads 4771072 Strategies for the Optimization of Ground Resistance in Large Scale Foundations for Optimum Lightning Protection
Authors: Oibar Martinez, Clara Oliver, Jose Miguel Miranda
Abstract:
In this paper, we discuss the standard improvements which can be made to reduce the earth resistance in difficult terrains for optimum lightning protection, what are the practical limitations, and how the modeling can be refined for accurate diagnostics and ground resistance minimization. Ground resistance minimization can be made via three different approaches: burying vertical electrodes connected in parallel, burying horizontal conductive plates or meshes, or modifying the own terrain, either by changing the entire terrain material in a large volume or by adding earth-enhancing compounds. The use of vertical electrodes connected in parallel pose several practical limitations. In order to prevent loss of effectiveness, it is necessary to keep a minimum distance between each electrode, which is typically around five times larger than the electrode length. Otherwise, the overlapping of the local equipotential lines around each electrode reduces the efficiency of the configuration. The addition of parallel electrodes reduces the resistance and facilitates the measurement, but the basic parallel resistor formula of circuit theory will always underestimate the final resistance. Numerical simulation of equipotential lines around the electrodes overcomes this limitation. The resistance of a single electrode will always be proportional to the soil resistivity. The electrodes are usually installed with a backfilling material of high conductivity, which increases the effective diameter. However, the improvement is marginal, since the electrode diameter counts in the estimation of the ground resistance via a logarithmic function. Substances that are used for efficient chemical treatment must be environmentally friendly and must feature stability, high hygroscopicity, low corrosivity, and high electrical conductivity. A number of earth enhancement materials are commercially available. Many are comprised of carbon-based materials or clays like bentonite. These materials can also be used as backfilling materials to reduce the resistance of an electrode. Chemical treatment of soil has environmental issues. Some products contain copper sulfate or other copper-based compounds, which may not be environmentally friendly. Carbon-based compounds are relatively inexpensive and they do have very low resistivities, but they also feature corrosion issues. Typically, the carbon can corrode and destroy a copper electrode in around five years. These compounds also have potential environmental concerns. Some earthing enhancement materials contain cement, which, after installation acquire properties that are very close to concrete. This prevents the earthing enhancement material from leaching into the soil. After analyzing different configurations, we conclude that a buried conductive ring with vertical electrodes connected periodically should be the optimum baseline solution for the grounding of a large size structure installed on a large resistivity terrain. In order to show this, a practical example is explained here where we simulate the ground resistance of a conductive ring buried in a terrain with a resistivity in the range of 1 kOhm·m.Keywords: grounding improvements, large scale scientific instrument, lightning risk assessment, lightning standards
Procedia PDF Downloads 1401071 Studies on Radio Frequency Sputtered Copper Zinc Tin Sulphide Absorber Layers for Thin Film Solar Cells
Authors: G. Balaji, R. Balasundaraprabhu, S. Prasanna, M. D. Kannan, K. Sivakumaran, David Mcilroy
Abstract:
Copper Zin tin sulphide (Cu2ZnSnS4 or CZTS) is found to be better alternative to Copper Indium gallium diselenide as absorber layers in thin film based solar cells due to the utilisation of earth-abundant materials in the midst of lower toxicity. In the present study, Cu2ZnSnS4 thin films were prepared on soda lime glass using (CuS, ZnS, SnS) targets and were deposited by three different stacking orders, using RF Magnetron sputtering. The substrate temperature was fixed at 300 °C during the depositions. CZTS thin films were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and UV-Vis-NIR spectroscopy. All the samples exhibited X-ray peaks pertaining to (112) kesterite phase of CZTS, along with the presence of a predominant wurtzite CZTS phase. X-ray photoelectron spectroscopy revealed the presence of all the elements in all the samples. The change in stacking order clearly shows that it affects the structural and phase properties of the films. Relative atomic concentrations of Zn, Cu, Sn and S, which are determined by high-resolution XPS core level spectra integrated peak areas revealed that the CZTS films exhibit inhomogeneity in both stoichiometry and elemental composition. Raman spectroscopy studies on the film showed the presence of CZTS phase. The energy band gap of the CZTS thin films was found to be in the range of 1.5 eV to 1.6 eV. The films were then annealed at 450 °C for 5 hrs and it was found that the predominant nature of the X-ray peaks has transformed from Wurtzite to Kesterite phase which is highly desirable for absorber layers in thin film solar cells. The optimized CZTS layer was used as an absorber layer in thin film solar cells. ZnS and CdS were used as buffer layers which in turn prepared by Hot wall epitaxy technique. Gallium doped Zinc oxide was used as a transparent conducting oxide. The solar cell structure Glass/Mo/CZTS/CdS or ZnS/GZO has been fabricated, and solar cell parameters were measured.Keywords: earth-abundant, Kesterite, RF sputtering, thin film solar cells
Procedia PDF Downloads 2821070 Dual Band LoRa/GPS Dipole Antenna with Harmonic Suppression Capability
Authors: Amar Danial Abd Azis, Shipun Anuar Hamzah, Mohd Noh Dalimin, Khairun Nidzam Ramli, Mohd Sani Yahya, Fauziahanim Che Seman
Abstract:
This paper discusses the design, simulation results, and testing of a compact dual-band printed dipole antenna operating at frequencies of 916 MHz and 1.57 GHz for LoRa and GPS applications, respectively. The basic design of this antenna uses a linear dipole that operates at 916 MHz and 2.7 GHz. A small triangular-shaped linear balun has been developed as the matching network. Parasitic elements are employed to tune the second frequency to 1.57 GHz through a parametric study. Meanwhile, a stub is used to suppress the undesired 2.6 GHz frequency. This antenna is capable of operating on dual-frequency bands simultaneously with high efficiency in suppressing the unwanted frequency. The antenna exhibits the following parameters: return loss of -18.5 dB at 916 MHz and -14 dB at 1.57 GHz, VSWR of 1.25 at 868 MHz and 1.5 at 1.57 GHz, and gain of 2 dBi at 916 MHz and 2.75 dBi at 1.57 GHz. The radiation pattern of the antenna shows a directional E-plane and an omnidirectional H-plane at both frequencies. With its compact size and dual-band capability, this antenna demonstrates great potential for use in IoT applications that require both LoRa and GPS communication, particularly in applications where a small yet efficient form factor is essential.Keywords: dual band, dipole antenna, parasitic elements, harmonic suppression, LoRa and Gps
Procedia PDF Downloads 151069 Solar Power Generation in a Mining Town: A Case Study for Australia
Authors: Ryan Chalk, G. M. Shafiullah
Abstract:
Climate change is a pertinent issue facing governments and societies around the world. The industrial revolution has resulted in a steady increase in the average global temperature. The mining and energy production industries have been significant contributors to this change prompting government to intervene by promoting low emission technology within these sectors. This paper initially reviews the energy problem in Australia and the mining sector with a focus on the energy requirements and production methods utilised in Western Australia (WA). Renewable energy in the form of utility-scale solar photovoltaics (PV) provides a solution to these problems by providing emission-free energy which can be used to supplement the existing natural gas turbines in operation at the proposed site. This research presents a custom renewable solution for the mining site considering the specific township network, local weather conditions, and seasonal load profiles. A summary of the required PV output is presented to supply slightly over 50% of the towns power requirements during the peak (summer) period, resulting in close to full coverage in the trench (winter) period. Dig Silent Power Factory Software has been used to simulate the characteristics of the existing infrastructure and produces results of integrating PV. Large scale PV penetration in the network introduce technical challenges, that includes; voltage deviation, increased harmonic distortion, increased available fault current and power factor. Results also show that cloud cover has a dramatic and unpredictable effect on the output of a PV system. The preliminary analyses conclude that mitigation strategies are needed to overcome voltage deviations, unacceptable levels of harmonics, excessive fault current and low power factor. Mitigation strategies are proposed to control these issues predominantly through the use of high quality, made for purpose inverters. Results show that use of inverters with harmonic filtering reduces the level of harmonic injections to an acceptable level according to Australian standards. Furthermore, the configuration of inverters to supply active and reactive power assist in mitigating low power factor problems. Use of FACTS devices; SVC and STATCOM also reduces the harmonics and improve the power factor of the network, and finally, energy storage helps to smooth the power supply.Keywords: climate change, mitigation strategies, photovoltaic (PV), power quality
Procedia PDF Downloads 1661068 Track Initiation Method Based on Multi-Algorithm Fusion Learning of 1DCNN And Bi-LSTM
Abstract:
Aiming at the problem of high-density clutter and interference affecting radar detection target track initiation in ECM and complex radar mission, the traditional radar target track initiation method has been difficult to adapt. To this end, we propose a multi-algorithm fusion learning track initiation algorithm, which transforms the track initiation problem into a true-false track discrimination problem, and designs an algorithm based on 1DCNN(One-Dimensional CNN)combined with Bi-LSTM (Bi-Directional Long Short-Term Memory )for fusion classification. The experimental dataset consists of real trajectories obtained from a certain type of three-coordinate radar measurements, and the experiments are compared with traditional trajectory initiation methods such as rule-based method, logical-based method and Hough-transform-based method. The simulation results show that the overall performance of the multi-algorithm fusion learning track initiation algorithm is significantly better than that of the traditional method, and the real track initiation rate can be effectively improved under high clutter density with the average initiation time similar to the logical method.Keywords: track initiation, multi-algorithm fusion, 1DCNN, Bi-LSTM
Procedia PDF Downloads 961067 Analytical Study of the Structural Response to Near-Field Earthquakes
Authors: Isidro Perez, Maryam Nazari
Abstract:
Numerous earthquakes, which have taken place across the world, led to catastrophic damage and collapse of structures (e.g., 1971 San Fernando; 1995 Kobe-Japan; and 2010 Chile earthquakes). Engineers are constantly studying methods to moderate the effect this phenomenon has on structures to further reduce damage, costs, and ultimately to provide life safety to occupants. However, there are regions where structures, cities, or water reservoirs are built near fault lines. When an earthquake occurs near the fault lines, they can be categorized as near-field earthquakes. In contrary, a far-field earthquake occurs when the region is further away from the seismic source. A near-field earthquake generally has a higher initial peak resulting in a larger seismic response, when compared to a far-field earthquake ground motion. These larger responses may result in serious consequences in terms of structural damage which can result in a high risk for the public’s safety. Unfortunately, the response of structures subjected to near-field records are not properly reflected in the current building design specifications. For example, in ASCE 7-10, the design response spectrum is mostly based on the far-field design-level earthquakes. This may result in the catastrophic damage of structures that are not properly designed for near-field earthquakes. This research investigates the knowledge that the effect of near-field earthquakes has on the response of structures. To fully examine this topic, a structure was designed following the current seismic building design specifications, e.g. ASCE 7-10 and ACI 318-14, being analytically modeled, utilizing the SAP2000 software. Next, utilizing the FEMA P695 report, several near-field and far-field earthquakes were selected, and the near-field earthquake records were scaled to represent the design-level ground motions. Upon doing this, the prototype structural model, created using SAP2000, was subjected to the scaled ground motions. A Linear Time History Analysis and Pushover analysis were conducted on SAP2000 for evaluation of the structural seismic responses. On average, the structure experienced an 8% and 1% increase in story drift and absolute acceleration, respectively, when subjected to the near-field earthquake ground motions. The pushover analysis was ran to find and aid in properly defining the hinge formation in the structure when conducting the nonlinear time history analysis. A near-field ground motion is characterized by a high-energy pulse, making it unique to other earthquake ground motions. Therefore, pulse extraction methods were used in this research to estimate the maximum response of structures subjected to near-field motions. The results will be utilized in the generation of a design spectrum for the estimation of design forces for buildings subjected to NF ground motions.Keywords: near-field, pulse, pushover, time-history
Procedia PDF Downloads 1471066 Crash and Injury Characteristics of Riders in Motorcycle-Passenger Vehicle Crashes
Authors: Z. A. Ahmad Noor Syukri, A. J. Nawal Aswan, S. V. Wong
Abstract:
The motorcycle has become one of the most common type of vehicles used on the road, particularly in the Asia region, including Malaysia, due to its size-convenience and affordable price. This study focuses only on crashes involving motorcycles with passenger cars consisting 43 real world crashes obtained from in-depth crash investigation process from June 2016 till July 2017. The study collected and analyzed vehicle and site parameters obtained during crash investigation and injury information acquired from the patient-treating hospital. The investigation team, consisting of two personnel, is stationed at the Emergency Department of the treatment facility, and was dispatched to the crash scene once receiving notification of the related crashes. The injury information retrieved was coded according to the level of severity using the Abbreviated Injury Scale (AIS) and classified into different body regions. The data revealed that weekend crashes were significantly higher for the night time period and the crash occurrence was the highest during morning hours (commuting to work period) for weekdays. Bad weather conditions play a minimal effect towards the occurrence of motorcycle – passenger vehicle crashes and nearly 90% involved motorcycles with single riders. Riders up to 25 years old are heavily involved in crashes with passenger vehicles (60%), followed by 26-55 year age group with 35%. Male riders were dominant in each of the age segments. The majority of the crashes involved side impacts, followed by rear impacts and cars outnumbered the rest of the passenger vehicle types in terms of crash involvement with motorcycles. The investigation data also revealed that passenger vehicles were the most at-fault counterpart (62%) when involved in crashes with motorcycles and most of the crashes involved situations whereby both of the vehicles are travelling in the same direction and one of the vehicles is in a turning maneuver. More than 80% of the involved motorcycle riders had sustained yellow severity level during triage process. The study also found that nearly 30% of the riders sustained injuries to the lower extremities, while MAIS level 3 injuries were recorded for all body regions except for thorax region. The result showed that crashes in which the motorcycles were found to be at fault were more likely to occur during night and raining conditions. These types of crashes were also found to be more likely to involve other types of passenger vehicles rather than cars and possess higher likelihood in resulting higher ISS (>6) value to the involved rider. To reduce motorcycle fatalities, it first has to understand the characteristics concerned and focus may be given on crashes involving passenger vehicles as the most dominant crash partner on Malaysian roads.Keywords: motorcycle crash, passenger vehicle, in-depth crash investigation, injury mechanism
Procedia PDF Downloads 3241065 Bi-Lateral Comparison between NIS-Egypt and NMISA-South Africa for the Calibration of an Optical Time Domain Reflectometer
Authors: Osama Terra, Mariesa Nel, Hatem Hussein
Abstract:
Calibration of Optical Time Domain Reflectometer (OTDR) has a crucial role for the accurate determination of fault locations and the accurate calculation of loss budget of long-haul optical fibre links during installation and repair. A comparison has been made between the Egyptian National Institute for Standards (NIS-Egypt) and the National Metrology institute of South Africa (NMISA-South Africa) for the calibration of an OTDR. The distance and the attenuation scales of a transfer OTDR have been calibrated by both institutes using their standards according to the standard IEC 61746-1 (2009). The results of this comparison have been compiled in this report.Keywords: OTDR calibration, recirculating loop, concatenated method, standard fiber
Procedia PDF Downloads 4491064 The Design and Analysis of a Novel Type High Gain Microstrip Patch Antenna System for the Satellite Communication
Authors: Shahid M. Ali, Zakiullah
Abstract:
An individual feed, smooth and smart, completely new shaped, dual band microstrip patch antenna has been proposed in this manuscript. Right here three triangular shape slots are usually presented in the 3 edges on the patch and along with a small feed line has utilized another edge on the patch to find out the dual band. The antenna carries a condensed framework wherever patch is around about 8.5mm by means of 7.96mm by means of 1.905mm leading to excellent bandwidths covering 13. 15 GHz to 13. 72 GHz in addition to 16.04 GHz to 16.58GHz. The return loss(RL) decrease in -19. 00dB and will be attained in the first resonant frequency at 13. 61 GHz and -28.69dB is at second resonance frequency at 16.33GHz. The stable average peak gain that may be observed along the operating band in lower and higher frequency is actually three. 53dB in addition to 5.562dB correspondingly. The radiation designs usually are omni directional along with moderate gain within equally most of these functioning bands. Accomplishment is proven within double frequencies at 13.62GHz since downlink in addition to 16.33GHz since uplink. This kind of low and simple configuration of the proposed antenna shows simplest fabrication and make it ensure that it is adaptable for your application within instant in satellite and as well as for the wireless communication system.Keywords: dual band, microstrip patch antenna, HFSS, Ku band, satellite
Procedia PDF Downloads 3621063 An Integrated Approach for Optimizing Drillable Parameters to Increase Drilling Performance: A Real Field Case Study
Authors: Hamidoddin Yousife
Abstract:
Drilling optimization requires a prediction of drilling rate of penetration (ROP) since it provides a significant reduction in drilling costs. There are several factors that can have an impact on the ROP, both controllable and uncontrollable. Numerous drilling penetration rate models have been considered based on drilling parameters. This papers considered the effect of proper drilling parameter selection such as bit, Mud Type, applied weight on bit (WOB), Revolution per minutes (RPM), and flow rate on drilling optimization and drilling cost reduction. A predicted analysis is used in real-time drilling performance to determine the optimal drilling operation. As a result of these modeling studies, the real data collected from three directional wells at Azadegan oil fields, Iran, was verified and adjusted to determine the drillability of a specific formation. Simulation results and actual drilling results show significant improvements in inaccuracy. Once simulations had been validated, optimum drilling parameters and equipment specifications were determined by varying weight on bit (WOB), rotary speed (RPM), hydraulics (hydraulic pressure), and bit specification for each well until the highest drilling rate was achieved. To evaluate the potential operational and economic benefits of optimizing results, a qualitative and quantitative analysis of the data was performed.Keywords: drlling, cost, optimization, parameters
Procedia PDF Downloads 1701062 Enhanced Visual Sharing Method for Medical Image Security
Authors: Kalaivani Pachiappan, Sabari Annaji, Nithya Jayakumar
Abstract:
In recent years, Information security has emerged as foremost challenges in many fields. Especially in medical information systems security is a major issue, in handling reports such as patients’ diagnosis and medical images. These sensitive data require confidentiality for transmission purposes. Image sharing is a secure and fault-tolerant method for protecting digital images, which can use the cryptography techniques to reduce the information loss. In this paper, visual sharing method is proposed which embeds the patient’s details into a medical image. Then the medical image can be divided into numerous shared images and protected by various users. The original patient details and medical image can be retrieved by gathering the shared images.Keywords: information security, medical images, cryptography, visual sharing
Procedia PDF Downloads 4171061 Microbial Dark Matter Analysis Using 16S rRNA Gene Metagenomics Sequences
Authors: Hana Barak, Alex Sivan, Ariel Kushmaro
Abstract:
Microorganisms are the most diverse and abundant life forms on Earth and account for a large portion of the Earth’s biomass and biodiversity. To date though, our knowledge regarding microbial life is lacking, as it is based mainly on information from cultivated organisms. Indeed, microbiologists have borrowed from astrophysics and termed the ‘uncultured microbial majority’ as ‘microbial dark matter’. The realization of how diverse and unexplored microorganisms are, actually stems from recent advances in molecular biology, and in particular from novel methods for sequencing microbial small subunit ribosomal RNA genes directly from environmental samples termed next-generation sequencing (NGS). This has led us to use NGS that generates several gigabases of sequencing data in a single experimental run, to identify and classify environmental samples of microorganisms. In metagenomics sequencing analysis (both 16S and shotgun), sequences are compared to reference databases that contain only small part of the existing microorganisms and therefore their taxonomy assignment may reveal groups of unknown microorganisms or origins. These unknowns, or the ‘microbial sequences dark matter’, are usually ignored in spite of their great importance. The goal of this work was to develop an improved bioinformatics method that enables more complete analyses of the microbial communities in numerous environments. Therefore, NGS was used to identify previously unknown microorganisms from three different environments (industrials wastewater, Negev Desert’s rocks and water wells at the Arava valley). 16S rRNA gene metagenome analysis of the microorganisms from those three environments produce about ~4 million reads for 75 samples. Between 0.1-12% of the sequences in each sample were tagged as ‘Unassigned’. Employing relatively simple methodology for resequencing of original gDNA samples through Sanger or MiSeq Illumina with specific primers, this study demonstrates that the mysterious ‘Unassigned’ group apparently contains sequences of candidate phyla. Those unknown sequences can be located on a phylogenetic tree and thus provide a better understanding of the ‘sequences dark matter’ and its role in the research of microbial communities and diversity. Studying this ‘dark matter’ will extend the existing databases and could reveal the hidden potential of the ‘microbial dark matter’.Keywords: bacteria, bioinformatics, dark matter, Next Generation Sequencing, unknown
Procedia PDF Downloads 2581060 Characterization of Agroforestry Systems in Burkina Faso Using an Earth Observation Data Cube
Authors: Dan Kanmegne
Abstract:
Africa will become the most populated continent by the end of the century, with around 4 billion inhabitants. Food security and climate changes will become continental issues since agricultural practices depend on climate but also contribute to global emissions and land degradation. Agroforestry has been identified as a cost-efficient and reliable strategy to address these two issues. It is defined as the integrated management of trees and crops/animals in the same land unit. Agroforestry provides benefits in terms of goods (fruits, medicine, wood, etc.) and services (windbreaks, fertility, etc.), and is acknowledged to have a great potential for carbon sequestration; therefore it can be integrated into reduction mechanisms of carbon emissions. Particularly in sub-Saharan Africa, the constraint stands in the lack of information about both areas under agroforestry and the characterization (composition, structure, and management) of each agroforestry system at the country level. This study describes and quantifies “what is where?”, earliest to the quantification of carbon stock in different systems. Remote sensing (RS) is the most efficient approach to map such a dynamic technology as agroforestry since it gives relatively adequate and consistent information over a large area at nearly no cost. RS data fulfill the good practice guidelines of the Intergovernmental Panel On Climate Change (IPCC) that is to be used in carbon estimation. Satellite data are getting more and more accessible, and the archives are growing exponentially. To retrieve useful information to support decision-making out of this large amount of data, satellite data needs to be organized so to ensure fast processing, quick accessibility, and ease of use. A new solution is a data cube, which can be understood as a multi-dimensional stack (space, time, data type) of spatially aligned pixels and used for efficient access and analysis. A data cube for Burkina Faso has been set up from the cooperation project between the international service provider WASCAL and Germany, which provides an accessible exploitation architecture of multi-temporal satellite data. The aim of this study is to map and characterize agroforestry systems using the Burkina Faso earth observation data cube. The approach in its initial stage is based on an unsupervised image classification of a normalized difference vegetation index (NDVI) time series from 2010 to 2018, to stratify the country based on the vegetation. Fifteen strata were identified, and four samples per location were randomly assigned to define the sampling units. For safety reasons, the northern part will not be part of the fieldwork. A total of 52 locations will be visited by the end of the dry season in February-March 2020. The field campaigns will consist of identifying and describing different agroforestry systems and qualitative interviews. A multi-temporal supervised image classification will be done with a random forest algorithm, and the field data will be used for both training the algorithm and accuracy assessment. The expected outputs are (i) map(s) of agroforestry dynamics, (ii) characteristics of different systems (main species, management, area, etc.); (iii) assessment report of Burkina Faso data cube.Keywords: agroforestry systems, Burkina Faso, earth observation data cube, multi-temporal image classification
Procedia PDF Downloads 1461059 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process
Authors: Jan Stodt, Christoph Reich
Abstract:
The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.Keywords: audit, machine learning, assessment, metrics
Procedia PDF Downloads 2721058 Application of Decline Curve Analysis to Depleted Wells in a Cluster and then Predicting the Performance of Currently Flowing Wells
Authors: Satish Kumar Pappu
Abstract:
The most common questions which are frequently asked in oil and gas industry are how much is the current production rate from a particular well and what is the approximate predicted life of that well. These questions can be answered through forecasting of important realistic data like flowing tubing hole pressures FTHP, Production decline curves which are used predict the future performance of a well in a reservoir. With the advent of directional drilling, cluster well drilling has gained much importance and in-fact has even revolutionized the whole world of oil and gas industry. An oil or gas reservoir can generally be described as a collection of several overlying, producing and potentially producing sands in to which a number of wells are drilled depending upon the in-place volume and several other important factors both technical and economical in nature, in some sands only one well is drilled and in some, more than one. The aim of this study is to derive important information from the data collected over a period of time at regular intervals on a depleted well in a reservoir sand and apply this information to predict the performance of other wells in that reservoir sand. The depleted wells are the most common observations when an oil or gas field is being visited, w the application of this study more realistic in nature.Keywords: decline curve analysis, estimation of future gas reserves, reservoir sands, reservoir risk profile
Procedia PDF Downloads 4381057 The Association between Saharran Dust and Emergency Department Admission and Hospitalization in Gaziantep, Turkey
Authors: Behcet Al, Mustafa Bogan, Mehmet Murat Oktay, Suat Zengin, Hasan Bayram
Abstract:
Objective: In the last two decades there is a strong scientific interest regarding the role of aerosols for the Earth’s climate and associated changes. Aerosol particles are very important to the Earth-atmosphere climate system playing a crucial role in cloud and precipitation processes, air quality and climate. Here, we evaluated the association between saharran dust and emergency department admission, hospitalization, and mortality. Method: The records of admission to emergency department of Gaziantep University and the dust stroms of 31 months were studied. Patients admitted to ED at dust strom with chronic obstructive lung disease (COLD), asthma bronchiale (AB), serebrovascular events (SVE), acute myocardial infarction (AMI), stabile and unstabile angina pectoris (SAAP andUSAP); and the days with and without dust stroms were included. The study was realized from March 2010 to October 2012. The admission of three days before strom (group 1), during strom days (group 2) and three days after strom (group 3) were determined. The mean level of dust PM10 particulate was calculated, and the results were compared. Results: 5864 patients with chronic obstructive lung disease, asthma bronchiale, serebrovascular events, acute myocardial infarction, stabile and unstabile angyina pectoris admitted during the days with and without dust stroms. 28 dust stroms ocurred during 31 months. The totaliy of stroms continiued 78 days. Of admissions, 35.5% (n=2075) were in group1, 29.8% (n=1746) in group 2, and 34.8% (n=2043) were in group 3. The mean of PM10 for groups (group 1, 2 and 3) were 78.53 mg/m3 (range 19–276) particulate, 108.7 mg/m3 (range 34–631) particulate, and 60.9 mg/m3 (range 17–160) particulate respectively. The mean admission per a day for groups were 24.86, 22.55, and 24.50 respectively. The mortality was 12 in group 1, 12 in group 2, and 17 in grou 3. The hospitalization ratio for groups were 0.24, 0.27, and 0.27 respectively. Conclusion: However, the mean level of PM10 particulate for groups 2 (in dust strom days) is significantly higher (p=0.001) than the days before (group 1) and after (group 3) dust stroms, the mean admissions/day, hostilalization and mortality related to deseases (COLD, AB, SVE, AMI, SAAP andUSA) for group 2 is lower than the group 1 and group 3.Keywords: Saharran dust, PM10 particulate, emergency department admission, mortality
Procedia PDF Downloads 3961056 Microdiamond and Moissanite Inclusions in Garnets from Pohorje Mountains, Eastern Alps, Slovenia
Authors: Mirijam Vrabec, Marian Janak, Bojan Ambrozic, Angelja K. Surca, Nastja Rogan Smuc, Nina Zupancic, Saso Sturm
Abstract:
Natural microdiamonds and moissanite (SiC) can form during the orogenic events under ultrahigh-pressure metamorphic conditions (UHP), when parts of Earth’s crust are subducted to extreme depths. So far, such processes were identified only in few places on the Earth, and therefore, represent unique opportunity to study the evolution of the Earth’s deep interior. An important discovery of microdiamonds and moissanite was reported from Pohorje, (Slovenia), where they occurred as single or polyphase inclusions in garnets. Metasedimentary rocks from Pohorje are predominantly gneisses representing parts of the Austroalpine metamorphic units of the Eastern Alps. During Cretaceous orogeny, (ca. 95–92 Ma) continental crustal rocks were deeply subducted to the mantle depths (below 100 km) and metamorphosed at pressures exceeding 3.5 GPa and temperatures between 800–850 °C. Microstructural and phase analysis of the inclusions as well as detailed elemental analysis of host garnets were carried out combining several analytical techniques: optical microscope in plane polarized transmitted light, electron probe microanalysis (EPMA) with wavelength-dispersive x-ray spectrometry (WDS) and field-emission scanning microscope (FEG-SEM) with energy-dispersive x-ray spectroscopy (EDS). Micro-Raman analysis revealed sharp, first order diamond bands sometimes accompanied by graphite bands implying that transformation of diamond back to graphite occurred. To study the chemical and crystallographic relationship between microdiamonds and co-inclusions, advanced techniques of transmission electron microscopy (TEM) were applied, which included high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), combined with EDS and electron energy-loss spectroscopy (EELS). To prepare electron transparent TEM lamellae selectively a dual-beam Focused Ion Beam/SEM (FIB/SEM) was employed. Detailed study of TEM lamellae, which was cross-sectioned from the highly faceted inclusion body located within the host garnet crystal matrix, revealed rich and rather complex internal structure. Namely, the negative crystal facets of the main inclusion body were typically decorated with up to 1 μm thick amorphous layer, reflecting the general garnet composition with slight variations in Fe/Ca content. Within these layers, ELNES analysis revealed the presence of a 28–30 nm thick layer of amorphous carbon. The very last section of this layer corresponds to composition of SiO2. Within the inclusion, besides diamond and moissanite alumosilicate mineral with pronounced layered structure, iron sulfides and chlorine were identified under TEM and CO2 and CH4 using Raman. Moissanite is found as single crystal or composed from numerous highly textured nano-crystals with the average size of 10 nm. Moissanite inclusions were found embedded inside the amorphous crust implying that moissanite crystalized well before the deposition of the amorphous layer. From the microstructural, crystallographic and chemical observations so far we can deduce, that polyphase inclusions in diamond bearing garnets from Pohorje most probably crystallized from reduced supercritical fluids. Based on layered interface structure of the host mineral multiphase process of crystallization is possible. The presence of microdiamonds and moissanite in rocks from Pohorje demonstrates that these parts of the Eastern Alps were subducted to extreme depths, and were subsequently exhumed back to the Earth's surface without complete breakdown of UHP mineral phases, allowing a rear and exceptional opportunity to study them in-situ.Keywords: diamond, fluid inclusions, moissanite, TEM, UHP metamorphism.
Procedia PDF Downloads 3061055 Rapid and Long-term Alien Language Analysis - Forming Frameworks for the Interpretation of Alien Communication for More Intelligent Life
Authors: Samiksha Raviraja, Junaid Arif
Abstract:
One of the most important abilities in species is the ability to communicate. This paper proposes steps to take when and if aliens came in contact with humans, and how humans would communicate with them. The situation would be a time-sensitive scenario, meaning that communication is at the utmost importance if such an event were to happen. First, humans would need to establish mutual peace by conveying that there is no threat to the alien race. Second, the aliens would need to acknowledge this understanding and reciprocate. This would be extremely difficult to do regardless of their intelligence level unless they are very human-like and have similarities to our way of communicating. The first step towards understanding their mind is to analyze their level of intelligence - Level 1-Low intelligence, Level 2-Human-like intelligence or Level 3-Advanced or High Intelligence. These three levels go hand in hand with the Kardashev scale. Further, the Barrow scale will also be used to categorize alien species in hopes of developing a common universal language to communicate in. This paper will delve into how the level of intelligence can be used toward achieving communication with aliens by predicting various possible scenarios and outcomes by proposing an intensive categorization system. This can be achieved by studying their Emotional and Intelligence Quotient (along with technological and scientific knowledge/intelligence). The limitations and capabilities of their intelligence must also be studied. By observing how they respond and react (expressions and senses) to different kinds of scenarios, items and people, the data will help enable good categorisation. It can be hypothesised that the more human-like aliens are or can relate to humans, the more likely it is that communication is possible. Depending on the situation, either human can teach aliens a human language, or humans can learn an alien language, or both races work together to develop a mutual understanding or mode of communication. There are three possible ways of contact. Aliens visit Earth, or humans discover aliens while on space exploration or through technology in the form of signals. A much rarer case would be humans and aliens running into each other during a space expedition of their own. The first two possibilities allow a more in-depth analysis of the alien life and enhanced results compared. The importance of finding a method of talking with aliens is important in order to not only protect Earth and humans but rather for the advancement of Science through the shared knowledge between the two species.Keywords: intelligence, Kardashev scale, Barrow scale, alien civilizations, emotional and intelligence quotient
Procedia PDF Downloads 731054 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation
Authors: Muhammad Zubair Khan, Yugyung Lee
Abstract:
Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network
Procedia PDF Downloads 103