Search results for: equivalent circuit parameters
2252 The Effects of North Sea Caspian Pattern Index on the Temperature and Precipitation Regime in the Aegean Region of Turkey
Authors: Cenk Sezen, Turgay Partal
Abstract:
North Sea Caspian Pattern Index (NCP) refers to an atmospheric teleconnection between the North Sea and North Caspian at the 500 hPa geopotential height level. The aim of this study is to search for effects of NCP on annual and seasonal mean temperature and also annual and seasonal precipitation totals in the Aegean region of Turkey. The study contains the data that consist of 46 years obtained from nine meteorological stations. To determine the relationship between NCP and the climatic parameters, firstly the Pearson correlation coefficient method was utilized. According to the results of the analysis, most of the stations in the region have a high negative correlation NCPI in all seasons, especially in the winter season in terms of annual and seasonal mean temperature (statistically at significant at the 90% level). Besides, high negative correlation values between NCPI and precipitation totals are observed during the winter season at the most of stations. Furthermore, the NCPI values were divided into two group as NCPI(-) and NCPI(+), and then mean temperature and precipitation total values, which are grouped according to the NCP(-) and NCP(+) phases, were determined as annual and seasonal. During the NCPI(-), higher mean temperature values are observed in all of seasons, particularly in the winter season compared to the mean temperature values under effect of NCP(+). Similarly, during the NCPI(-) in winter season precipitation total values have higher than the precipitation total values under the effect of NCP(+); however, in other seasons there no substantial changes were observed between the precipitation total values. As a result of this study, significant proof is obtained with regards to the influences of NCP on the temperature and precipitation regime in the Aegean region of Turkey.Keywords: Aegean region, NCPI, precipitation, temperature
Procedia PDF Downloads 2812251 Experimental Study on Shaft Grouting Bearing Capacity of Small Diameter Bored Piles
Authors: Trung Le Thanh
Abstract:
Bored piles are always the optimal solution for high-rise building foundations. They have many advantages, such as large diameter, large pile length and construction in all different geological conditions. However, due to construction characteristics, the load-bearing capacity of bored piles is not optimal because wall friction is reduced due to poor contact between the pile and the surrounding soil. Therefore, grouting technology along the pile body helps improve the load-bearing capacity of bored piles significantly through increasing the skin resistance of the pile and surrounding soil. The improvement of pile skin resistance depends on the parameters of grouting technology, especially grouting volume, mortar viscosity, mortar strength,... and different geological conditions. Studies show that the technology of grouting piles on sandy soil is more effective than on clay. This article presents an experimental model to determine the load-bearing capacity of bored piles with a diameter of 400 mm and a length of 3 m on sand with different slurry volume in Tan Uyen city, Binh Duong province. On that basis, analyze the correlation between the increase in load-bearing capacity of bored piles without and with shaft grouting pile. Research results show that the wall resistance of shaft grouted piles increases 2-3 times compared to piles without grouting, and the pile's load-bearing capacity increases significantly. The article's research provides scientific value for consulting work on the design of bored piles when grouted along the pile body.Keywords: bored pile, shaft grouting, bearing capacity, pile shaft resistance
Procedia PDF Downloads 642250 The Effect of Lepidium Meyenii on Viability, Motility, and Sperm Morphology in Treatment of Infertility Among Adult Male Wistar Rats
Authors: Arefeh Sabzipour
Abstract:
In the present work, the effect of Lepidium meyenii on viability, motility, and sperm morphology in the treatment of infertility of adult male Wistar rats was evaluated. 21 male Wistar rats were adopted, fed and brought up in the same conditions to reach the weight of 230±5 g. after that, they were randomly divided into three groups, including two experimental groups and one control group, each group consisted of 7 rates. Lepidium meyenii was extracted and pulverized. Mice in the control group were treated with distilled water, and experimental groups were gavage with alcoholic juice extracted from Lepidium meyenii once a day for 10 consecutive days. After rates were killed, the testes were isolated. Different parameters includes semen volume in mice, sperm count, sperm motility, morphology, and viability, were evaluated. The results shows that sperm motility and sperm survival indices were significantly different between groups, and sperm count and sperm morphology indices were not significantly different. Sperm motility index in intervention group 1 was equal to 77.00±2.499 and was significantly higher than the one in intervention group two (70.14±3.579, P=0.018) and control group (69.43 ±7.323, P=0.018). Sperm survival index was 91.14 ± 2.410 in intervention group 1, 79.43± 5.062 in intervention group 2, and 76.71.6.651 in the control group (P<0.001). Based on the results of the present study, Lepidium meyenii had great effect on improving sperm indices of mice, especially sperm motility index and sperm survival index. Sperm count index and sperm morphology index, although increased, were not statistically significant.Keywords: infertility, lepidium meyenii, sperm morphology, sperm survival
Procedia PDF Downloads 782249 The Effect of Lepidium Meyenii on Viability, Motility, and Sperm Morphology in Treatment of Infertility Among Adult Male Wistar Rats
Authors: Arefeh Sabzipour
Abstract:
In the present work, the effect of Lepidium meyenii on viability, motility, and sperm morphology in the treatment of infertility of adult male Wistar rats was evaluated. 21 male Wistar rats were adopted, fed and brought up in the same conditions to reach the weight of 230±5 g. after that they were randomly divided into three groups including two experimental groups and one control group, each group consisted of 7 rates. Lepidium meyenii was extracted and pulverized. Mice in the control group were treated with distilled water and experimental groups were gavage with alcoholic juice extracted from Lepidium meyenii once a day for 10 consecutive days. After rates were killed, the testes were isolated. Different parameters includes semen volume in mice, sperm count, sperm motility, morphology, and viability were evaluated. The results shows that sperm motility and sperm survival indices were significantly different between groups and sperm count and sperm morphology indices were not significantly different. Sperm motility index in intervention group 1 was equal to 77.00±2.499 and was significantly higher than the one in intervention group two (70.14±3.579, P=0.018) and control group (69.43 ±7.323, P=0.018). Sperm survival index was 91.14 ± 2.410 in intervention group 1, 79.43± 5.062 in intervention group 2, and 76.71.6.651 in control group (P<0.001). Based on the results of the present study, Lepidium meyenii had great effect on improving sperm indices of mice, especially sperm motility index and sperm survival index. Sperm count index and sperm morphology index, although increased, were not statistically significant.Keywords: infertility, Lepidium meyenii, sperm morphology, sperm survival
Procedia PDF Downloads 922248 Quantum Statistical Machine Learning and Quantum Time Series
Authors: Omar Alzeley, Sergey Utev
Abstract:
Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series
Procedia PDF Downloads 4672247 Mitochondrial Apolipoprotein A-1 Binding Protein Promotes Repolarization of Inflammatory Macrophage by Repairing Mitochondrial Respiration
Authors: Hainan Chen, Jina Qing, Xiao Zhu, Ling Gao, Ampadu O. Jackson, Min Zhang, Kai Yin
Abstract:
Objective: Editing macrophage activation to dampen inflammatory diseases by promoting the repolarization of inflammatory (M1) macrophages to anti-inflammatory (M2) macrophages is highly associated with mitochondrial respiration. Recent studies have suggested that mitochondrial apolipoprotein A-1 binding protein (APOA1BP) was essential for the cellular metabolite NADHX repair to NADH, which is necessary for the mitochondrial function. The exact role of APOA1BP in the repolarization of M1 to M2, however, is uncertain. Material and method: THP-1-derived macrophages were incubated with LPS (10 ng/ml) or/and IL-4 (100 U/ml) for 24 hours. Biochemical parameters of oxidative phosphorylation and M1/M2 markers were analyzed after overexpression of APOA1BP in cells. Results: Compared with control and IL-4-exposed M2 cells, APOA1BP was downregulated in M1 macrophages. APOA1BP restored the decline in mitochondrial function to improve metabolic and phenotypic reprogramming of M1 to M2 macrophages. Blocking oxidative phosphorylation by oligomycin blunts the effects of APOA1BP on M1 to M2 repolarization. Mechanistically, LPS triggered the hydration of NADH and increased its hydrate NADHX which inhibit cellular NADH dehydrogenases, a key component of electron transport chain for oxidative phosphorylation. APOA1BP decreased the level of NADHX via converting R-NADHX to biologically useful S-NADHX. The mutant of APOA1BP aspartate188, the binding site of NADHX, fail to repair oxidative phosphorylation, thereby preventing repolarization. Conclusions: Restoring mitochondrial function by increasing mitochondrial APOA1BP might be useful to improve the reprogramming of inflammatory macrophages into anti-inflammatory cells to control inflammatory diseases.Keywords: inflammatory diseases, macrophage repolarization, mitochondrial respiration, apolipoprotein A-1 binding protein, NADHX, NADH
Procedia PDF Downloads 1702246 Study of Large-Scale Atmospheric Convection over the Tropical Indian Ocean and Its Association with Oceanic Variables
Authors: Supriya Manikrao Ovhal
Abstract:
In India, the summer monsoon rainfall occurs owing to large scale convection with reference to continental ITCZ. It was found that convection over tropical ocean increases with SST from 26 to 28 degree C, and when SST is above 29 degree C, it sharply decreases for warm pool areas of Indian and for monsoon areas of West Pacific Ocean. The reduction in convection can be influenced by large scale subsidence forced by nearby or remotely generated deep convection, thus it was observed that under the influence of strong large scale rising motion, convection does not decreases but increases monotonically with SST even if SST value is higher than 29.5 degree C. Since convection is related to SST gradient, that helps to generate low level moisture convergence and upward vertical motion in the atmosphere. Strong wind fields like cross equatorial low level jet stream on equator ward side of the warm pool are produced due to convection initiated by SST gradient. Areas having maximum SST have low SST gradient, and that result in feeble convection. Hence it is imperative to mention that the oceanic role (other than SST) could be prominent in influencing large Scale Atmospheric convection. Since warm oceanic surface somewhere or the other contributes to penetrate the heat radiation to the subsurface of the ocean, and as there is no studies seen related to oceanic subsurface role in large Scale Atmospheric convection, in the present study, we are concentrating on the oceanic subsurface contribution in large Scale Atmospheric convection by considering the SST gradient, mixed layer depth (MLD), thermocline, barrier layer. The present study examines the probable role of subsurface ocean parameters in influencing convection. Procedia PDF Downloads 922245 Nutritional Status of Morbidly Obese Patients Prior to Bariatric Surgery
Authors: Azadeh Mottaghi, Reyhaneh Yousefi, Saeed Safari
Abstract:
Background: Bariatric surgery is widely proposed as the most effective approach to mitigate the growing pace of morbid obesity. As bariatric surgery candidates suffer from pre-existing nutritional deficiencies, it is of great importance to assess nutritional status of candidates before surgery in order to establish appropriate nutritional interventions. Objectives: The present study assessed and represented baseline data according to the nutritional status among candidates for bariatric surgery. Methods: A cross-sectional analysis of pre-surgery data was collected on 170 morbidly obese patients undergoing bariatric surgery between October 2017 and February 2018. Dietary intake data (evaluated through 147-item food frequency questionnaire), anthropometric measures and biochemical parameters were assessed. Results: Participants included 145 females (25 males) with average age of 37.3 ± 10.2 years, BMI of 45.7 ± 6.4 kg/m² and reported to have a total of 72.3 ± 22.2 kg excess body weight. The most common nutritional deficiencies referred to iron, ferritin, transferrin, albumin, vitamin B12, and vitamin D, the prevalence of which in the study population were as followed; 6.5, 6.5, 3, 2, 17.6 and 66%, respectively. Mean energy, protein, fat, and carbohydrate intake were 3887.3 ± 1748.32 kcal/day, 121.6 ± 57.1, 144.1 ± 83.05, and 552.4 ± 240.5 gr/day, respectively. The study population consumed lower levels of iron, calcium, folic acid, and vitamin B12 compared to the Dietary Reference Intake (DRI) recommendations (2, 26, 2.5, and 13%, respectively). Conclusion: According to the poor dietary quality of bariatric surgery candidates, leading to nutritional deficiencies pre-operatively, close monitoring and tailored supplementation pre- and post-bariatric surgery are required.Keywords: bariatric surgery, food frequency questionnaire, obesity, nutritional status
Procedia PDF Downloads 1712244 Changes in EEG and Emotion Regulation in the Course of Inward-Attention Meditation Training
Authors: Yuchien Lin
Abstract:
This study attempted to investigate the changes in electroencephalography (EEG) and emotion regulation following eight-week inward-attention meditation training program. The subjects were 24 adults without meditation experiences divided into meditation and control groups. The quantitatively analyzed changes in psychophysiological parameters during inward-attention meditation, and evaluated the emotion scores assessed by the State-Trait Anxiety Inventory (STAI), the Positive and Negative Affect Schedule (PANAS), and the Emotion Regulation Scale (ERS). The results were found: (1) During meditation, significant EEG increased for theta-band activity in the frontal and the bilateral temporal areas, for alpha-band activity in the left and central frontal areas, and for gamma-band activity in the left frontal and the left temporal areas. (2) The meditation group had significantly higher positive affect in posttest than in pretest. (3) There was no significant difference in the changes of EEG spectral characteristics and emotion scores in posttest and pretest for the control group. In the present study, a unique meditative concentration task with a constant level of moderate mental effort focusing on the center of brain was used, so as to enhance frontal midline theta, alpha, and gamma-band activity. These results suggest that this mental training allows individual reach a specific mental state of relaxed but focused awareness. The gamma-band activity, in particular, enhanced over left frontoparietal area may suggest that inward-attention meditation training involves temporal integrative mechanisms and may induce short-term and long-term emotion regulation abilities.Keywords: meditation, EEG, emotion regulation, gamma activity
Procedia PDF Downloads 2122243 Dual Mode Mobile Based Detection of Endogenous Hydrogen Sulfide for Determination of Live and Antibiotic Resistant Bacteria
Authors: Shashank Gahlaut, Chandrashekhar Sharan, J. P. Singh
Abstract:
Increasing incidence of antibiotic-resistant bacteria is a big concern for the treatment of pathogenic diseases. The effect of treatment of patients with antibiotics often leads to the evolution of antibiotic resistance in the pathogens. The detection of antibiotic or antimicrobial resistant bacteria (microbes) is quite essential as it is becoming one of the big threats globally. Here we propose a novel technique to tackle this problem. We are taking a step forward to prevent the infections and diseases due to drug resistant microbes. This detection is based on some unique features of silver (a noble metal) nanorods (AgNRs) which are fabricated by a physical deposition method called thermal glancing angle deposition (GLAD). Silver nanorods are found to be highly sensitive and selective for hydrogen sulfide (H2S) gas. Color and water wetting (contact angle) of AgNRs are two parameters what are effected in the presence of this gas. H₂S is one of the major gaseous products evolved in the bacterial metabolic process. It is also known as gasotransmitter that transmits some biological singles in living systems. Nitric Oxide (NO) and Carbon mono oxide (CO) are two another members of this family. Orlowski (1895) observed the emission of H₂S by the bacteria for the first time. Most of the microorganism produce these gases. Here we are focusing on H₂S gas evolution to determine live/dead and antibiotic-resistant bacteria. AgNRs array has been used for the detection of H₂S from micro-organisms. A mobile app is also developed to make it easy, portable, user-friendly, and cost-effective.Keywords: antibiotic resistance, hydrogen sulfide, live and dead bacteria, mobile app
Procedia PDF Downloads 1432242 Effects of Virtual Reality on Relieving Postoperative Pain in Surgical Patients: A Systematic Review and Meta-Analysis
Authors: Lingyu Ding, Hongxia Hua, Hanfei Zhu, Jinling Lu, Qin Xu
Abstract:
Background: Postoperative pain is a prevalent problem leading to many adverse outcomes in surgical patients. Virtual reality (VR) is an emerging non-pharmacological method of postoperative pain relief, but the effects of it are not clear. This review aimed to explore the effects of VR on relieving postoperative pain. Methods: We searched PubMed, Embase, Web of Science, and other databases from inception to November 2019 to get the eligible studies. Meta-analyses were conducted to compare VR and usual care for relieving postoperative pain. Subgroup analyses and sensitivity analyses were performed to explain the heterogeneity. Results: Overall, 8 randomized control trials (RCTs) enrolling 723 participants were included. Our results demonstrated that the patients receiving the VR intervention had lower postoperative pain scores than those receiving the usual care. One subgroup analysis revealed that VR could relieve postoperative pain both in minor surgery and major surgery. Another subgroup analysis demonstrated a significant reduction in postoperative pain among patients receiving VR during the intraoperative and the postoperative periods. However, there was no significant postoperative pain relief when receiving VR during the preoperative period. Additionally, significant improvements in postoperative satisfaction were reported in two studies. However, another two studies included found that VR could not affect physiological parameters related to pain. Conclusion: Applying VR can relieve postoperative pain effectively. The type of surgery and timing of using VR are the main sources of heterogeneity. More rigorous studies about the relationship between VR and postoperative pain relief will be needed.Keywords: meta-analysis, postoperative pain, systematic review, virtual reality
Procedia PDF Downloads 1322241 Kinetic Analysis for Assessing Gait Disorders in Muscular Dystrophy Disease
Authors: Mehdi Razeghi
Abstract:
Background: The purpose of this case series was to quantify gait to study muscular dystrophy disease. In this research, the quantitative differences between normal and waddling gaits were assessed by force plate analysis. Methods: Nineteen myopathy patients and twenty normal subjects serving as the control group participated in this research. In this study, quantitative analyses of gait have been used to investigate the differences between the mobility of normal subjects and myopathy patients. This study was carried out at the Iranian Muscular Dystrophy Association in Boali Hospital, Tehran, Iran, from October 2015 to July 2020. Patient data were collected from Iranian Muscular Dystrophy Association members. individuals signed an informed consent form approved by the ethics committee of the Azad University. All of the gait tests were performed using a Kistler force platform. Participants walked at a self-selected speed, barefoot, independently, and without assistive devices. Results: Our findings indicate that there were no significant differences between the patients and the control group in the anterior-posterior components of the ground reaction forces; however, there were considerable differences in the force components between the groups in the medial-lateral and vertical directions of the ground reaction force. In addition, there were significant differences in the time parameters between the groups in the vertical and medial-lateral directions.Keywords: biomechanics, force plate analysis, gait disorder, ground reaction force, kinetic analysis, myopathy disease, rehabilitation engineering
Procedia PDF Downloads 802240 Genetic Diversity Based Population Study of Freshwater Mud Eel (Monopterus cuchia) in Bangladesh
Authors: M. F. Miah, K. M. A. Zinnah, M. J. Raihan, H. Ali, M. N. Naser
Abstract:
As genetic diversity is most important for existing, breeding and production of any fish; this study was undertaken for investigating genetic diversity of freshwater mud eel, Monopterus cuchia at population level where three ecological populations such as flooded area of Sylhet (P1), open water of Moulvibazar (P2) and open water of Sunamganj (P3) districts of Bangladesh were considered. Four arbitrary RAPD primers (OPB-12, C0-4, B-03 and OPB-08) were screened and RAPD banding patterns were analyzed among the populations considering 15 individuals of each population. In total 174, 138 and 149 bands were detected in the populations of P1, P2 and P3 respectively; however, each primer revealed less number of bands in each population. 100% polymorphic loci were recorded in P2 and P3 whereas only one monomorphic locus was observed in P1, recorded 97.5% polymorphism. Different genetic parameters such as inter-individual pairwise similarity, genetic distance, Nei genetic similarity, linkage distances, cluster analysis and allelic information, etc. were considered for measuring genetic diversity. The average inter-individual pairwise similarity was recorded 2.98, 1.47 and 1.35 in P1, P2 and P3 respectively. Considering genetic distance analysis, the highest distance 1 was recorded in P2 and P3 and the lowest genetic distance 0.444 was found in P2. The average Nei genetic similarity was observed 0.19, 0.16 and 0.13 in P1, P2 and P3, respectively; however, the average linkage distance was recorded 24.92, 17.14 and 15.28 in P1, P3 and P2 respectively. Based on linkage distance, genetic clusters were generated in three populations where 6 clades and 7 clusters were found in P1, 3 clades and 5 clusters were observed in P2 and 4 clades and 7 clusters were detected in P3. In addition, allelic information was observed where the frequency of p and q alleles were observed 0.093 and 0.907 in P1, 0.076 and 0.924 in P2, 0.074 and 0.926 in P3 respectively. The average gene diversity was observed highest in P2 (0.132) followed by P3 (0.131) and P1 (0.121) respectively.Keywords: genetic diversity, Monopterus cuchia, population, RAPD, Bangladesh
Procedia PDF Downloads 5042239 Organotin (IV) Based Complexes as Promiscuous Antibacterials: Synthesis in vitro, in Silico Pharmacokinetic, and Docking Studies
Authors: Wajid Rehman, Sirajul Haq, Bakhtiar Muhammad, Syed Fahad Hassan, Amin Badshah, Muhammad Waseem, Fazal Rahim, Obaid-Ur-Rahman Abid, Farzana Latif Ansari, Umer Rashid
Abstract:
Five novel triorganotin (IV) compounds have been synthesized and characterized. The tin atom is penta-coordinated to assume trigonal-bipyramidal geometry. Using in silico derived parameters; the objective of our study is to design and synthesize promiscuous antibacterials potent enough to combat resistance. Among various synthesized organotin (IV) complexes, compound 5 was found as potent antibacterial agent against various bacterial strains. Further lead optimization of drug-like properties was evaluated through in silico predictions. Data mining and computational analysis were utilized to derive compound promiscuity phenomenon to avoid drug attrition rate in designing antibacterials. Xanthine oxidase and human glucose- 6-phosphatase were found as only true positive off-target hits by ChEMBL database and others utilizing similarity ensemble approach. Propensity towards a-3 receptor, human macrophage migration factor and thiazolidinedione were found as false positive off targets with E-value 1/4> 10^-4 for compound 1, 3, and 4. Further, displaying positive drug-drug interaction of compound 1 as uricosuric was validated by all databases and docked protein targets with sequence similarity and compositional matrix alignment via BLAST software. Promiscuity of the compound 5 was further confirmed by in silico binding to different antibacterial targets.Keywords: antibacterial activity, drug promiscuity, ADMET prediction, metallo-pharmaceutical, antimicrobial resistance
Procedia PDF Downloads 5012238 Optimum Performance of the Gas Turbine Power Plant Using Adaptive Neuro-Fuzzy Inference System and Statistical Analysis
Authors: Thamir K. Ibrahim, M. M. Rahman, Marwah Noori Mohammed
Abstract:
This study deals with modeling and performance enhancements of a gas-turbine combined cycle power plant. A clean and safe energy is the greatest challenges to meet the requirements of the green environment. These requirements have given way the long-time governing authority of steam turbine (ST) in the world power generation, and the gas turbine (GT) will replace it. Therefore, it is necessary to predict the characteristics of the GT system and optimize its operating strategy by developing a simulation system. The integrated model and simulation code for exploiting the performance of gas turbine power plant are developed utilizing MATLAB code. The performance code for heavy-duty GT and CCGT power plants are validated with the real power plant of Baiji GT and MARAFIQ CCGT plants the results have been satisfactory. A new technology of correlation was considered for all types of simulation data; whose coefficient of determination (R2) was calculated as 0.9825. Some of the latest launched correlations were checked on the Baiji GT plant and apply error analysis. The GT performance was judged by particular parameters opted from the simulation model and also utilized Adaptive Neuro-Fuzzy System (ANFIS) an advanced new optimization technology. The best thermal efficiency and power output attained were about 56% and 345MW respectively. Thus, the operation conditions and ambient temperature are strongly influenced on the overall performance of the GT. The optimum efficiency and power are found at higher turbine inlet temperatures. It can be comprehended that the developed models are powerful tools for estimating the overall performance of the GT plants.Keywords: gas turbine, optimization, ANFIS, performance, operating conditions
Procedia PDF Downloads 4242237 Short-Term versus Long-Term Effect of Waterpipe Smoking Exposure on Cardiovascular Biomarkers in Mice
Authors: Abeer Rababa'h, Ragad Bsoul, Mohammad Alkhatatbeh, Karem Alzoubi
Abstract:
Introduction: Tobacco use is one of the main risk factors to cardiovascular diseases (CVD) and atherosclerosis in particular. WPS contains several toxic materials such as: nicotine, carcinogens, tar, carbon monoxide and heavy metals. Thus, WPS is considered to be as one of the toxic environmental factors that should be investigated intensively. Therefore, the aim of this study is to investigate the effect of WPS on several cardiovascular biological markers that may cause atherosclerosis in mice. The study also conducted to study the temporal effects of WPS on the atherosclerotic biomarkers upon short (2 weeks) and long-term (8 weeks) exposures. Methods: mice were exposed to WPS and heart homogenates were analyzed to elucidate the effects of WPS on matrix metalloproteinase (MMPs), endothelin-1 (ET-1) and, myeloperoxidase (MPO). Following protein estimation, enzyme-linked immunosorbent assays were done to measure the levels of MMPs (isoforms 1, 3, and 9), MPO, and ET-1 protein expressions. Results: our data showed that acute exposure to WPS significantly enhances the levels of MMP-3, MMP- 9, and MPO expressions (p < 0.05) compared to their corresponding control. However, the body was capable to normalize the level of expressions for such parameters following continuous exposure for 8 weeks (p > 0.05). Additionally, we showed that the level of ET-1 expression was significantly higher upon chronic exposure to WPS compared to both control and acute exposure groups (p < 0.05). Conclusion: Waterpipe exposure has a significant negative effect on atherosclerosis and the enhancement of the atherosclerotic biomarkers expression (MMP-3 and 9, MPO, and ET-1) might represent an early scavenger of compensatory efforts to maintain cardiac function after WP exposure.Keywords: atherosclerotic biomarkers, cardiovascular disease, matrix metalloproteinase, waterpipe
Procedia PDF Downloads 3502236 Preparation of Carbon Nanofiber Reinforced HDPE Using Dialkylimidazolium as a Dispersing Agent: Effect on Thermal and Rheological Properties
Authors: J. Samuel, S. Al-Enezi, A. Al-Banna
Abstract:
High-density polyethylene reinforced with carbon nanofibers (HDPE/CNF) have been prepared via melt processing using dialkylimidazolium tetrafluoroborate (ionic liquid) as a dispersion agent. The prepared samples were characterized by thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses. The samples blended with imidazolium ionic liquid exhibit higher thermal stability. DSC analysis showed clear miscibility of ionic liquid in the HDPE matrix and showed single endothermic peak. The melt rheological analysis of HDPE/CNF composites was performed using an oscillatory rheometer. The influence of CNF and ionic liquid concentration (ranging from 0, 0.5, and 1 wt%) on the viscoelastic parameters was investigated at 200 °C with an angular frequency range of 0.1 to 100 rad/s. The rheological analysis shows the shear-thinning behavior for the composites. An improvement in the viscoelastic properties was observed as the nanofiber concentration increases. The progress in the modulus values was attributed to the structural rigidity imparted by the high aspect ratio CNF. The modulus values and complex viscosity of the composites increased significantly at low frequencies. Composites blended with ionic liquid exhibit slightly lower values of complex viscosity and modulus over the corresponding HDPE/CNF compositions. Therefore, reduction in melt viscosity is an additional benefit for polymer composite processing as a result of wetting effect by polymer-ionic liquid combinations.Keywords: high-density polyethylene, carbon nanofibers, ionic liquid, complex viscosity
Procedia PDF Downloads 1252235 The Emergence of a Hexagonal Pattern in Shear-Thickening Suspension under Orbital Shaking
Authors: Li-Xin Shi, Meng-Fei Hu, Song-Chuan Zhao
Abstract:
Dense particle suspensions composed of mixtures of particles and fluid are omnipresent in natural phenomena and in industrial processes. Dense particle suspension under shear may lose its uniform state to large local density and stress fluctuations which challenge the mean-field description of the suspension system. However, it still remains largely debated and far from fully understood of the internal mechanism. Here, a dynamics of a non-Brownian suspension is explored under horizontal swirling excitations, where high-density patches appear when the excitation frequency is increased beyond a threshold. These density patches are self-assembled into a hexagonal pattern across the system with further increases in frequency. This phenomenon is underlined by the spontaneous growth of density waves (instabilities) along the flow direction, and the motion of these density waves preserves the circular path and the frequency of the oscillation. To investigate the origin of the phenomena, the constitutive relationship calibrated by independent rheological measurements is implemented into a simplified two-phase flow model. And the critical instability frequency in theory calculation matches the experimental measurements quantitatively without free parameters. By further analyzing the model, the instability is found to be closely related to the discontinuous shear thickening transition of the suspension. In addition, the long-standing density waves degenerate into random fluctuations when replacing the free surface with rigid confinement. It indicates that the shear-thickened state is intrinsically heterogeneous, and the boundary conditions are crucial for the development of local disturbance.Keywords: dense suspension, instability, self-organization, density wave
Procedia PDF Downloads 872234 Fatigue Crack Growth Rate Measurement by Means of Classic Method and Acoustic Emission
Authors: V. Mentl, V. Koula, P. Mazal, J. Volák
Abstract:
Nowadays, the acoustic emission is a widely recognized method of material damage investigation, mainly in cases of cracks initiation and growth observation and evaluation. This is highly important in structures, e.g. pressure vessels, large steam turbine rotors etc., applied both in classic and nuclear power plants. Nevertheless, the acoustic emission signals must be correlated with the real crack progress to be able to evaluate the cracks and their growth by this non-destructive technique alone in real situations and to reach reliable results when the assessment of the structures' safety and reliability is performed and also when the remaining lifetime should be evaluated. The main aim of this study was to propose a methodology for evaluation of the early manifestations of the fatigue cracks and their growth and thus to quantify the material damage by acoustic emission parameters. Specimens made of several steels used in the power producing industry were subjected to fatigue loading in the low- and high-cycle regimes. This study presents results of the crack growth rate measurement obtained by the classic compliance change method and the acoustic emission signal analysis. The experiments were realized in cooperation between laboratories of Brno University of Technology and West Bohemia University in Pilsen within the solution of the project of the Czech Ministry of Industry and Commerce: "A diagnostic complex for the detection of pressure media and material defects in pressure components of nuclear and classic power plants" and the project “New Technologies for Mechanical Engineering”.Keywords: fatigue, crack growth rate, acoustic emission, material damage
Procedia PDF Downloads 3702233 Implementation of Industrial Ecology Principles in the Production and Recycling of Solar Cells and Solar Modules
Authors: Julius Denafas, Irina Kliopova, Gintaras Denafas
Abstract:
Three opportunities for implementation of industrial ecology principles in the real industrial production of c-Si solar cells and modules are presented in this study. It includes: material flow dematerialisation, product modification and industrial symbiosis. Firstly, it is shown how the collaboration between R&D institutes and industry helps to achieve significant reduction of material consumption by a) refuse from phosphor silicate glass cleaning process and b) shortening of silicon nitride coating production step. Secondly, it was shown how the modification of solar module design can reduce the CO2 footprint for this product and enhance waste prevention. It was achieved by implementing a frameless glass/glass solar module design instead of glass/backsheet with aluminium frame. Such a design change is possible without purchasing new equipment and without loss of main product properties like efficiency, rigidity and longevity. Thirdly, industrial symbiosis in the solar cell production is possible in such case when manufacturing waste (silicon wafer and solar cell breakage) also used solar modules are collected, sorted and supplied as raw-materials to other companies involved in the production chain of c-Si solar cells. The obtained results showed that solar cells produced from recycled silicon can have a comparable electrical parameters like produced from standard, commercial silicon wafers. The above mentioned work was performed at solar cell producer Soli Tek R&D in the frame of H2020 projects CABRISS and Eco-Solar.Keywords: manufacturing, process optimisation, recycling, solar cells, solar modules, waste prevention
Procedia PDF Downloads 1402232 Implementation of a Monostatic Microwave Imaging System using a UWB Vivaldi Antenna
Authors: Babatunde Olatujoye, Binbin Yang
Abstract:
Microwave imaging is a portable, noninvasive, and non-ionizing imaging technique that employs low-power microwave signals to reveal objects in the microwave frequency range. This technique has immense potential for adoption in commercial and scientific applications such as security scanning, material characterization, and nondestructive testing. This work presents a monostatic microwave imaging setup using an Ultra-Wideband (UWB), low-cost, miniaturized Vivaldi antenna with a bandwidth of 1 – 6 GHz. The backscattered signals (S-parameters) of the Vivaldi antenna used for scanning targets were measured in the lab using a VNA. An automated two-dimensional (2-D) scanner was employed for the 2-D movement of the transceiver to collect the measured scattering data from different positions. The targets consist of four metallic objects, each with a distinct shape. Similar setup was also simulated in Ansys HFSS. A high-resolution Back Propagation Algorithm (BPA) was applied to both the simulated and experimental backscattered signals. The BPA utilizes the phase and amplitude information recorded over a two-dimensional aperture of 50 cm × 50 cm with a discreet step size of 2 cm to reconstruct a focused image of the targets. The adoption of BPA was demonstrated by coherently resolving and reconstructing reflection signals from conventional time-of-flight profiles. For both the simulation and experimental data, BPA accurately reconstructed a high resolution 2D image of the targets in terms of shape and location. An improvement of the BPA, in terms of target resolution, was achieved by applying the filtering method in frequency domain.Keywords: back propagation, microwave imaging, monostatic, vivialdi antenna, ultra wideband
Procedia PDF Downloads 172231 The Impact of Enzymatic Treatments on the Pasting Behavior and Its Reflection on Stalling and Quality of Bread
Authors: Sayed Mostafa, Mohamed Shebl
Abstract:
The problem of bread stalling is still one of the most troubling problems for those interested in manufacturing bakery products, as increasing the freshness period of bread is considered one of the most important factors that help encourage this industry due to its important role in reducing expected losses. Therefore, this study aims to improve the quality of pan bread and increase its freshness period by enzymatic treatments, including maltogenic α-amylase (MAA), amyloglucosidase (AGS), glucoseoxidase (GOX) and phospholipase (PhL). Rheological and pasting behavior of wheat flour were estimated in addition to the physical, texture, and sensory parameters of the final product. The addition of MAA resulted in a decrease in peak viscosity, breakdown, setback, and pasting temperature. The addition of MAA also led to a reduction in falling number values. Enzymatic treatments (MAA and PhL) exhibited higher alkaline water retention capacity of pan bread compared to untreated pan bread (control) throughout different storage periods. Furthermore, other enzymes displayed varying effects on bread quality; for instance, AGS enhanced the crust color, while a high concentration of GOX improved the specific volume of the bread. Conclusion: The research findings demonstrate that the enzymatic treatments can significantly improve its quality attributes, such as specific volume, increase the alkaline water retention capacity with lower hardness value, which reflects bread freshness during storage periods, and improve sensory characteristics.Keywords: anti-stalling agents, enzymatic treatments, maltogenic α-amylase, amyloglucosidase, glucoseoxidase, phospholipase, pasting behavior, wheat flour
Procedia PDF Downloads 42230 Design and Manufacture of a Hybrid Gearbox Reducer System
Authors: Ahmed Mozamel, Kemal Yildizli
Abstract:
Due to mechanical energy losses and a competitive of minimizing these losses and increases the machine efficiency, the need for contactless gearing system has raised. In this work, one stage of mechanical planetary gear transmission system integrated with one stage of magnetic planetary gear system is designed as a two-stage hybrid gearbox system. The permanent magnets internal energy in the form of the magnetic field is used to create meshing between contactless magnetic rotors in order to provide self-system protection against overloading and decrease the mechanical loss of the transmission system by eliminating the friction losses. Classical methods, such as analytical, tabular method and the theory of elasticity are used to calculate the planetary gear design parameters. The finite element method (ANSYS Maxwell) is used to predict the behaviors of a magnetic gearing system. The concentric magnetic gearing system has been modeled and analyzed by using 2D finite element method (ANSYS Maxwell). In addition to that, design and manufacturing processes of prototype components (a planetary gear, concentric magnetic gear, shafts and the bearings selection) of a gearbox system are investigated. The output force, the output moment, the output power and efficiency of the hybrid gearbox system are experimentally evaluated. The viability of applying a magnetic force to transmit mechanical power through a non-contact gearing system is presented. The experimental test results show that the system is capable to operate continuously within the range of speed from 400 rpm to 3000 rpm with the reduction ratio of 2:1 and maximum efficiency of 91%.Keywords: hybrid gearbox, mechanical gearboxes, magnetic gears, magnetic torque
Procedia PDF Downloads 1522229 A 7 Dimensional-Quantitative Structure-Activity Relationship Approach Combining Quantum Mechanics Based Grid and Solvation Models to Predict Hotspots and Kinetic Properties of Mutated Enzymes: An Enzyme Engineering Perspective
Authors: R. Pravin Kumar, L. Roopa
Abstract:
Enzymes are molecular machines used in various industries such as pharmaceuticals, cosmetics, food and animal feed, paper and leather processing, biofuel, and etc. Nevertheless, this has been possible only by the breath-taking efforts of the chemists and biologists to evolve/engineer these mysterious biomolecules to work the needful. Main agenda of this enzyme engineering project is to derive screening and selection tools to obtain focused libraries of enzyme variants with desired qualities. The methodologies for this research include the well-established directed evolution, rational redesign and relatively less established yet much faster and accurate insilico methods. This concept was initiated as a Receptor Rependent-4Dimensional Quantitative Structure Activity Relationship (RD-4D-QSAR) to predict kinetic properties of enzymes and extended here to study transaminase by a 7D QSAR approach. Induced-fit scenarios were explored using Quantum Mechanics/Molecular Mechanics (QM/MM) simulations which were then placed in a grid that stores interactions energies derived from QM parameters (QMgrid). In this study, the mutated enzymes were immersed completely inside the QMgrid and this was combined with solvation models to predict descriptors. After statistical screening of descriptors, QSAR models showed > 90% specificity and > 85% sensitivity towards the experimental activity. Mapping descriptors on the enzyme structure revealed hotspots important to enhance the enantioselectivity of the enzyme.Keywords: QMgrid, QM/MM simulations, RD-4D-QSAR, transaminase
Procedia PDF Downloads 1352228 Quantification of Effects of Structure-Soil-Structure Interactions on Urban Environment under Rayleigh Wave Loading
Authors: Neeraj Kumar, J. P. Narayan
Abstract:
The effects of multiple Structure-Soil-Structure Interactions (SSSI) on the seismic wave-field is generally disregarded by earthquake engineers, particularly the surface waves which cause more damage to buildings. Closely built high rise buildings exchange substantial seismic energy with each other and act as a full-coupled dynamic system. In this paper, SSI effects on the building responses and the free field motion due to a small city consisting 25- homogenous buildings blocks of 10-storey are quantified. The rocking and translational behavior of building under Rayleigh wave loading is studied for different dimensions of the building. The obtained dynamic parameters of buildings revealed a reduction in building roof drift with an increase in number of buildings ahead of the considered building. The strain developed by vertical component of Rayleigh may cause tension in structural components of building. A matching of fundamental frequency of building for the horizontal component of Rayleigh wave with that for vertically incident SV-wave is obtained. Further, the fundamental frequency of building for the vertical vibration is approximately twice to that for horizontal vibration. The city insulation has caused a reduction of amplitude of Rayleigh wave up to 19.3% and 21.6% in the horizontal and vertical components, respectively just outside the city. Further, the insulating effect of city was very large at fundamental frequency of buildings for both the horizontal and vertical components. Therefore, it is recommended to consider the insulating effects of city falling in the path of Rayleigh wave propagation in seismic hazard assessment for an area.Keywords: structure-soil-structure interactions, Rayleigh wave propagation, finite difference simulation, dynamic response of buildings
Procedia PDF Downloads 2142227 Impact of Climate Shift on Rainfall and Temperature Trend in Eastern Ganga Canal Command
Authors: Radha Krishan, Deepak Khare, Bhaskar R. Nikam, Ayush Chandrakar
Abstract:
Every irrigation project is planned considering long-term historical climatic conditions; however, the prompt climatic shift and change has come out with such circumstances which were inconceivable in the past. Considering this fact, scrutiny of rainfall and temperature trend has been carried out over the command area of Eastern Ganga Canal project for pre-climate shift period and post-climate shift periods in the present study. Non-parametric Mann-Kendall and Sen’s methods have been applied to study the trends in annual rainfall, seasonal rainfall, annual rainy day, monsoonal rainy days, average annual temperature and seasonal temperature. The results showed decreasing trend of 48.11 to 42.17 mm/decade in annual rainfall and 79.78 tSo 49.67 mm/decade in monsoon rainfall in pre-climate to post-climate shift periods, respectively. The decreasing trend of 1 to 4 days/decade has been observed in annual rainy days from pre-climate to post-climate shift period. Trends in temperature revealed that there were significant decreasing trends in annual (-0.03 ºC/yr), Kharif (-0.02 ºC/yr), Rabi (-0.04 ºC/yr) and summer (-0.02 ºC/yr) season temperature during pre-climate shift period, whereas the significant increasing trend (0.02 ºC/yr) has been observed in all the four parameters during post climate shift period. These results will help project managers in understanding the climate shift and lead them to develop alternative water management strategies.Keywords: climate shift, rainfall trend, temperature trend, Mann-Kendall test, sen slope estimator, eastern Ganga canal command
Procedia PDF Downloads 1332226 Synthesis and Characterization of Cellulose-Based Halloysite-Carbon Adsorbent
Authors: Laura Frydel, Piotr M. Slomkiewicz, Beata Szczepanik
Abstract:
Triclosan has been used as a disinfectant in many medical products, such as: hand disinfectant soaps, creams, mouthwashes, pastes and household cleaners. Due to its strong antimicrobial activity, triclosan is becoming more and more popular and the consumption of disinfectants with triclosan in it is increasing. As a result, this compound increasingly finds its way into waters and soils in an unchanged form, pollutes the environment and may have a negative effect on organisms. The aim of this study was to investigate the synthesis of cellulose-based halloysite-carbon adsorbent and perform its characterization. The template in the halloysite-carbon adsorbent was halloysite nanotubes and the carbon precursor was microcrystalline cellulose. Scanning electron microscope (SEM) images were obtained and the elementary composition (qualitative and quantitative) of the sample was determined by energy dispersion spectroscopy (EDS). The identification of the crystallographic composition of the halloysite nanotubes and the sample of the halloysite-carbon composite was carried out using the X-ray powder diffraction (XRPD) method. The FTIR spectra were acquired before and after the adsorption process in order to determine the functional groups on the adsorbent surface and confirm the interactions between adsorbent and adsorbate molecules. The parameters of the porous structure of the adsorbent, such as the specific surface area (Brunauer-Emmett-Teller method), the total pore volume and the volume of mesopores and micropores were determined. Total carbon and total organic carbon were also determined in the samples. A cellulose-based halloysite-carbon adsorbent was used to remove triclosan from water. The degree of removal of triclosan from water was approximately 90%. The results indicate that the halloysite-carbon composite can be successfully used as an effective adsorbent for removing triclosan from water.Keywords: Adsorption, cellulose, halloysite, triclosan
Procedia PDF Downloads 1272225 Long Term Follow-Up, Clinical Outcomes and Quality of Life after Total Arterial Revascularisation versus Conventional Coronary Surgery: A Retrospective Study
Authors: Jitendra Jain, Cassandra Hidajat, Hansraj Riteesh Bookun
Abstract:
Graft patency underpins long-term prognosis after coronary artery bypass grafting surgery (CABG). The benefits of the combined use of only the left internal mammary artery and radial artery, referred to as total arterial revascularisation (TAR), on long-term clinical outcomes and quality of life are relatively unknown. The aim of this study was to identify whether there were differences in long term clinical outcomes between recipients of TAR compared to a cohort of mostly arterial revascularization involving the left internal mammary, at least one radial artery and at least one saphenous vein graft. A retrospective analysis was performed on all patients who underwent TAR or were re-vascularized with supplementary saphenous vein graft from February 1996 to December 2004. Telephone surveys were conducted to obtain clinical outcome parameters including major adverse cardiac and cerebrovascular events (MACCE) and Short Form (SF-36v2) Health Survey responses. A total of 176 patients were successfully contacted to obtain postop follow up results. The mean follow-up length from time of surgery in our study was TAR 12.4±1.8 years and conventional 12.6±2.1. PCS score was TAR 45.9±8.8 vs LIMA/Rad/ SVG 44.9±9.2 (p=0.468) and MCS score was TAR 52.0±8.9 vs LIMA/Rad/SVG 52.5±9.3 (p=0.723). There were no significant differences between groups for NYHA class 3+ TAR 9.4% vs. LIMA/Rad/SVG 6.6%; or CCS 3+ TAR 2.35% vs. LIMA/Rad/SVG 0%.Keywords: CABG; MACCEs; quality of life; total arterial revascularisation
Procedia PDF Downloads 2142224 Understanding Mathematics Achievements among U. S. Middle School Students: A Bayesian Multilevel Modeling Analysis with Informative Priors
Authors: Jing Yuan, Hongwei Yang
Abstract:
This paper aims to understand U.S. middle school students’ mathematics achievements by examining relevant student and school-level predictors. Through a variance component analysis, the study first identifies evidence supporting the use of multilevel modeling. Then, a multilevel analysis is performed under Bayesian statistical inference where prior information is incorporated into the modeling process. During the analysis, independent variables are entered sequentially in the order of theoretical importance to create a hierarchy of models. By evaluating each model using Bayesian fit indices, a best-fit and most parsimonious model is selected where Bayesian statistical inference is performed for the purpose of result interpretation and discussion. The primary dataset for Bayesian modeling is derived from the Program for International Student Assessment (PISA) in 2012 with a secondary PISA dataset from 2003 analyzed under the traditional ordinary least squares method to provide the information needed to specify informative priors for a subset of the model parameters. The dependent variable is a composite measure of mathematics literacy, calculated from an exploratory factor analysis of all five PISA 2012 mathematics achievement plausible values for which multiple evidences are found supporting data unidimensionality. The independent variables include demographics variables and content-specific variables: mathematics efficacy, teacher-student ratio, proportion of girls in the school, etc. Finally, the entire analysis is performed using the MCMCpack and MCMCglmm packages in R.Keywords: Bayesian multilevel modeling, mathematics education, PISA, multilevel
Procedia PDF Downloads 3342223 A Comparative Study of Environment Risk Assessment Guidelines of Developing and Developed Countries Including Bangladesh
Authors: Syeda Fahria Hoque Mimmi, Aparna Islam
Abstract:
Genetically engineered (GE) plants are the need of time for increased demand for food. A complete set of regulations need to be followed from the development of a GE plant to its release into the environment. The whole regulation system is categorized into separate stages for maintaining the proper biosafety. Environmental risk assessment (ERA) is one of such crucial stages in the whole process. ERA identifies potential risks and their impacts through science-based evaluation where it is done in a case-by-case study. All the countries which deal with GE plants follow specific guidelines to conduct a successful ERA. In this study, ERA guidelines of 4 developing and 4 developed countries, including Bangladesh, were compared. ERA guidelines of countries such as India, Canada, Australia, the European Union, Argentina, Brazil, and the US were considered as a model to conduct the comparison study with Bangladesh. Initially, ten parameters were detected to compare the required data and information among all the guidelines. Surprisingly, an adequate amount of data and information requirements (e.g., if the intended modification/new traits of interest has been achieved or not, the growth habit of GE plants, consequences of any potential gene flow upon the cultivation of GE plants to sexually compatible plant species, potential adverse effects on the human health, etc.) matched between all the countries. However, a few differences in data requirement (e.g., agronomic conventions of non-transformed plants, applicants should clearly describe experimental procedures followed, etc.) were also observed in the study. Moreover, it was found that only a few countries provide instructions on the quality of the data used for ERA. If these similarities are recognized in a more framed manner, then the approval pathway of GE plants can be shared.Keywords: GE plants, ERA, harmonization, ERA guidelines, Information and data requirements
Procedia PDF Downloads 186