Search results for: aircraft cable fault signal
1973 Design and Optimization of a Mini High Altitude Long Endurance (HALE) Multi-Role Unmanned Aerial Vehicle
Authors: Vishaal Subramanian, Annuatha Vinod Kumar, Santosh Kumar Budankayala, M. Senthil Kumar
Abstract:
This paper discusses the aerodynamic and structural design, simulation and optimization of a mini-High Altitude Long Endurance (HALE) UAV. The applications of this mini HALE UAV vary from aerial topological surveys, quick first aid supply, emergency medical blood transport, search and relief activates to border patrol, surveillance and estimation of forest fire progression. Although classified as a mini UAV according to UVS International, our design is an amalgamation of the features of ‘mini’ and ‘HALE’ categories, combining the light weight of the ‘mini’ and the high altitude ceiling and endurance of the HALE. Designed with the idea of implementation in India, it is in strict compliance with the UAS rules proposed by the office of the Director General of Civil Aviation. The plane can be completely automated or have partial override control and is equipped with an Infra-Red camera and a multi coloured camera with on-board storage or live telemetry, GPS system with Geo Fencing and fail safe measures. An additional of 1.5 kg payload can be attached to three major hard points on the aircraft and can comprise of delicate equipment or releasable payloads. The paper details the design, optimization process and the simulations performed using various software such as Design Foil, XFLR5, Solidworks and Ansys.Keywords: aircraft, endurance, HALE, high altitude, long range, UAV, unmanned aerial vehicle
Procedia PDF Downloads 4001972 Simple Multipath Compensation for Frequency Modulated Signals: A Case of Radio Frequency vs. Quadrature Baseband
Authors: Lusungu Ndovi
Abstract:
Radio propagation from point-to-point is affected by the physical channel in many ways. A signal arriving at a destination travels through a number of different paths which are referred to as multi-paths. Research in this area of wireless communications has progressed well over the years with the research taking different angles of focus. By this is meant that some researchers focus on ways of reducing or eluding Multipath effects whilst others focus on ways of mitigating the effects of Multipath through compensation schemes. Baseband processing is seen as one field of signal processing that is cardinal to the advancement of software-defined radio technology. This has led to wide research into the carrying out certain algorithms at baseband. This paper considers compensating for Multipath for Frequency Modulated signals. The compensation process is carried out at Radio frequency (RF) and at Quadrature baseband (QBB) and the results are compared. Simulations are carried out using MatLab so as to show the benefits of working at lower QBB frequencies than at RF.Keywords: quadrature baseband, qadio frequency, qultipath compensation, frequency qodulation, signal processing
Procedia PDF Downloads 4821971 An Effective Noise Resistant Frequency Modulation Continuous-Wave Radar Vital Sign Signal Detection Method
Authors: Lu Yang, Meiyang Song, Xiang Yu, Wenhao Zhou, Chuntao Feng
Abstract:
To address the problem that the FM continuous-wave radar (FMCW) extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a new detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a BP neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise and accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal-to-noise ratio of the sign signals.Keywords: frequency modulated continuous wave radar, ICEEMDAN, BP neural network, vital signs signal
Procedia PDF Downloads 1661970 Meta-Analysis of Previously Unsolved Cases of Aviation Mishaps Employing Molecular Pathology
Authors: Michael Josef Schwerer
Abstract:
Background: Analyzing any aircraft accident is mandatory based on the regulations of the International Civil Aviation Organization and the respective country’s criminal prosecution authorities. Legal medicine investigations are unavoidable when fatalities involve the flight crew or when doubts arise concerning the pilot’s aeromedical health status before the event. As a result of frequently tremendous blunt and sharp force trauma along with the impact of the aircraft to the ground, consecutive blast or fire exposition of the occupants or putrefaction of the dead bodies in cases of delayed recovery, relevant findings can be masked or destroyed and therefor being inaccessible in standard pathology practice comprising just forensic autopsy and histopathology. Such cases are of considerable risk of remaining unsolved without legal consequences for those responsible. Further, no lessons can be drawn from these scenarios to improve flight safety and prevent future mishaps. Aims and Methods: To learn from previously unsolved aircraft accidents, re-evaluations of the investigation files and modern molecular pathology studies were performed. Genetic testing involved predominantly PCR-based analysis of gene regulation, studying DNA promotor methylations, RNA transcription and posttranscriptional regulation. In addition, the presence or absence of infective agents, particularly DNA- and RNA-viruses, was studied. Technical adjustments of molecular genetic procedures when working with archived sample material were necessary. Standards for the proper interpretation of the respective findings had to be settled. Results and Discussion: Additional molecular genetic testing significantly contributes to the quality of forensic pathology assessment in aviation mishaps. Previously undetected cardiotropic viruses potentially explain e.g., a pilot’s sudden incapacitation resulting from cardiac failure or myocardial arrhythmia. In contrast, negative results for infective agents participate in ruling out concerns about an accident pilot’s fitness to fly and the aeromedical examiner’s precedent decision to issue him or her an aeromedical certificate. Care must be taken in the interpretation of genetic testing for pre-existing diseases such as hypertrophic cardiomyopathy or ischemic heart disease. Molecular markers such as mRNAs or miRNAs, which can establish these diagnoses in clinical patients, might be misleading in-flight crew members because of adaptive changes in their tissues resulting from repeated mild hypoxia during flight, for instance. Military pilots especially demonstrate significant physiological adjustments to their somatic burdens in flight, such as cardiocirculatory stress and air combat maneuvers. Their non-pathogenic alterations in gene regulation and expression will likely be misinterpreted for genuine disease by inexperienced investigators. Conclusions: The growing influence of molecular pathology on legal medicine practice has found its way into aircraft accident investigation. As appropriate quality standards for laboratory work and data interpretation are provided, forensic genetic testing supports the medico-legal analysis of aviation mishaps and potentially reduces the number of unsolved events in the future.Keywords: aviation medicine, aircraft accident investigation, forensic pathology, molecular pathology
Procedia PDF Downloads 471969 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification
Authors: Cemil Turan, Mohammad Shukri Salman
Abstract:
The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.Keywords: adaptive filtering, sparse system identification, TD-LMS algorithm, VSSLMS algorithm
Procedia PDF Downloads 3611968 Hg Anomalies and Soil Temperature Distribution to Delineate Upflow and Outflow Zone in Bittuang Geothermal Prospect Area, south Sulawesi, Indonesia
Authors: Adhitya Mangala, Yobel
Abstract:
Bittuang geothermal prospect area located at Tana Toraja district, South Sulawesi. The geothermal system of the area related to Karua Volcano eruption product. This area has surface manifestation such as fumarole, hot springs, sinter silica and mineral alteration. Those prove that there are hydrothermal activities in the subsurface. However, the project and development of the area have not implemented yet. One of the important elements in geothermal exploration is to determine upflow and outflow zone. This information very useful to identify the target for geothermal wells and development which it is a risky task. The methods used in this research were Mercury (Hg) anomalies in soil, soil and manifestation temperature distribution and fault fracture density from 93 km² research area. Hg anomalies performed to determine the distribution of hydrothermal alteration. Soil and manifestation temperature distribution were conducted to estimate heat distribution. Fault fracture density (FFD) useful to determine fracture intensity and trend from surface observation. Those deliver Hg anomaly map, soil and manifestation temperature map that combined overlayed to fault fracture density map and geological map. Then, the conceptual model made from north – south, and east – west cross section to delineate upflow and outflow zone in this area. The result shows that upflow zone located in northern – northeastern of the research area with the increase of elevation and decrease of Hg anomalies and soil temperature. The outflow zone located in southern - southeastern of the research area which characterized by chloride, chloride - bicarbonate geothermal fluid type, higher soil temperature, and Hg anomalies. The range of soil temperature distribution from 16 – 19 °C in upflow and 19 – 26.5 °C in the outflow. The range of Hg from 0 – 200 ppb in upflow and 200 – 520 ppb in the outflow. Structural control of the area show northwest – southeast trend. The boundary between upflow and outflow zone in 1550 – 1650 m elevation. This research delivers the conceptual model with innovative methods that useful to identify a target for geothermal wells, project, and development in Bittuang geothermal prospect area.Keywords: Bittuang geothermal prospect area, Hg anomalies, soil temperature, upflow and outflow zone
Procedia PDF Downloads 3301967 FlexPoints: Efficient Algorithm for Detection of Electrocardiogram Characteristic Points
Authors: Daniel Bulanda, Janusz A. Starzyk, Adrian Horzyk
Abstract:
The electrocardiogram (ECG) is one of the most commonly used medical tests, essential for correct diagnosis and treatment of the patient. While ECG devices generate a huge amount of data, only a small part of them carries valuable medical information. To deal with this problem, many compression algorithms and filters have been developed over the past years. However, the rapid development of new machine learning techniques poses new challenges. To address this class of problems, we created the FlexPoints algorithm that searches for characteristic points on the ECG signal and ignores all other points that do not carry relevant medical information. The conducted experiments proved that the presented algorithm can significantly reduce the number of data points which represents ECG signal without losing valuable medical information. These sparse but essential characteristic points (flex points) can be a perfect input for some modern machine learning models, which works much better using flex points as an input instead of raw data or data compressed by many popular algorithms.Keywords: characteristic points, electrocardiogram, ECG, machine learning, signal compression
Procedia PDF Downloads 1641966 Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length
Authors: Mecheri Zeid Belmecheri, Maamar Ahfir, Izzet Kale
Abstract:
Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram signals (PCG) can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded Phonocardiogram (PCG) signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded ElectroCardioGrams (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show a segmentation testing performance average of 76 % sensitivity and 94 % specificity.Keywords: heart sounds, PCG segmentation, event detection, recurrent neural networks, PCG curve length
Procedia PDF Downloads 1801965 Anonymous Editing Prevention Technique Using Gradient Method for High-Quality Video
Authors: Jiwon Lee, Chanho Jung, Si-Hwan Jang, Kyung-Ill Kim, Sanghyun Joo, Wook-Ho Son
Abstract:
Since the advances in digital imaging technologies have led to development of high quality digital devices, there are a lot of illegal copies of copyrighted video content on the internet. Thus, we propose a high-quality (HQ) video watermarking scheme that can prevent these illegal copies from spreading out. The proposed scheme is applied spatial and temporal gradient methods to improve the fidelity and detection performance. Also, the scheme duplicates the watermark signal temporally to alleviate the signal reduction caused by geometric and signal-processing distortions. Experimental results show that the proposed scheme achieves better performance than previously proposed schemes and it has high fidelity. The proposed scheme can be used in broadcast monitoring or traitor tracking applications which need fast detection process to prevent illegally recorded video content from spreading out.Keywords: editing prevention technique, gradient method, luminance change, video watermarking
Procedia PDF Downloads 4571964 Anisotropic Total Fractional Order Variation Model in Seismic Data Denoising
Authors: Jianwei Ma, Diriba Gemechu
Abstract:
In seismic data processing, attenuation of random noise is the basic step to improve quality of data for further application of seismic data in exploration and development in different gas and oil industries. The signal-to-noise ratio of the data also highly determines quality of seismic data. This factor affects the reliability as well as the accuracy of seismic signal during interpretation for different purposes in different companies. To use seismic data for further application and interpretation, we need to improve the signal-to-noise ration while attenuating random noise effectively. To improve the signal-to-noise ration and attenuating seismic random noise by preserving important features and information about seismic signals, we introduce the concept of anisotropic total fractional order denoising algorithm. The anisotropic total fractional order variation model defined in fractional order bounded variation is proposed as a regularization in seismic denoising. The split Bregman algorithm is employed to solve the minimization problem of the anisotropic total fractional order variation model and the corresponding denoising algorithm for the proposed method is derived. We test the effectiveness of theproposed method for synthetic and real seismic data sets and the denoised result is compared with F-X deconvolution and non-local means denoising algorithm.Keywords: anisotropic total fractional order variation, fractional order bounded variation, seismic random noise attenuation, split Bregman algorithm
Procedia PDF Downloads 2071963 Robust Processing of Antenna Array Signals under Local Scattering Environments
Authors: Ju-Hong Lee, Ching-Wei Liao
Abstract:
An adaptive array beamformer is designed for automatically preserving the desired signals while cancelling interference and noise. Providing robustness against model mismatches and tracking possible environment changes calls for robust adaptive beamforming techniques. The design criterion yields the well-known generalized sidelobe canceller (GSC) beamformer. In practice, the knowledge of the desired steering vector can be imprecise, which often occurs due to estimation errors in the DOA of the desired signal or imperfect array calibration. In these situations, the SOI is considered as interference, and the performance of the GSC beamformer is known to degrade. This undesired behavior results in a reduction of the array output signal-to-interference plus-noise-ratio (SINR). Therefore, it is worth developing robust techniques to deal with the problem due to local scattering environments. As to the implementation of adaptive beamforming, the required computational complexity is enormous when the array beamformer is equipped with massive antenna array sensors. To alleviate this difficulty, a generalized sidelobe canceller (GSC) with partially adaptivity for less adaptive degrees of freedom and faster adaptive response has been proposed in the literature. Unfortunately, it has been shown that the conventional GSC-based adaptive beamformers are usually very sensitive to the mismatch problems due to local scattering situations. In this paper, we present an effective GSC-based beamformer against the mismatch problems mentioned above. The proposed GSC-based array beamformer adaptively estimates the actual direction of the desired signal by using the presumed steering vector and the received array data snapshots. We utilize the predefined steering vector and a presumed angle tolerance range to carry out the required estimation for obtaining an appropriate steering vector. A matrix associated with the direction vector of signal sources is first created. Then projection matrices related to the matrix are generated and are utilized to iteratively estimate the actual direction vector of the desired signal. As a result, the quiescent weight vector and the required signal blocking matrix required for performing adaptive beamforming can be easily found. By utilizing the proposed GSC-based beamformer, we find that the performance degradation due to the considered local scattering environments can be effectively mitigated. To further enhance the beamforming performance, a signal subspace projection matrix is also introduced into the proposed GSC-based beamformer. Several computer simulation examples show that the proposed GSC-based beamformer outperforms the existing robust techniques.Keywords: adaptive antenna beamforming, local scattering, signal blocking, steering mismatch
Procedia PDF Downloads 1141962 Category-Base Theory of the Optimum Signal Approximation Clarifying the Importance of Parallel Worlds in the Recognition of Human and Application to Secure Signal Communication with Feedback
Authors: Takuro Kida, Yuichi Kida
Abstract:
We show a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detailed algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory and it is indicated that introducing conversations with feedback does not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, conditional optimization
Procedia PDF Downloads 1581961 Coding and Decoding versus Space Diversity for Rayleigh Fading Radio Frequency Channels
Authors: Ahmed Mahmoud Ahmed Abouelmagd
Abstract:
The diversity is the usual remedy of the transmitted signal level variations (Fading phenomena) in radio frequency channels. Diversity techniques utilize two or more copies of a signal and combine those signals to combat fading. The basic concept of diversity is to transmit the signal via several independent diversity branches to get independent signal replicas via time – frequency - space - and polarization diversity domains. Coding and decoding processes can be an alternative remedy for fading phenomena, it cannot increase the channel capacity, but it can improve the error performance. In this paper we propose the use of replication decoding with BCH code class, and Viterbi decoding algorithm with convolution coding; as examples of coding and decoding processes. The results are compared to those obtained from two optimized selection space diversity techniques. The performance of Rayleigh fading channel, as the model considered for radio frequency channels, is evaluated for each case. The evaluation results show that the coding and decoding approaches, especially the BCH coding approach with replication decoding scheme, give better performance compared to that of selection space diversity optimization approaches. Also, an approach for combining the coding and decoding diversity as well as the space diversity is considered, the main disadvantage of this approach is its complexity but it yields good performance results.Keywords: Rayleigh fading, diversity, BCH codes, Replication decoding, convolution coding, viterbi decoding, space diversity
Procedia PDF Downloads 4431960 Machine Learning Approach for Yield Prediction in Semiconductor Production
Authors: Heramb Somthankar, Anujoy Chakraborty
Abstract:
This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis
Procedia PDF Downloads 1101959 Propeller Performance Modeling through a Computational Fluid Dynamics Analysis Method
Authors: Maxime Alex Junior Kuitche, Ruxandra Mihaela Botez, Jean-Chirstophe Maunand
Abstract:
The evolution of aircraft is closely linked to the study and improvement of propulsion systems. Determining the propulsion performance is a real challenge in aircraft modeling and design. In addition to theoretical methodologies, experimental procedures are used to obtain a good estimation of the propulsion performances. For piston-propeller propulsion, the propeller needs several experimental tests which could be extremely demanding in terms of time and money. This paper presents a new procedure to estimate the performance of a propeller from a numerical approach using computational fluid dynamic analysis. The propeller was initially scanned, and then, its 3D model was represented using CATIA. A structured meshing and Shear Stress Transition k-ω turbulence model were applied to describe accurately the flow pattern around the propeller. Thus, the Partial Differential Equations were solved using ANSYS FLUENT software. The method was applied on the UAS-S45’s propeller designed and manufactured by Hydra Technologies in Mexico. An extensive investigation was performed for several flight conditions in terms of altitudes and airspeeds with the aim to determine thrust coefficients, power coefficients and efficiency of the propeller. The Computational Fluid Dynamics results were compared with experimental data acquired from wind tunnel tests performed at the LARCASE Price-Paidoussis wind tunnel. The results of this comparison have demonstrated that our approach was highly accurate.Keywords: CFD analysis, propeller performance, unmanned aerial system propeller, UAS-S45
Procedia PDF Downloads 3531958 Design, Simulation and Construction of 2.4GHz Microstrip Patch Antenna for Improved Wi-Fi Reception
Authors: Gabriel Ugalahi, Dominic S. Nyitamen
Abstract:
This project seeks to improve Wi-Fi reception by utilizing the properties of directional microstrip patch antennae. Where there is a dense population of Wi-Fi signal, several signal sources transmitting on the same frequency band and indeed channel constitutes interference to each other. The time it takes for request to be received, resolved and response given between a user and the resource provider is increased considerably. By deploying a directional patch antenna with a narrow bandwidth, the range of frequency received is reduced and should help in limiting the reception of signal from unwanted sources. A rectangular microstrip patch antenna (RMPA) is designed to operate at the Industrial Scientific and Medical (ISM) band (2.4GHz) commonly used in Wi-Fi network deployment. The dimensions of the antenna are calculated and these dimensions are used to generate a model on Advanced Design System (ADS), a microwave simulator. Simulation results are then analyzed and necessary optimization is carried out to further enhance the radiation quality so as to achieve desired results. Impedance matching at 50Ω is also obtained by using the inset feed method. Final antenna dimensions obtained after simulation and optimization are then used to implement practical construction on an FR-4 double sided copper clad printed circuit board (PCB) through a chemical etching process using ferric chloride (Fe2Cl). Simulation results show an RMPA operating at a centre frequency of 2.4GHz with a bandwidth of 40MHz. A voltage standing wave ratio (VSWR) of 1.0725 is recorded on a return loss of -29.112dB at input port showing an appreciable match in impedance to a source of 50Ω. In addition, a gain of 3.23dBi and directivity of 6.4dBi is observed during far-field analysis. On deployment, signal reception from wireless devices is improved due to antenna gain. A test source with a received signal strength indication (RSSI) of -80dBm without antenna installed on the receiver was improved to an RSSI of -61dBm. In addition, the directional radiation property of the RMPA prioritizes signals by pointing in the direction of a preferred signal source thus, reducing interference from undesired signal sources. This was observed during testing as rotation of the antenna on its axis resulted to the gain of signal in-front of the patch and fading of signals away from the front.Keywords: advanced design system (ADS), inset feed, received signal strength indicator (RSSI), rectangular microstrip patch antenna (RMPA), voltage standing wave ratio (VSWR), wireless fidelity (Wi-Fi)
Procedia PDF Downloads 2231957 Basic Calibration and Normalization Techniques for Time Domain Reflectometry Measurements
Authors: Shagufta Tabassum
Abstract:
The study of dielectric properties in a binary mixture of liquids is very useful to understand the liquid structure, molecular interaction, dynamics, and kinematics of the mixture. Time-domain reflectometry (TDR) is a powerful tool for studying the cooperation and molecular dynamics of the H-bonded system. In this paper, we discuss the basic calibration and normalization procedure for time-domain reflectometry measurements. Our approach is to explain the different types of error occur during TDR measurements and how these errors can be eliminated or minimized.Keywords: time domain reflectometry measurement techinque, cable and connector loss, oscilloscope loss, and normalization technique
Procedia PDF Downloads 2071956 Bank ATM Monitoring System Using IR Sensor
Authors: P. Saravanakumar, N. Raja, M. Rameshkumar, D. Mohankumar, R. Sateeshkumar, B. Maheshwari
Abstract:
This research work is designed using Microsoft VB. Net as front end and MySQL as back end. The project deals with secure the user transaction in the ATM system. This application contains the option for sending the failed transaction details to the particular customer by using the SMS. When the customer withdraws the amount from the Bank ATM system, sometimes the amount will not be dispatched but the amount will be debited to the particular account. This application is used to avoid this type of problems in the ATM system. In this proposed system using IR technique to detect the dispatched amount. IR Transmitter and IR Receiver are placed in the path of cash dispatch. It is connected each other through the IR signal. When the customers withdraw the amount in the ATM system then the amount will be dispatched or not is monitored by IR Receiver. If the amount will be dispatched then the signal will be interrupted between the IR Receiver and the IR Transmitter. At that time, the monitoring system will be reduced their particular withdraw amount on their account. If the cash will not be dispatched, the signal will not be interrupted, at that time the particular withdraw amount will not be reduced their account. If the transaction completed successfully, the transaction details such as withdraw amount and current balance can be sent to the customer via the SMS. If the transaction fails, the transaction failed message can be send to the customer.Keywords: ATM system, monitoring system, IR Transmitter, IR Receiver
Procedia PDF Downloads 3101955 Stabilization of Rotational Motion of Spacecrafts Using Quantized Two Torque Inputs Based on Random Dither
Authors: Yusuke Kuramitsu, Tomoaki Hashimoto, Hirokazu Tahara
Abstract:
The control problem of underactuated spacecrafts has attracted a considerable amount of interest. The control method for a spacecraft equipped with less than three control torques is useful when one of the three control torques had failed. On the other hand, the quantized control of systems is one of the important research topics in recent years. The random dither quantization method that transforms a given continuous signal to a discrete signal by adding artificial random noise to the continuous signal before quantization has also attracted a considerable amount of interest. The objective of this study is to develop the control method based on random dither quantization method for stabilizing the rotational motion of a rigid spacecraft with two control inputs. In this paper, the effectiveness of random dither quantization control method for the stabilization of rotational motion of spacecrafts with two torque inputs is verified by numerical simulations.Keywords: spacecraft control, quantized control, nonlinear control, random dither method
Procedia PDF Downloads 1801954 Meditation and Insight Interpretation Using Quantum Circle Based-on Experiment and Quantum Relativity Formalism
Authors: Somnath Bhattachryya, Montree Bunruangses, Somchat Sonasang, Preecha Yupapin
Abstract:
In this study and research on meditation and insight, the design and experiment with electronic circuits to manipulate the meditators' mental circles that call the chakras to have the same size is proposed. The shape of the circuit is 4-ports, called an add-drop multiplexer, that studies the meditation structure called the four-mindfulness foundation, then uses an AC power signal as an input instead of the meditation time function, where various behaviors with the method of re-filtering the signal (successive filtering), like eight noble paths. Start by inputting a signal at a frequency that causes the velocity of the wave on the perimeter of the circuit to cause particles to have the speed of light in a vacuum. The signal changes from electromagnetic waves and matter waves according to the velocity (frequency) until it reaches the point of the relativistic limit. The electromagnetic waves are transformed into photons with properties of wave-particle overcoming the limits of the speed of light. As for the matter wave, it will travel to the other side and cannot pass through the relativistic limit, called a shadow signal (echo) that can have power from increasing speed but cannot create speed faster than light or insight. In the experiment, the only the side where the velocity is positive, only where the speed above light or the corresponding frequency indicates intelligence. Other side(echo) can be done by changing the input signal to the other side of the circuit to get the same result. But there is no intelligence or speed beyond light. It is also used to study the stretching, contraction of time and wormholes that can be applied for teleporting, Bose-Einstein condensate and teleprinting, quantum telephone. The teleporting can happen throughout the system with wave-particle and echo, which is when the speed of the particle is faster than the stretching or contraction of time, the particle will submerge in the wormhole, when the destination and time are determined, will travel through the wormhole. In a wormhole, time can determine in the future and the past. The experimental results using the microstrip circuit have been found to be by the principle of quantum relativity, which can be further developed for both tools and meditation practitioners for quantum technology.Keywords: quantu meditation, insight picture, quantum circuit, absolute time, teleportation
Procedia PDF Downloads 641953 Specific Emitter Identification Based on Refined Composite Multiscale Dispersion Entropy
Authors: Shaoying Guo, Yanyun Xu, Meng Zhang, Weiqing Huang
Abstract:
The wireless communication network is developing rapidly, thus the wireless security becomes more and more important. Specific emitter identification (SEI) is an vital part of wireless communication security as a technique to identify the unique transmitters. In this paper, a SEI method based on multiscale dispersion entropy (MDE) and refined composite multiscale dispersion entropy (RCMDE) is proposed. The algorithms of MDE and RCMDE are used to extract features for identification of five wireless devices and cross-validation support vector machine (CV-SVM) is used as the classifier. The experimental results show that the total identification accuracy is 99.3%, even at low signal-to-noise ratio(SNR) of 5dB, which proves that MDE and RCMDE can describe the communication signal series well. In addition, compared with other methods, the proposed method is effective and provides better accuracy and stability for SEI.Keywords: cross-validation support vector machine, refined com- posite multiscale dispersion entropy, specific emitter identification, transient signal, wireless communication device
Procedia PDF Downloads 1301952 FMCW Doppler Radar Measurements with Microstrip Tx-Rx Antennas
Authors: Yusuf Ulaş Kabukçu, Si̇nan Çeli̇k, Onur Salan, Mai̇de Altuntaş, Mert Can Dalkiran, Gökseni̇n Bozdağ, Metehan Bulut, Fati̇h Yaman
Abstract:
This study presents a more compact implementation of the 2.4GHz MIT Coffee Can Doppler Radar for 2.6GHz operating frequency. The main difference of our prototype depends on the use of microstrip antennas which makes it possible to transport with a small robotic vehicle. We have designed our radar system with two different channels: Tx and Rx. The system mainly consists of Voltage Controlled Oscillator (VCO) source, low noise amplifiers, microstrip antennas, splitter, mixer, low pass filter, and necessary RF connectors with cables. The two microstrip antennas, one is element for transmitter and the other one is array for receiver channel, was designed, fabricated and verified by experiments. The system has two operation modes: speed detection and range detection. If the switch of the operation mode is ‘Off’, only CW signal transmitted for speed measurement. When the switch is ‘On’, CW is frequency-modulated and range detection is possible. In speed detection mode, high frequency (2.6 GHz) is generated by a VCO, and then amplified to reach a reasonable level of transmit power. Before transmitting the amplified signal through a microstrip patch antenna, a splitter used in order to compare the frequencies of transmitted and received signals. Half of amplified signal (LO) is forwarded to a mixer, which helps us to compare the frequencies of transmitted and received (RF) and has the IF output, or in other words information of Doppler frequency. Then, IF output is filtered and amplified to process the signal digitally. Filtered and amplified signal showing Doppler frequency is used as an input of audio input of a computer. After getting this data Doppler frequency is shown as a speed change on a figure via Matlab script. According to experimental field measurements the accuracy of speed measurement is approximately %90. In range detection mode, a chirp signal is used to form a FM chirp. This FM chirp helps to determine the range of the target since only Doppler frequency measured with CW is not enough for range detection. Such a FMCW Doppler radar may be used in border security of the countries since it is capable of both speed and range detection.Keywords: doppler radar, FMCW, range detection, speed detection
Procedia PDF Downloads 3991951 The Impact of Distributed Epistemologies on Software Engineering
Authors: Thomas Smith
Abstract:
Many hackers worldwide would agree that, had it not been for linear-time theory, the refinement of Byzantine fault tolerance might never have occurred. After years of significant research into extreme programming, we validate the refinement of simulated annealing. Maw, our new framework for unstable theory, is the solution to all of these issues.Keywords: distributed, software engineering, DNS, DHCP
Procedia PDF Downloads 3571950 Engine Thrust Estimation by Strain Gauging of Engine Mount Assembly
Authors: Rohit Vashistha, Amit Kumar Gupta, G. P. Ravishankar, Mahesh P. Padwale
Abstract:
Accurate thrust measurement is required for aircraft during takeoff and after ski-jump. In a developmental aircraft, takeoff from ship is extremely critical and thrust produced by the engine should be known to the pilot before takeoff so that if thrust produced is not sufficient then take-off can be aborted and accident can be avoided. After ski-jump, thrust produced by engine is required because the horizontal speed of aircraft is less than the normal takeoff speed. Engine should be able to produce enough thrust to provide nominal horizontal takeoff speed to the airframe within prescribed time limit. The contemporary low bypass gas turbine engines generally have three mounts where the two side mounts transfer the engine thrust to the airframe. The third mount only takes the weight component. It does not take any thrust component. In the present method of thrust estimation, the strain gauging of the two side mounts is carried out. The strain produced at various power settings is used to estimate the thrust produced by the engine. The quarter Wheatstone bridge is used to acquire the strain data. The engine mount assembly is subjected to Universal Test Machine for determination of equivalent elasticity of assembly. This elasticity value is used in the analytical approach for estimation of engine thrust. The estimated thrust is compared with the test bed load cell thrust data. The experimental strain data is also compared with strain data obtained from FEM analysis. Experimental setup: The strain gauge is mounted on the tapered portion of the engine mount sleeve. Two strain gauges are mounted on diametrically opposite locations. Both of the strain gauges on the sleeve were in the horizontal plane. In this way, these strain gauges were not taking any strain due to the weight of the engine (except negligible strain due to material's poison's ratio) or the hoop's stress. Only the third mount strain gauge will show strain when engine is not running i.e. strain due to weight of engine. When engine starts running, all the load will be taken by the side mounts. The strain gauge on the forward side of the sleeve was showing a compressive strain and the strain gauge on the rear side of the sleeve shows a tensile strain. Results and conclusion: the analytical calculation shows that the hoop stresses dominate the bending stress. The estimated thrust by strain gauge shows good accuracy at higher power setting as compared to lower power setting. The accuracy of estimated thrust at max power setting is 99.7% whereas at lower power setting is 78%.Keywords: engine mounts, finite elements analysis, strain gauge, stress
Procedia PDF Downloads 4851949 A Virtual Set-Up to Evaluate Augmented Reality Effect on Simulated Driving
Authors: Alicia Yanadira Nava Fuentes, Ilse Cervantes Camacho, Amadeo José Argüelles Cruz, Ana María Balboa Verduzco
Abstract:
Augmented reality promises being present in future driving, with its immersive technology let to show directions and maps to identify important places indicating with graphic elements when the car driver requires the information. On the other side, driving is considered a multitasking activity and, for some people, a complex activity where different situations commonly occur that require the immediate attention of the car driver to make decisions that contribute to avoid accidents; therefore, the main aim of the project is the instrumentation of a platform with biometric sensors that allows evaluating the performance in driving vehicles with the influence of augmented reality devices to detect the level of attention in drivers, since it is important to know the effect that it produces. In this study, the physiological sensors EPOC X (EEG), ECG06 PRO and EMG Myoware are joined in the driving test platform with a Logitech G29 steering wheel and the simulation software City Car Driving in which the level of traffic can be controlled, as well as the number of pedestrians that exist within the simulation obtaining a driver interaction in real mode and through a MSP430 microcontroller achieves the acquisition of data for storage. The sensors bring a continuous analog signal in time that needs signal conditioning, at this point, a signal amplifier is incorporated due to the acquired signals having a sensitive range of 1.25 mm/mV, also filtering that consists in eliminating the frequency bands of the signal in order to be interpretative and without noise to convert it from an analog signal into a digital signal to analyze the physiological signals of the drivers, these values are stored in a database. Based on this compilation, we work on the extraction of signal features and implement K-NN (k-nearest neighbor) classification methods and decision trees (unsupervised learning) that enable the study of data for the identification of patterns and determine by classification methods different effects of augmented reality on drivers. The expected results of this project include are a test platform instrumented with biometric sensors for data acquisition during driving and a database with the required variables to determine the effect caused by augmented reality on people in simulated driving.Keywords: augmented reality, driving, physiological signals, test platform
Procedia PDF Downloads 1421948 Signals Affecting Crowdfunding Success for Australian Social Enterprises
Authors: Mai Yen Nhi Doan, Viet Le, Chamindika Weerakoon
Abstract:
Social enterprises have emerged as sustainable organisations that deliver social achievement along with long-term financial advancement. However, recorded financial barriers have urged social enterprises to divert to other financing methods due to the misaligned ideology with traditional financing capitalists, in which crowdfunding can be a promising alternative. Previous studies in crowdfunding have inadequately addressed crowdfunding for social enterprises, with conflicting results due to the unsuitable analysis of signals in isolation rather than in combinations, using the data from platforms that do not support social enterprises. Extending the signalling theory, this study suggests that crowdfunding success results from the collaboration between costly and costless signals. The proposed conceptual framework enlightens the interaction between costly signals as “organisational information”, “social entrepreneur’s credibility,” and “third-party endorsement” and costless signals as various sub-signals under the “campaign preparedness” signal to achieve crowdfunding success. Using Qualitative Comparative Analysis, this study examined 45 crowdfunding campaigns run by Australian social enterprises on StartSomeGood and Chuffed. The analysis found that different combinations of costly and costless signals can lead to crowdfunding success, allowing social enterprises to adopt suitable combinations of signals to their context. Costless signal – campaign preparedness is fundamental for success, though different costless sub-signals under campaign preparedness can interact with different costly signals for the desired outcome. Third-party endorsement signal was found to be the necessary signal for crowdfunding success for Australian social enterprises.Keywords: crowdfunding, qualitative comparative analysis (QCA), signalling theory, social enterprises
Procedia PDF Downloads 1061947 Human Gesture Recognition for Real-Time Control of Humanoid Robot
Authors: S. Aswath, Chinmaya Krishna Tilak, Amal Suresh, Ganesh Udupa
Abstract:
There are technologies to control a humanoid robot in many ways. But the use of Electromyogram (EMG) electrodes has its own importance in setting up the control system. The EMG based control system helps to control robotic devices with more fidelity and precision. In this paper, development of an electromyogram based interface for human gesture recognition for the control of a humanoid robot is presented. To recognize control signs in the gestures, a single channel EMG sensor is positioned on the muscles of the human body. Instead of using a remote control unit, the humanoid robot is controlled by various gestures performed by the human. The EMG electrodes attached to the muscles generates an analog signal due to the effect of nerve impulses generated on moving muscles of the human being. The analog signals taken up from the muscles are supplied to a differential muscle sensor that processes the given signal to generate a signal suitable for the microcontroller to get the control over a humanoid robot. The signal from the differential muscle sensor is converted to a digital form using the ADC of the microcontroller and outputs its decision to the CM-530 humanoid robot controller through a Zigbee wireless interface. The output decision of the CM-530 processor is sent to a motor driver in order to control the servo motors in required direction for human like actions. This method for gaining control of a humanoid robot could be used for performing actions with more accuracy and ease. In addition, a study has been conducted to investigate the controllability and ease of use of the interface and the employed gestures.Keywords: electromyogram, gesture, muscle sensor, humanoid robot, microcontroller, Zigbee
Procedia PDF Downloads 4081946 Influence of Scalable Energy-Related Sensor Parameters on Acoustic Localization Accuracy in Wireless Sensor Swarms
Authors: Joyraj Chakraborty, Geoffrey Ottoy, Jean-Pierre Goemaere, Lieven De Strycker
Abstract:
Sensor swarms can be a cost-effectieve and more user-friendly alternative for location based service systems in different application like health-care. To increase the lifetime of such swarm networks, the energy consumption should be scaled to the required localization accuracy. In this paper we have investigated some parameter for energy model that couples localization accuracy to energy-related sensor parameters such as signal length,Bandwidth and sample frequency. The goal is to use the model for the localization of undetermined environmental sounds, by means of wireless acoustic sensors. we first give an overview of TDOA-based localization together with the primary sources of TDOA error (including reverberation effects, Noise). Then we show that in localization, the signal sample rate can be under the Nyquist frequency, provided that enough frequency components remain present in the undersampled signal. The resulting localization error is comparable with that of similar localization systems.Keywords: sensor swarms, localization, wireless sensor swarms, scalable energy
Procedia PDF Downloads 4231945 Labview-Based System for Fiber Links Events Detection
Authors: Bo Liu, Qingshan Kong, Weiqing Huang
Abstract:
With the rapid development of modern communication, diagnosing the fiber-optic quality and faults in real-time is widely focused. In this paper, a Labview-based system is proposed for fiber-optic faults detection. The wavelet threshold denoising method combined with Empirical Mode Decomposition (EMD) is applied to denoise the optical time domain reflectometer (OTDR) signal. Then the method based on Gabor representation is used to detect events. Experimental measurements show that signal to noise ratio (SNR) of the OTDR signal is improved by 1.34dB on average, compared with using the wavelet threshold denosing method. The proposed system has a high score in event detection capability and accuracy. The maximum detectable fiber length of the proposed Labview-based system can be 65km.Keywords: empirical mode decomposition, events detection, Gabor transform, optical time domain reflectometer, wavelet threshold denoising
Procedia PDF Downloads 1231944 Emerging Technologies in European Aeronautics: How Collaborative Innovation Efforts Are Shaping the Industry
Authors: Nikola Radovanovic, Petros Gkotsis, Mathieu Doussineau
Abstract:
Aeronautics is regarded as a strategically important sector for European competitiveness. It was at the heart of European entrepreneurial development since the industry was born. Currently, the EU is the world leader in the production of civil aircraft, including helicopters, aircraft engines, parts, and components. It is recording a surplus in trade relating to aerospace products, which are exported all over the globe. Also, this industry shows above-average investments in research and development, as demonstrated in the patent activity in this area. The post-pandemic recovery of the industry will partly depend on the possibilities to streamline collaboration in further research and innovation activities. Aeronautics features as one of the often selected priority domains in smart specialisation, which represents the main regional and national approach in developing and implementing innovation policies in Europe. The basis for the selection of priority domains for smart specialisation lies in the mapping of innovative potential, with research and patent activities being among the key elements of this analysis. This research is aimed at identifying characteristics of the trends in research and patent activities in the regions and countries that base their competitiveness on the aeronautics sector. It is also aimed at determining the scope and patterns of collaborations in aeronautics between innovators from the European regions, focusing on revealing new technology areas that emerge from these collaborations. For this purpose, we developed a methodology based on desk research and the analysis of the PATSTAT patent database as well as the databases of R&I framework programmes.Keywords: aeronautics, smart specialisation, innovation, research, regional policy
Procedia PDF Downloads 107